化工学报 ›› 2022, Vol. 73 ›› Issue (10): 4429-4437.DOI: 10.11949/0438-1157.20220649
收稿日期:
2022-05-06
修回日期:
2022-08-22
出版日期:
2022-10-05
发布日期:
2022-11-02
通讯作者:
王丽
作者简介:
高奕吟(1997—),女,硕士研究生,gaoyiyin@163.com
基金资助:
Yiyin GAO(), Rui FU, Li WANG(), Yun GUO
Received:
2022-05-06
Revised:
2022-08-22
Online:
2022-10-05
Published:
2022-11-02
Contact:
Li WANG
摘要:
通过制备Pt/Nb x /TiO2研究了NbO x 在催化燃烧氯乙烯中的作用;采用XRD、XPS、H2-TPR、NH3-TPD与Py-FT-IR表征了NbO x 对于催化剂组织结构、氧化还原以及酸碱性的影响。负载NbO x 可促进Pt/TiO2反应性能的提高,当Nb/Ti摩尔比为0.09时,即Pt/Nb0.09/TiO2可在246℃实现90%氯乙烯的转化;与Pt/TiO2相比,达到相同转化率的温度向低温偏移69℃。NbO x 也影响了催化燃烧过程中的含氯副产物的总浓度和分布。催化剂表征结果发现NbO x 的引入可进一步增加Pt与载体(TiO2)之间的相互作用,提高催化剂的表面活性氧物种的浓度,进而促进了催化剂氧化还原性能的提高。催化剂表面的总酸量随着NbO x 含量的增加而降低,尤其是表面Lewis酸量。因此,催化剂表面的酸量和酸分布不是决定反应性能的唯一因素,而低温的氧化还原性更有利于催化剂性能的提高。
中图分类号:
高奕吟, 付睿, 王丽, 郭耘. NbO x 掺杂对Pt/TiO2催化燃烧氯乙烯的促进作用[J]. 化工学报, 2022, 73(10): 4429-4437.
Yiyin GAO, Rui FU, Li WANG, Yun GUO. Promotion effects of NbO x doping to Pt/TiO2 on catalytic combustion of vinyl chloride[J]. CIESC Journal, 2022, 73(10): 4429-4437.
催化剂 | Pt负载量①/%(质量分数) | Nb负载量①/ %(质量分数) | 比表面积② /(m2/g) | (Pt4+/Pttotal)③/% | [Oβ/(Oβ+Oα)]③/% | 中强酸与强酸占 总酸量的比例④/ % | 总酸量⑤/ (μmol/g) | L/B⑤ |
---|---|---|---|---|---|---|---|---|
Pt/TiO2 | 0.92 | 0 | 45 | 17.1 | 22.5 | 57.0 | 68.5 | 31.6 |
Pt/Nb0.015/TiO2 | 0.96 | 1.63 | 48 | 19.9 | 25.4 | 55.6 | 62.0 | 35.5 |
Pt/Nb0.03/TiO2 | 0.98 | 3.25 | 49 | 20.4 | 28.1 | 54.1 | 54.3 | 40.8 |
Pt/Nb0.09/TiO2 | 0.92 | 9.37 | 51 | 24.0 | 30.5 | 52.1 | 48.0 | 47.0 |
Pt/Nb0.18/TiO2 | 0.90 | 16.88 | 42 | 21.0 | 27.8 | 51.5 | 39.9 | 64.2 |
表1 Pt/Nb x /TiO2 (x=0,0.015~0.18)的物理结构参数,XPS、NH3-TPD和吡啶红外吸附结果
Table 1 The physical structure parameters, the data of XPS, NH3-TPD and Py-FT IR of Pt/Nb x /TiO2
催化剂 | Pt负载量①/%(质量分数) | Nb负载量①/ %(质量分数) | 比表面积② /(m2/g) | (Pt4+/Pttotal)③/% | [Oβ/(Oβ+Oα)]③/% | 中强酸与强酸占 总酸量的比例④/ % | 总酸量⑤/ (μmol/g) | L/B⑤ |
---|---|---|---|---|---|---|---|---|
Pt/TiO2 | 0.92 | 0 | 45 | 17.1 | 22.5 | 57.0 | 68.5 | 31.6 |
Pt/Nb0.015/TiO2 | 0.96 | 1.63 | 48 | 19.9 | 25.4 | 55.6 | 62.0 | 35.5 |
Pt/Nb0.03/TiO2 | 0.98 | 3.25 | 49 | 20.4 | 28.1 | 54.1 | 54.3 | 40.8 |
Pt/Nb0.09/TiO2 | 0.92 | 9.37 | 51 | 24.0 | 30.5 | 52.1 | 48.0 | 47.0 |
Pt/Nb0.18/TiO2 | 0.90 | 16.88 | 42 | 21.0 | 27.8 | 51.5 | 39.9 | 64.2 |
1 | Du C C, Lu S Y, Wang Q L, et al. A review on catalytic oxidation of chloroaromatics from flue gas[J]. Chemical Engineering Journal, 2018, 334: 519-544. |
2 | Guo Y X, Leroux F, Tian W L, et al. Layered double hydroxides as thermal stabilizers for poly(vinyl chloride): a review[J]. Applied Clay Science, 2021, 211: 106198. |
3 | Huang B B, Lei C, Wei C H, et al. Chlorinated volatile organic compounds (Cl-VOCs) in environment—sources, potential human health impacts, and current remediation technologies[J]. Environment International, 2014, 71: 118-138. |
4 | 环境保护部, 国家质量监督检验检疫总局. 烧碱、聚氯乙烯工业污染物排放标准: [S]. 北京: 中国环境科学出版社, 2016. |
Ministry of Ecology and Environment of the People's Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Emission standard of pollutants for caustic alkali and polyvinyl chloride industry: [S]. Beijing: China Environmental Press, 2016. | |
5 | 梁文俊, 朱玉雪, 石秀娟, 等. Ce掺杂对Ru/TiO2催化氯苯性能的影响[J]. 化工学报, 2020, 71(8): 3585-3593. |
Liang W J, Zhu Y X, Shi X J, et al. Effect of Ce doping on catalytic chlorobenzene performance of Ru/TiO2 catalysts[J]. CIESC Journal, 2020, 71(8): 3585-3593. | |
6 | Wang C, Zhang C H, Hua W C, et al. Catalytic oxidation of vinyl chloride emissions over Co-Ce composite oxide catalysts[J]. Chemical Engineering Journal, 2017, 315: 392-402. |
7 | Hua W C, Zhang C H, Guo Y L, et al. An efficient Sn y Mn1- y O x composite oxide catalyst for catalytic combustion of vinyl chloride emissions[J]. Applied Catalysis B: Environmental, 2019, 255: 117748. |
8 | Wang L, Wang C, Xie H K, et al. Catalytic combustion of vinyl chloride over Sr doped LaMnO3 [J]. Catalysis Today, 2019, 327: 190-195. |
9 | Wang Y, Liu H H, Wang S Y, et al. Remarkable enhancement of dichloromethane oxidation over potassium-promoted Pt/Al2O3 catalysts[J]. Journal of Catalysis, 2014, 311: 314-324. |
10 | Wang C, Tian C C, Guo Y L, et al. Ruthenium oxides supported on heterostructured CoPO-MCF materials for catalytic oxidation of vinyl chloride emissions[J]. Journal of Hazardous Materials, 2018, 342: 290-296. |
11 | 方田, 高奕吟, 王思雨, 等. Mn-Zr复合氧化物负载贵金属催化剂的氯乙烯催化燃烧性能[J]. 石油化工高等学校学报, 2021, 34(5): 1-8. |
Fang T, Gao Y Y, Wang S Y, et al. Reaseching on supported noble metals over Mn-Zr composite oxides for the catalytic combustion of vinyl chloride[J]. Journal of Petrochemical Universities, 2021, 34(5): 1-8. | |
12 | Zhang Q F, Zhou Z B, Fang T, et al. Understanding the role of tungsten on Pt/CeO2 for vinyl chloride catalytic combustion[J]. Journal of Rare Earths, 2022, 40(9): 1462-1470. |
13 | Wan J, Yang P, Guo X L, et al. Elimination of 1, 2-dichloroethane over (Ce, Cr) x O2/Nb2O5 catalysts: synergistic performance between oxidizing ability and acidity[J]. Chinese Journal of Catalysis, 2019, 40(7): 1100-1108. |
14 | Ma Z R, Wu X D, Si Z C, et al. Impacts of niobia loading on active sites and surface acidity in NbO x /CeO2-ZrO2 NH3-SCR catalysts[J]. Applied Catalysis B: Environmental, 2015, 179: 380-394. |
15 | 刘路易, 任鑫, 周静红, 等. Pt/Nb2O5-SiO2催化甘油氢解制1, 3-丙二醇[J]. 化学反应工程与工艺, 2019, 35(2): 97-105. |
Liu L Y, Ren X, Zhou J H, et al. Pt/Nb2O5-SiO2 catalyst for hydrogenolysis of glycerol to 1, 3-propanediol[J]. Chemical Reaction Engineering and Technology, 2019, 35(2): 97-105. | |
16 | Goscianska J, Fiedorow R, Wawrzynczak A, et al. The effect of zirconium and niobium oxidic species on platinum dispersion in 1%Pt/Nb, Zr-containing MCM-41[J]. Catalysis Today, 2009, 142(3/4): 298-302. |
17 | Sun P, Huang S X, Guo R T, et al. The enhanced SCR performance and SO2 resistance of Mn/TiO2 catalyst by the modification with Nb: a mechanistic study[J]. Applied Surface Science, 2018, 447: 479-488. |
18 | Wang X X, Shi Y, Li S J, et al. Promotional synergistic effect of Cu and Nb doping on a novel Cu/Ti-Nb ternary oxide catalyst for the selective catalytic reduction of NO x with NH3 [J]. Applied Catalysis B: Environmental, 2018, 220: 234-250. |
19 | Ding Y, Wang S, Zhang L, et al. Effect of niobium on the activity of Pd/xNb/Ce0.5Zr0.5O2 catalyst for CH4 combustion[J]. Catalysis Communications, 2020, 144: 106084. |
20 | Wang H, Peng B, Zhang R D, et al. Synergies of Mn oxidative ability and ZSM-5 acidity for 1, 2-dichloroethane catalytic elimination[J]. Applied Catalysis B: Environmental, 2020, 276: 118922. |
21 | Gu Y F, Shao S J, Sun W, et al. The oxidation of chlorinated organic compounds over W-modified Pt/CeO2 catalysts[J]. Journal of Catalysis, 2019, 380: 375-386. |
22 | Fei X Q, Cao S, Ouyang W L, et al. A convenient synthesis of core-shell Co3O4@ZSM-5 catalysts for the total oxidation of dichloromethane (CH2Cl2)[J]. Chemical Engineering Journal, 2020, 387: 123411. |
23 | Yao X J, Zhao R D, Chen L, et al. Selective catalytic reduction of NO x by NH3 over CeO2 supported on TiO2: comparison of anatase, brookite, and rutile[J]. Applied Catalysis B: Environmental, 2017, 208: 82-93. |
24 | Cao S, Fei X Q, Wen Y X, et al. Bimodal mesoporous TiO2 supported Pt, Pd and Ru catalysts and their catalytic performance and deactivation mechanism for catalytic combustion of dichloromethane (CH2Cl2)[J]. Applied Catalysis A: General, 2018, 550: 20-27. |
25 | Yao X J, Zhang L, Li L L, et al. Investigation of the structure, acidity, and catalytic performance of CuO/Ti0.95Ce0.05O2 catalyst for the selective catalytic reduction of NO by NH3 at low temperature[J]. Applied Catalysis B: Environmental, 2014, 150/151: 315-329. |
26 | Liu S F, Qi H F, Zhou J H, et al. Encapsulation of platinum by titania under an oxidative atmosphere: contrary to classical strong metal–support interactions[J]. ACS Catalysis, 2021, 11(10): 6081-6090. |
27 | Georgios P, Wolfgang S M. X-ray photoelectron spectroscopy of anatase-TiO2 coated carbon nanotubes[J]. Solid State Phenomena, 2010, 162: 163-177. |
28 | Cao S, Wang H Q, Yu F X, et al. Catalyst performance and mechanism of catalytic combustion of dichloromethane (CH2Cl2) over Ce doped TiO2 [J]. Journal of Colloid and Interface Science, 2016, 463: 233-241. |
29 | Pongthawornsakun B, Kaewsuanjik P, Kittipreechakun P, et al. Deposition of Pt nanoparticles on TiO2 by pulsed direct current magnetron sputtering for selective hydrogenation of vanillin to vanillyl alcohol[J]. Catalysis Today, 2020, 358: 51-59. |
30 | El Assal Z, Ojala S, Pitkäaho S, et al. Comparative study on the support properties in the total oxidation of dichloromethane over Pt catalysts[J]. Chemical Engineering Journal, 2017, 313: 1010-1022. |
31 | Hwang C P, Yeh C T. Platinum-oxide species formed by oxidation of platinum crystallites supported on alumina[J]. Journal of Molecular Catalysis A: Chemical, 1996, 112(2): 295-302. |
32 | Yang M, Zhao X C, Ren Y J, et al. Pt/Nb‐WO x for the chemoselective hydrogenolysis of glycerol to 1, 3‐propanediol: Nb dopant pacifying the over‐reduction of WO x supports[J]. Chinese Journal of Catalysis, 2018, 39(6): 1027-1037. |
33 | Yang P, Shi Z N, Tao F, et al. Synergistic performance between oxidizability and acidity/texture properties for 1, 2-dichloroethane oxidation over (Ce, Cr) x O2/zeolite catalysts[J]. Chemical Engineering Science, 2015, 134: 340-347. |
34 | Ma R H, Hu P J, Jin L Y, et al. Characterization of CrO x /Al2O3 catalysts for dichloromethane oxidation[J]. Catalysis Today, 2011, 175(1): 598-602. |
35 | Ying Q J, Liu Y, Wang N Y, et al. The superior performance of dichloromethane oxidation over Ru doped sulfated TiO2 catalysts: synergistic effects of Ru dispersion and acidity[J]. Applied Surface Science, 2020, 515: 145971. |
36 | Yang P, Li J, Bao L F, et al. Adsorption/catalytic combustion of toxic 1, 2-dichloroethane on multifunctional Nb2O5-TiO2 composite metal oxides[J]. Chemical Engineering Journal, 2019, 361: 1400-1410. |
37 | Akizuki M, Oshima Y. Acid catalytic properties of TiO2, Nb2O5, and NbO x /TiO2 in supercritical water[J]. The Journal of Supercritical Fluids, 2018, 141: 173-181. |
38 | Morawa Eblagon K, Malaika A, Ptaszynska K, et al. Impact of thermal treatment of Nb2O5 on its performance in glucose dehydration to 5-hydroxymethylfurfural in water[J]. Nanomaterials (Basel, Switzerland), 2020, 10(9): 1685. |
39 | Li S, Jin C H, Feng N D, et al. Regulation of acidic properties of WO3-ZrO2 for Friedel-Crafts reaction with surfactant[J]. Catalysis Communications, 2019, 123: 54-58. |
[1] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[2] | 胡超, 董玉明, 张伟, 张红玲, 周鹏, 徐红彬. 浓硫酸活化五氧化二钒制备高浓度全钒液流电池正极电解液[J]. 化工学报, 2023, 74(S1): 338-345. |
[3] | 宋瑞涛, 王派, 王云鹏, 李敏霞, 党超镔, 陈振国, 童欢, 周佳琦. 二氧化碳直接蒸发冰场排管内流动沸腾换热数值模拟分析[J]. 化工学报, 2023, 74(S1): 96-103. |
[4] | 米泽豪, 花儿. 基于DFT和COSMO-RS理论研究多元胺型离子液体吸收SO2气体[J]. 化工学报, 2023, 74(9): 3681-3696. |
[5] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[6] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[7] | 杨百玉, 寇悦, 姜峻韬, 詹亚力, 王庆宏, 陈春茂. 炼化碱渣湿式氧化预处理过程DOM的化学转化特征[J]. 化工学报, 2023, 74(9): 3912-3920. |
[8] | 陈美思, 陈威达, 李鑫垚, 李尚予, 吴有庭, 张锋, 张志炳. 硅基离子液体微颗粒强化气体捕集与转化的研究进展[J]. 化工学报, 2023, 74(9): 3628-3639. |
[9] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[10] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[11] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[12] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[13] | 李锦潼, 邱顺, 孙文寿. 煤浆法烟气脱硫中草酸和紫外线强化煤砷浸出过程[J]. 化工学报, 2023, 74(8): 3522-3532. |
[14] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[15] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||