化工学报 ›› 2022, Vol. 73 ›› Issue (2): 535-565.DOI: 10.11949/0438-1157.20211144
收稿日期:
2021-08-12
修回日期:
2021-11-12
出版日期:
2022-02-05
发布日期:
2022-02-18
通讯作者:
饶中浩
作者简介:
赵佳腾(1990—),男,博士,讲师,基金资助:
Jiateng ZHAO1(),Chenhui WU1,Yucheng DAI1,Zhonghao RAO1,2,3()
Received:
2021-08-12
Revised:
2021-11-12
Online:
2022-02-05
Published:
2022-02-18
Contact:
Zhonghao RAO
摘要:
脉动热管作为一种新型热管技术,由于其结构简单、传热性能好以及环境适应性强等优点,在热管理、太阳能集热、余热回收等热传输领域都极具应用潜力。高热通量器件、热能的利用和回收等领域的快速发展,对传热装置的传热性能和工况适应性提出了更高的要求。为进一步强化内部两相流传热以及适应不同工况,结构多样的新型脉动热管应运而生。针对新结构脉动热管的研究进展,主要从强化传热性能的内部结构优化、适应不同应用需求的外部新结构及新结构脉动热管的应用研究三个方面进行总结。后续的研究应该在明晰运行机制的基础上,设计出通用性的新结构脉动热管。
中图分类号:
赵佳腾, 吴晨辉, 戴宇成, 饶中浩. 脉动热管强化传热及其应用研究进展[J]. 化工学报, 2022, 73(2): 535-565.
Jiateng ZHAO, Chenhui WU, Yucheng DAI, Zhonghao RAO. Research progress on heat transfer enhancement and application of oscillating heat pipe[J]. CIESC Journal, 2022, 73(2): 535-565.
1 | 陆谦逸. 基于脉动热管的数据中心机柜冷却系统研究[D]. 北京: 北京交通大学, 2016. |
Lu Q Y. Study on the rack cooling system based on the pulsating heat pipe in data centers[D]. Beijing: Beijing Jiaotong University, 2016. | |
2 | 林梓荣. 自激式振荡流热管热输送性能研究[D]. 广州: 华南理工大学, 2012. |
Lin Z R. Study on heat transport capability of self-exciting mode oscillating-flow heat pipe[D]. Guangzhou: South China University of Technology, 2012. | |
3 | Mehta K, Mehta N, Patel V. Influence of the channel profile on the thermal resistance of closed-loop flat-plate oscillating heat pipe[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42(3): 1-12. |
4 | 屈健. 脉动热管技术研究及应用进展[J]. 化工进展, 2013, 32(1): 33-41. |
Qu J. Oscillating heat pipes: State of the art and applications[J]. Chemical Industry and Engineering Progress, 2013, 32(1): 33-41. | |
5 | 李楠. 通道结构对脉动热管传热性能的影响研究[D]. 大连: 大连理工大学, 2015. |
Li N. Effects of channel structure on heat transfer performance of pulsating heat pipes[D]. Dalian: Dalian University of Technology, 2015. | |
6 | Han X H, Wang X H, Zheng H C, et al. Review of the development of pulsating heat pipe for heat dissipation[J]. Renewable and Sustainable Energy Reviews, 2016, 59: 692-709. |
7 | 厉青峰, 王亚楠, 何鑫, 等. 脉动热管的理论研究与应用新进展[J]. 工程科学学报, 2019, 41(9): 1115-1126. |
Li Q F, Wang Y N, He X, et al. New progress in the theoretical research and application of pulsating heat pipe[J]. Chinese Journal of Engineering, 2019, 41(9): 1115-1126. | |
8 | 肖念何, 吴梁玉. 脉动热管传热性能优化实验研究进展[J]. 建筑热能通风空调, 2019, 38(10): 41-46. |
Xiao N H, Wu L Y. Review on the thermal performance optimization for pulsating heat pipe via experimental investigations[J]. Building Energy & Environment, 2019, 38(10): 41-46. | |
9 | 张东伟, 蒋二辉, 周俊杰, 等. 脉动热管强化传热技术研究进展[J]. 科学技术与工程, 2019, 19(21): 1-7. |
Zhang D W, Jiang E H, Zhou J J, et al. Research progress on enhanced pulsating heat pipe heat transfer technology[J]. Science Technology and Engineering, 2019, 19(21): 1-7. | |
10 | Xu Y Y, Xue Y Q, Qi H, et al. An updated review on working fluids, operation mechanisms, and applications of pulsating heat pipes[J]. Renewable and Sustainable Energy Reviews, 2021, 144: 110995. |
11 | Ma H B. Oscillating Heat Pipes[M]. Springer-Verlag New York, 2015. |
12 | 杨洪海, KHANDEKAR Sameer, GROLL Manfred. 脉动热管技术的研究现状及前沿热点[J]. 东华大学学报(自然科学版), 2006, 32(3): 134-138. |
Yang H H, Sameer K, Manfred G. State of the art on pulsating heat pipes[J]. Journal of Donghua University (Natural Science), 2006, 32(3): 134-138. | |
13 | Zhang D W, He Z T, Jiang E H, et al. A review on start-up characteristics of the pulsating heat pipe[J]. Heat and Mass Transfer, 2021, 57(5): 723-735. |
14 | 商福民, 刘登瀛, 冼海珍, 等. 非均匀截面自激振荡流热管内热传输特性实验研究[J]. 热能动力工程, 2007, 22(2): 201-204, 229. |
Shang F M, Liu D Y, Xian H Z, et al. Experimental study of heat transmission characteristics inside self-excitation oscillation flow heat-pipes of non-uniform section[J]. Journal of Engineering for Thermal Energy and Power, 2007, 22(2): 201-204, 229. | |
15 | 王瑞祥, 闫梦霏, 徐荣吉, 等. 正火预处理对脉动热管启动时间的影响[J]. 化工进展, 2018, 37(6): 2116-2124. |
Wang R X, Yan M F, Xu R J, et al. Influences of normalizing pretreatment on the start-up time of pulsating heat pipe[J]. Chemical Industry and Engineering Progress, 2018, 37(6): 2116-2124. | |
16 | Qu J, Li X J, Xu Q, et al. Thermal performance comparison of oscillating heat pipes with and without helical micro-grooves[J]. Heat and Mass Transfer, 2017, 53(11): 3383-3390. |
17 | Leu T S, Wu C H. Experimental studies of surface modified oscillating heat pipes[J]. Heat and Mass Transfer, 2017, 53(11): 3329-3340. |
18 | 马学虎, 兰忠, 王凯, 等. 舞动的液滴: 界面现象与过程调控[J]. 化工学报, 2018, 69(1): 9-43. |
Ma X H, Lan Z, Wang K, et al. Dancing droplet: interface phenomena and process regulation[J]. CIESC Journal, 2018, 69(1): 9-43. | |
19 | Ji Y L, Xu C, Ma H B, et al. An experimental investigation of the heat transfer performance of an oscillating heat pipe with copper oxide (CuO) microstructure layer on the inner surface[J]. Journal of Heat Transfer, 2013, 135(7): 074504. |
20 | Bhavnani S, Narayanan V, Qu W L, et al. Boiling augmentation with micro/nanostructured surfaces: current status and research outlook[J]. Nanoscale and Microscale Thermophysical Engineering, 2014, 18(3): 197-222. |
21 | Li W, Dai R K, Zeng M, et al. Review of two types of surface modification on pool boiling enhancement: passive and active[J]. Renewable and Sustainable Energy Reviews, 2020, 130: 109926. |
22 | 于慧文. 梯度润湿表面脉动热管的传热性能研究[D]. 大连: 大连理工大学, 2020. |
Yu H W. Heat transfer characteristics of oscillating heat pipes with wettability gradient surface[D]. Dalian: Dalian University of Technology, 2020. | |
23 | 周儒鸿, 纪献兵, 孔庆盼, 等. 表面润湿性影响池沸腾传热的研究进展[J]. 热能动力工程, 2019, 34(2): 1-8. |
Zhou R H, Ji X B, Kong Q P, et al. Research progress of pool boiling heat transferon different wettability surfaces[J]. Journal of Engineering for Thermal Energy and Power, 2019, 34(2): 1-8. | |
24 | 彭友权. 带平板蒸发器的三维脉动热管传热特性及其在LED冷却方面的应用研究[D]. 镇江: 江苏大学, 2018. |
Peng Y Q. Experimental study on heat transfer performance of three-dimensional oscillating heat pipe with flat-plate evaporator and application in the high power LED cooling[D]. Zhenjiang: Jiangsu University, 2018. | |
25 | 孙芹. 微小型脉动热管启动及热力特性研究[D]. 镇江: 江苏大学, 2019. |
Sun Q. Study on the start-up and themo-hydrodynamic characteristics of micro/mini oscillating heat pipes[D]. Zhenjiang: Jiangsu University, 2019. | |
26 | Kim W, Kim S J. Effect of reentrant cavities on the thermal performance of a pulsating heat pipe[J]. Applied Thermal Engineering, 2018, 133: 61-69. |
27 | Qu J, Sun Q, Wang H, et al. Performance characteristics of flat-plate oscillating heat pipe with porous metal-foam wicks[J]. International Journal of Heat and Mass Transfer, 2019, 137: 20-30. |
28 | Kato S, Okuyama K, Ichikawa T, et al. A single, straight-tube pulsating heat pipe (examination of a mechanism for the enhancement of heat transport)[J]. International Journal of Heat and Mass Transfer, 2013, 64: 254-262. |
29 | Ibrahim O T, Monroe J G, Thompson S M, et al. An investigation of a multi-layered oscillating heat pipe additively manufactured from Ti-6Al-4V powder[J]. International Journal of Heat and Mass Transfer, 2017, 108: 1036-1047. |
30 | Wang H, Qu J, Sun Q, et al. Thermal characteristic comparison of three-dimensional oscillating heat pipes with/without sintered copper particles inside flat-plate evaporator for concentrating photovoltaic cooling[J]. Applied Thermal Engineering, 2020, 167: 114815. |
31 | Wang H, Qu J, Peng Y Q, et al. Heat transfer performance of a novel tubular oscillating heat pipe with sintered copper particles inside flat-plate evaporator and high-power LED heat sink application[J]. Energy Conversion and Management, 2019, 189: 215-222. |
32 | 周华. 振动状态下脉动热管的流动与传热性能研究[D]. 苏州: 苏州科技大学, 2019. |
Zhou H. Study on fluid flow and heat transfer performance of pulsating heat pipe under vibration[D]. Suzhou: Suzhou University of Science and Technology, 2019. | |
33 | Qu W, Ma H B. Theoretical analysis of startup of a pulsating heat pipe[J]. International Journal of Heat and Mass Transfer, 2007, 50(11): 2309-2316. |
34 | Xu J J, Zhang Y W, Ma H B. Effect of internal wick structure on liquid-vapor oscillatory flow and heat transfer in an oscillating heat pipe[J]. Journal of Heat Transfer, 2009, 131(12): 121012. |
35 | Qu J, Li X J, Wang Q, et al. Heat transfer characteristics of micro-grooved oscillating heat pipes[J]. Experimental Thermal and Fluid Science, 2017, 85: 75-84. |
36 | Qu J, Li X J, Cui Y Y, et al. Design and experimental study on a hybrid flexible oscillating heat pipe[J]. International Journal of Heat and Mass Transfer, 2017, 107: 640-645. |
37 | Qu J, Wang C, Li X J, et al. Heat transfer performance of flexible oscillating heat pipes for electric/hybrid-electric vehicle battery thermal management[J]. Applied Thermal Engineering, 2018, 135: 1-9. |
38 | 李孝军, 屈健, 韩新月, 等. 微槽道脉动热管的启动及传热特性[J]. 化工学报, 2016, 67(6): 2263-2270. |
Li X J, Qu J, Han X Y, et al. Start-up and heat transfer performance of micro-grooved oscillating heat pipe[J]. CIESC Journal, 2016, 67(6): 2263-2270. | |
39 | 于子程. 微平板通道热管传热性能研究[D]. 大连: 大连理工大学, 2018. |
Yu Z C. Research on heat transfer performance of flat micro heat pipe[D]. Dalian: Dalian University of Technology, 2018. | |
40 | Xu D H, Chen T F, Xuan Y M. Thermo-hydrodynamics analysis of vapor-liquid two-phase flow in the flat-plate pulsating heat pipe[J]. International Communications in Heat and Mass Transfer, 2012, 39(4): 504-508. |
41 | 闫梦霏. 正火预处理对脉动热管性能影响[D]. 北京: 北京建筑大学, 2018. |
Yan M F. Influences of normalizing pretreatment on the pulsating heat pipe[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2018. | |
42 | Hao T T, Ma X H, Lan Z, et al. Effects of superhydrophobic and superhydrophilic surfaces on heat transfer and oscillating motion of an oscillating heat pipe[J]. Journal of Heat Transfer, 2014, 136(8): 082001. |
43 | 郝婷婷. 表面亲/疏水性能对脉动热管传递性能的影响[D]. 大连: 大连理工大学, 2014. |
Hao T T. Effects of hydrophilic/hydrophobic surface on transport performance of an oscillating heat pipe[D]. Dalian: Dalian University of Technology, 2014. | |
44 | 郝婷婷, 马学虎, 兰忠, 等. 超疏水和超亲水表面对脉动热管性能的影响[J]. 工程热物理学报, 2015, 36(12): 2670-2673. |
Hao T T, Ma X H, Lan Z, et al. Experimental investigation of the effects of superhydrophobic and superhydrophilic surfaces on the pulsating heat pipe[J]. Journal of Engineering Thermophysics, 2015, 36(12): 2670-2673. | |
45 | 郝婷婷, 马学虎, 兰忠, 等. 超亲水脉动热管液弹液膜沉积的实验研究[J]. 工程热物理学报, 2015, 36(1): 168-171. |
Hao T T, Ma X H, Lan Z, et al. Experimental investigation of the effect of superhydrophilic surface on the liquid film deposition of a pulsating heat pipe[J]. Journal of Engineering Thermophysics, 2015, 36(1): 168-171. | |
46 | 张庆振. 表面润湿性对脉动热管传热性能影响的实验研究[D]. 大连: 大连海事大学, 2017. |
Zhang Q Z. Experimental study on the surface wettability effect on the heat transfer performance of an oscillating heat pipe[D]. Dalian: Dalian Maritime University, 2017. | |
47 | 于慧文, 崔文宇, 郝婷婷, 等. 梯度润湿表面脉动热管传热性能的研究[J]. 化工进展, 2020, 39(11): 4375-4383. |
Yu H W, Cui W Y, Hao T T, et al. Heat transfer performance of wettability gradient surface oscillating heat pipe[J]. Chemical Industry and Engineering Progress, 2020, 39(11): 4375-4383. | |
48 | 徐陈. 纳米颗粒及表面物性对脉动热管传热性能影响[D]. 大连: 大连海事大学, 2012. |
Xu C. The effect of nano-fluid and surface treatment on oscillating heat pipe[D]. Dalian: Dalian Maritime University, 2012. | |
49 | Ji Y L, Chen H H, Kim Y J, et al. Hydrophobic surface effect on heat transfer performance in an oscillating heat pipe[J]. Journal of Heat Transfer, 2012, 134(7): 074502. |
50 | 纪玉龙, 庾春荣, 张庆振, 等. 表面浸润程度对脉动热管传热性能的影响[J]. 化工学报, 2017, 68: 141-149. |
Ji Y L, Yu C R, Zhang Q Z, et al. Effect of surface wettability on heat transfer performance of oscillating heat pipe[J]. CIESC Journal, 2017, 68: 141-149. | |
51 | Xie X Z, Weng Q, Luo Z Q, et al. Thermal performance of the flat micro-heat pipe with the wettability gradient surface by laser fabrication[J]. International Journal of Heat and Mass Transfer, 2018, 125: 658-669. |
52 | Cheng J, Wang G, Zhang Y, et al. Enhancement of capillary and thermal performance of grooved copper heat pipe by gradient wettability surface[J]. International Journal of Heat and Mass Transfer, 2017, 107: 586-591. |
53 | Singh M, Datla N V, Kondaraju S, et al. Enhanced thermal performance of micro heat pipes through optimization of wettability gradient[J]. Applied Thermal Engineering, 2018, 143: 350-357. |
54 | 林梓荣, 汪双凤, 吴小辉. 脉动热管技术研究进展[J]. 化工进展, 2008, 27(10): 1526-1532. |
Lin Z R, Wang S F, Wu X H. Recent rsearch on pulsating heat pipe[J]. Chemical Industry and Engineering Progress, 2008, 27(10): 1526-1532. | |
55 | 汪健生, 马赫. 改进型脉动热管的研究进展[J]. 现代化工, 2015, 35(12): 10-13. |
Wang J S, Ma H. A review of improved pulsating heat pipe[J]. Modern Chemical Industry, 2015, 35(12): 10-13. | |
56 | 周宇昕, 冯嘉伟, 苗双双, 等. 脉动热管传热性能的实验研究现状与展望[J]. 建筑热能通风空调, 2017, 36(12): 42-47. |
Zhou Y X, Feng J W, Miao S S, et al. Review of pulsating heat pipe[J]. Building Energy & Environment, 2017, 36(12): 42-47. | |
57 | Hua C, Wang X H, Gao X, et al. Experimental research on the start-up characteristics and heat transfer performance of pulsating heat pipes with rectangular channels[J]. Applied Thermal Engineering, 2017, 126: 1058-1062. |
58 | Khandekar S. Thermofluid dynamic study of flat-plate closed-loop pulsating heat pipes[J]. Microscale Thermophysical Engineering, 2003, 6(4): 303-317. |
59 | 陈阳阳. 20W热负荷脉动热管设计仿真与实验研究[D]. 哈尔滨: 哈尔滨工业大学, 2019. |
Chen Y Y. Design simulation and experimental study of 20W thermal load pulsating heat pipe[D]. Harbin: Harbin Institute of Technology, 2019. | |
60 | 陈阳阳, 裴圣旺, 陈晓光, 等. 矩形和圆形槽道脉动热管传热性能的实验研究[J]. 节能技术, 2019, 37(4): 291-295. |
Chen Y Y, Pei S W, Chen X G, et al. Experimental investigation on heat transfer performance of pulsating heat pipeswith rectangular and circular channels[J]. Energy Conservation Technology, 2019, 37(4): 291-295. | |
61 | 周岩. 脉动热管的性能研究[D]. 北京: 中国科学院研究生院(工程热物理研究所), 2007. |
Zhou Y. Studies on performance of pulsating heat pipe[D]. Beijing: Institute of Engineering Thermophysics, Chinese Academy of Sciences, 2007. | |
62 | 周岩, 曲伟. 脉动热管的毛细管结构和尺度效应实验研究[J]. 工程热物理学报, 2007, 28(4): 646-648. |
Zhou Y, Qu W. Experimental study on capillary structure and size effects of pulsating heat pipes[J]. Journal of Engineering Thermophysics, 2007, 28(4): 646-648. | |
63 | 周岩, 曲伟. 微小型脉动热管的传热性能实验研究[J]. 中国科学院研究生院学报, 2007, 24(4): 425-430. |
Zhou Y, Qu W. Experiments on heat transfer capability of miniature pulsating heat pipes[J]. Journal of the Graduate School of the Chinese Academy of Sciences, 2007, 24(4): 425-430. | |
64 | 夏侯国伟, 杨彩芸, 陈兰兰. 双面三角形和矩形通道平板脉动热管的传热性能[J]. 中南大学学报(自然科学版), 2012, 43(5): 1984-1989. |
Xiahou G W, Yang C Y, Chen L L. Heat transfer performance of flat plate pulsating heat pipe with double sides rectangular or triangular channel[J]. Journal of Central South University (Science and Technology), 2012, 43(5): 1984-1989. | |
65 | 陈兰兰, 夏侯国伟, 蒋朝勇, 等. 双面矩形平板脉动热管的传热性能[J]. 长沙理工大学学报(自然科学版), 2011, 8(1): 61-64, 73. |
Chen L L, Xiahou G W, Jiang C Y, et al. The thermal performance of a flat pulsating heat pipe with double sides rectangular channel[J]. Journal of Changsha University of Science & Technology (Natural Science), 2011, 8(1): 61-64, 73. | |
66 | 孔方明, 夏侯国伟, 谢明付. 平板脉动热管传热性能的实验研究[J]. 广东化工, 2014, 41(6): 145-146, 165. |
Kong F M, Xiahou G W, Xie M F. Experimental study on heat transfer performance of flat pulsating heat pipe[J]. Guangdong Chemical Industry, 2014, 41(6): 145-146, 165. | |
67 | 权力. 板式脉动热管传热特性实验研究[D]. 北京: 北京交通大学, 2009. |
Quan L. Experimental study on heat transfer characteristic of plate pulsating heat pipe[D]. Beijing: Beijing Jiaotong University, 2009. | |
68 | 李志. 基于板式脉动热管的大功率LED冷却实验研究[D]. 北京: 北京交通大学, 2012. |
Li Z. Experimental study on cooling of high-power LED based on plate pulsating heat pipe[D]. Beijing: Beijing Jiaotong University, 2012. | |
69 | 李志, 贾力, 魏文博. 基于板式脉动热管的LED自然对流冷却实验研究[J]. 工程热物理学报, 2013, 34(7): 1361-1364. |
Li Z, Jia L, Wei W B. Experimental study on natural convection cooling of LED based on plate pulsating heat pipe[J]. Journal of Engineering Thermophysics, 2013, 34(7): 1361-1364. | |
70 | 王超. 微型脉动热管内热驱动气液两相流动与传热机理研究[D]. 扬州: 扬州大学, 2019. |
Wang C. Study of thermally-driven vapor-liquid two-phase flow and heat transfer mechanisms in micro pulsating heat pipe[D]. Yangzhou: Yangzhou University, 2019. | |
71 | 李玉华, 曲伟, 袁达忠. 角管脉动热管的结构和尺度效应研究[J]. 工程热物理学报, 2009, 30(12): 2102-2104. |
Li Y H, Qu W, Yuan D Z. Effects of structure and size on pulsating heat pipe with angular capillary[J]. Journal of Engineering Thermophysics, 2009, 30(12): 2102-2104. | |
72 | 李玉华, 曲伟, 周岩. 角管脉动热管的流动和传热分析[J]. 工程热物理学报, 2008, 29(8): 1367-1369. |
Li Y H, Qu W, Zhou Y. Flow and heat transfer of pulsating heat pipe with angular capillary[J]. Journal of Engineering Thermophysics, 2008, 29(8): 1367-1369. | |
73 | Qu J, Wu H Y, Cheng P. Start-up, heat transfer and flow characteristics of silicon-based micro pulsating heat pipes[J]. International Journal of Heat and Mass Transfer, 2012, 55(21/22): 6109-6120. |
74 | Qu J, Wu H Y, Wang Q. Experimental investigation of silicon-based micro-pulsating heat pipe for cooling electronics[J]. Nanoscale and Microscale Thermophysical Engineering, 2012, 16(1): 37-49. |
75 | 陈娅琪. 硅基微型振荡热管的传热与流型可视化研究[D]. 上海: 上海交通大学, 2013. |
Chen Y Q. Heat transfer and flow visualization of silicon-based micro pulsating heat pipe[D]. Shanghai: Shanghai Jiaotong University, 2013. | |
76 | 陈娅琪, 吴慧英. 微型振荡热管非典型振荡的实验研究[J]. 工程热物理学报, 2013, 34(9): 1727-1730. |
Chen Y Q, Wu H Y. Experimental investigation on an atypical oscillation in silicon-based micro-pulsating heat pipes[J]. Journal of Engineering Thermophysics, 2013, 34(9): 1727-1730. | |
77 | 夏侯国伟, 孔方明, 谢明付. 单面波浪平板脉动热管的传热性能[J]. 制冷学报, 2014, 35(4): 73-77. |
Xiahou G W, Kong F M, Xie M F. Heat transfer performance of flat pulsating heat pipe with single-sided wave plate[J]. Journal of Refrigeration, 2014, 35(4): 73-77. | |
78 | 夏侯国伟, 孔方明, 谢明付. 并联梯形槽道板式脉动热管的启动性能研究[J]. 制冷学报, 2015, 36(2): 89-94. |
Xiahou G W, Kong F M, Xie M F. Study on the start-up performance of plate pulsating heat pipe with parallel Trapezoidal channel[J]. Journal of Refrigeration, 2015, 36(2): 89-94. | |
79 | 夏侯国伟, 谢明付, 孔方明, 等. 基于空调能量回收的平板热管传热性能[J]. 中南大学学报(自然科学版), 2015, 46(1): 317-323. |
Xiahou G W, Xie M F, Kong F M, et al. Heat transfer performance of flat heat pipe based on air-conditioning energy recovery[J]. Journal of Central South University (Science and Technology), 2015, 46(1): 317-323. | |
80 | 夏侯国伟, 龙葵, 谢明付, 等. 板式脉动热管分层启动现象及其特性[J]. 中南大学学报(自然科学版), 2016, 47(2): 661-666. |
Xiahou G W, Long K, Xie M F, et al. Phenomenon and characteristics of layered start up of flat pulsating heat pipe[J]. Journal of Central South University (Science and Technology), 2016, 47(2): 661-666. | |
81 | 王盼, 王迅. 脉动热管强化传热的研究进展[J]. 现代化工, 2017, 37(7): 40-44. |
Wang P, Wang X. Review on enhanced heat transfer for pulsating heat pipe[J]. Modern Chemical Industry, 2017, 37(7): 40-44. | |
82 | 商福民, 冼海珍, 刘登瀛, 等. 自激振荡流热管非均匀截面强化传热实验研究[J]. 工程热物理学报, 2006, 27(4): 638-640. |
Shang F M, Xian H Z, Liu D Y, et al. The heat transfer reinforcement experimental research of non-uniform profile channel semos heat pipe[J]. Journal of Engineering Thermophysics, 2006, 27(4): 638-640. | |
83 | 商福民. 自激振荡流热管被动强化传热特性研究[D]. 保定: 华北电力大学, 2009. |
Shang F M. Study on characteristics of passive enhanced heat transfer of self-exciting mode oscillating-flow heat pipe[D]. Baoding: North China Electric Power University, 2009. | |
84 | 商福民, 刘登瀛, 冼海珍, 等. 振荡流热管自激强化传热特性实验研究[J]. 工程热物理学报, 2009, 30(3): 461-464. |
Shang F M, Liu D Y, Xian H Z, et al. Experimental investigation on enhanced heat transfer of self-exciting mode oscillating-flow heat pipes[J]. Journal of Engineering Thermophysics, 2009, 30(3): 461-464. | |
85 | Tseng C Y, Yang K S, Chien K H, et al. Investigation of the performance of pulsating heat pipe subject to uniform/alternating tube diameters[J]. Experimental Thermal and Fluid Science, 2014, 54: 85-92. |
86 | 曹小林, 周晋, 晏刚. 脉动热管的结构改进及其传热特性的实验研究[J]. 工程热物理学报, 2004, 25(5): 807-809. |
Cao X L, Zhou J, Yan G. Improvement on structure of pulsating heat pipe and experimental study on its characteristic of heat transfer[J]. Journal of Engineering Thermophysics, 2004, 25(5): 807-809. | |
87 | He Y, Jiao D S, Pei G, et al. Experimental study on a three-dimensional pulsating heat pipe with tandem tapered nozzles[J]. Experimental Thermal and Fluid Science, 2020, 119: 110201. |
88 | Liu S, Li J T, Dong X Y, et al. Experimental study of flow patterns and improved configurations for pulsating heat pipes[J]. Journal of Thermal Science, 2007, 16(1): 56-62. |
89 | 李惊涛, 韩振兴, 李志宏, 等. 脉动热管运行和传热特性的可视化实验研究[J]. 现代化工, 2008, 28(11): 68-72. |
Li J T, Han Z X, Li Z H, et al. Visual experiment study on operation and heat transfer characteristics of pulsating heat pipes[J]. Modern Chemical Industry, 2008, 28(11): 68-72. | |
90 | 李惊涛, 李志宏, 韩振兴, 等. 脉动热管的流型及流向分析[J]. 热能动力工程, 2009, 24(3): 347-351, 410. |
Li J T, Li Z H, Han Z X, et al. An analysis of flow patterns and directions of a pulsating heat pipe[J]. Journal of Engineering for Thermal Energy and Power, 2009, 24(3): 347-351, 410. | |
91 | Kwon G H, Kim S J. Operational characteristics of pulsating heat pipes with a dual-diameter tube[J]. International Journal of Heat and Mass Transfer, 2014, 75: 184-195. |
92 | Kwon G H, Kim S J. Experimental investigation on the thermal performance of a micro pulsating heat pipe with a dual-diameter channel[J]. International Journal of Heat and Mass Transfer, 2015, 89: 817-828. |
93 | 刘梦阳. 变管径脉动热管的数值模拟与分析[D]. 天津: 天津大学, 2018. |
Liu M Y. Numerical simulation and analysis of variable tube diameter pulsating heat pipe[D]. Tianjin: Tianjin University, 2018. | |
94 | 王迅, 刘梦阳, 王盼, 等. 变管径单回路脉动热管传热特性数值研究[J]. 化学工程, 2018, 46(9): 32-36. |
Wang X, Liu M Y, Wang P, et al. Numerical simulation on heat transfer characteristics of a single-loop pulsating heat pipe with variable diameters[J]. Chemical Engineering (China), 2018, 46(9): 32-36. | |
95 | 史维秀. 改进型回路脉动热管可视化及传热性能研究[D]. 天津: 天津大学, 2012. |
Shi W X. Study on visualization and heat transfer performance of improved closed loop pulsating heat pipe[D]. Tianjin: Tianjin University, 2012. | |
96 | 章旺, 卢晓剑, 许国良, 等. 一种两管径式脉动热管的流动与传热特性[J]. 航空动力学报, 2020, 35(11): 2371-2377. |
Zhang W, Lu X J, Xu G L, et al. Flow and heat transfer characteristics of a two-diameter pulsating heat pipe[J]. Journal of Aerospace Power, 2020, 35(11): 2371-2377. | |
97 | 商福民, 刘登瀛, 冼海珍, 等. 采用不等径结构自激振荡流热管实现强化传热[J]. 动力工程, 2008, 28(1): 100-103, 146. |
Shang F M, Liu D Y, Xian H Z, et al. Enhanced heat transfer by using self-exciting mode oscillating-flow heat pipes of non-uniform structure[J]. Journal of Power Engineering, 2008, 28(1): 100-103, 146. | |
98 | Shang F M, Liu D Y, Xian H Z, et al. Experiments on enhanced heat transfer of self-exciting mode oscillating-flow heat pipe with non-uniform structure[C]// The Proceedings of the 5th Asia-Pacific Drying Conference. 2007 |
99 | Chiang C M, Chien K H, Chen H M, et al. Theoretical study of oscillatory phenomena in a horizontal closed-loop pulsating heat pipe with asymmetrical arrayed minichannel[J]. International Communications in Heat and Mass Transfer, 2012, 39(7): 923-930. |
100 | Chien K H, Lin Y T, Chen Y R, et al. A novel design of pulsating heat pipe with fewer turns applicable to all orientations[J]. International Journal of Heat and Mass Transfer, 2012, 55(21/22): 5722-5728. |
101 | Yang K S, Cheng Y C, Jeng M S, et al. An experimental investigation of micro pulsating heat pipes[J]. Micromachines, 2014, 5(2): 385-395. |
102 | Yang K S, Cheng Y C, Liu M C, et al. Micro pulsating heat pipes with alternate microchannel widths[J]. Applied Thermal Engineering, 2015, 83: 131-138. |
103 | 赵晓欢. 新型闭式振荡热管工作过程传热特性及其场协同分析[D]. 长沙: 湖南大学, 2015. |
Zhao X H. Heat transfer characteristics and field synergy principle analysis of a new closed-loop oscillating heat pipe during the working process[D]. Changsha: Hunan University, 2015. | |
104 | E J Q, Zhao X H, Liu H L, et al. Field synergy analysis for enhancing heat transfer capability of a novel narrow-tube closed oscillating heat pipe[J]. Applied Energy, 2016, 175: 218-228. |
105 | Jang D S, Lee J S, Ahn J H, et al. Flow patterns and heat transfer characteristics of flat plate pulsating heat pipes with various asymmetric and aspect ratios of the channels[J]. Applied Thermal Engineering, 2017, 114: 211-220. |
106 | 张强, 韩晓星, 王亚雄, 等. 不等径脉动热管的传热性能研究[J]. 化学工程, 2017, 45(12): 39-42, 57. |
Zhang Q, Han X X, Wang Y X, et al. Heat transfer performance on unequal-diameter pulsating heat pipe[J]. Chemical Engineering (China), 2017, 45(12): 39-42, 57. | |
107 | Wang J S, Ma H, Zhu Q, et al. Numerical and experimental investigation of pulsating heat pipes with corrugated configuration[J]. Applied Thermal Engineering, 2016, 102: 158-166. |
108 | 马赫. 改进型单回路脉动热管的性能研究[D]. 天津: 天津大学, 2016. |
Ma H. Investigation of improved single loop pulsating heat pipe[D]. Tianjin: Tianjin University, 2016. | |
109 | 蒋二辉, 张东伟, 周俊杰, 等. 不同结构下两弯头脉动热管的数值模拟[J]. 化工学报, 2019, 70: 244-249. |
Jiang E H, Zhang D W, Zhou J J, et al. Numerical simulation of pulsating heat pipes with two-bends in different structures[J]. CIESC Journal, 2019, 70: 244-249. | |
110 | 蒋二辉. 强化脉动热管换热特性的实验与理论研究[D]. 郑州: 郑州大学, 2020. |
Jiang E H. Experimental and theoretical studies on enhancing the heat transfer characteristics of pulsating heat pipes[D]. Zhengzhou: Zhengzhou University, 2020. | |
111 | 魏智康, 侯燕, 段彦军, 等. 两种微型热管传热性能对比研究[J]. 半导体光电, 2020, 41(6): 860-864. |
Wei Z K, Hou Y, Duan Y J, et al. Comparative study on the heat transfer performance of two types of micro heat pipes [J]. Semiconductor Optoelectronics, 2020, 41(6): 860-864. | |
112 | Holley B, Faghri A. Analysis of pulsating heat pipe with capillary wick and varying channel diameter[J]. International Journal of Heat and Mass Transfer, 2005, 48(13): 2635-2651. |
113 | 孙芹, 屈健, 袁建平. 等截面和变截面通道硅基微型脉动热管传热特性比较[J]. 化工学报, 2017, 68(5): 1803-1810. |
Sun Q, Qu J, Yuan J P. Heat transfer performance comparison of silicon-based micro oscillating heat pipes with and without expanding channels[J]. CIESC Journal, 2017, 68(5): 1803-1810. | |
114 | 王盼. 渐变式平板脉动热管的数值模拟与分析[D]. 天津: 天津大学, 2018. |
Wang P. Numerical simulation and analysis of flat pulsating heat pipe with varying section diameter[D]. Tianjin: Tianjin University, 2018. | |
115 | 王迅, 王盼, 刘梦阳, 等. 渐变式截面平板脉动热管的数值模拟及分析[J]. 化学工程, 2018, 46(7): 7-11. |
Wang X, Wang P, Liu M Y, et al. Numerical simulation and analysis of flat pulsating heat pipe with gradient section[J]. Chemical Engineering (China), 2018, 46(7): 7-11. | |
116 | 冯晨. 集成单向阀的闭环脉动热管传热特性研究[D]. 广州: 华南理工大学, 2018. |
Feng C. Study on heat transfer characteristics of closed-loop pulsating heat pipe with a check valve[D]. Guangzhou: South China University of Technology, 2018. | |
117 | Miyazaki Y, Polasek H, Akachi H. Oscillating heat pipe with check valves[C]//Proceedings of the 6th Intermational Heat Pipe Symposium. Chiang Mai, Thailand, 2000. |
118 | Feng C, Wan Z P, Mo H J, et al. Heat transfer characteristics of a novel closed-loop pulsating heat pipe with a check valve[J]. Applied Thermal Engineering, 2018, 141: 558-564. |
119 | Wan Z P, Wang X W, Feng C. Heat transfer performances of the capillary loop pulsating heat pipes with spring-loaded check valve[J]. Applied Thermal Engineering, 2020, 167: 114803. |
120 | Thongdaeng S, Rittidech S, Bubphachot B. Flow patterns and heat-transfer characteristics of a top heat mode closed-loop oscillating heat pipe with check valves (THMCLOHP/CV)[J]. Journal of Engineering Thermophysics, 2012, 21(4): 235-247. |
121 | 左洪桃, 张涛, 王立鹏, 等. 新型振荡热管的设计及止回阀的研究[J]. 山东化工, 2020, 49(19): 132-133. |
Zuo H T, Zhang T, Wang L P, et al. Design of a new type of oscillating heat pipe and research on check valve[J]. Shandong Chemical Industry, 2020, 49(19): 132-133. | |
122 | Meena P, Rittidech S, Poomsa-Ad N. Application of closed-loop oscillating heat-pipe with check valves (CLOHP/CV) air-preheater for reduced relative-humidity in drying systems[J]. Applied Energy, 2007, 84(5): 553-564. |
123 | Meena P, Rittidech S, Poomsa-Ad N. Closed-loop oscillating heat-pipe with check valves (CLOHP/CVs) air-preheater for reducing relative humidity in drying systems[J]. Applied Energy, 2007, 84(4): 363-373. |
124 | Supirattanakul P, Rittidech S, Bubphachot B. Application of a closed-loop oscillating heat pipe with check valves (CLOHP/CV) on performance enhancement in air conditioning system[J]. Energy and Buildings, 2011, 43(7): 1531-1535. |
125 | Bhuwakietkumjohn N, Rittidech S, Pattiya A. Heat-transfer characteristics of the top heat mode closed-loop oscillating heat pipe with a check valve (THMCLOHP/CV)[J]. Journal of Applied Mechanics and Technical Physics, 2012, 53(2): 224-230. |
126 | Bhuwakietkumjohn N, Parametthanuwat T. Application of silver nanoparticles contained in ethanol as a working fluid in an oscillating heat pipe with a check valve (CLOHP/CV): a thermodynamic behaviour study[J]. Heat and Mass Transfer, 2015, 51(9): 1219-1228. |
127 | Bhuwakietkumjohn N, Parametthanuwat T. Thermal performance of a top heat mode closed-loop oscillating heat pipe with a check valve (THMCLOHP/CV)[J]. Journal of Applied Mechanics and Technical Physics, 2015, 56(3): 479-485. |
128 | Sangiamsuk S, Bubphachot B, Watanabe O, et al. Corrosion mechanism in a closed-loop oscillating heat-pipe with check valves (CLOHP/CV)[J]. Anti-Corrosion Methods and Materials, 2014, 61(5): 293-299. |
129 | Ando M, Okamoto A, Tanaka K, et al. On-orbit demonstration of oscillating heat pipe with check valves for space application[J]. Applied Thermal Engineering, 2018, 130: 552-560. |
130 | Yeboah S K, Darkwa J. Thermal performance of a novel helically coiled oscillating heat pipe (HCOHP) for isothermal adsorption. An experimental study[J]. International Journal of Thermal Sciences, 2018, 128: 49-58. |
131 | 杨彬. 脉动热管扩热板的传热性能研究[D]. 北京: 中国科学院研究生院(工程热物理研究所), 2009. |
Yang B. Study on the performances of pulsating heat pipe heat spreader[D]. Beijing: Institute of Engineering Thermophysics,Chinese Academy of Sciences, 2009. | |
132 | 曲伟, 杨彬, 袁达忠. 脉动热管扩热板的耦合性能[J]. 工程热物理学报, 2010, 31(8): 1347-1350. |
Qu W, Yang B, Yuan D Z. Coupling performance on heat spreader of embedded pulsating heat pipe[J]. Journal of Engineering Thermophysics, 2010, 31(8): 1347-1350. | |
133 | 莫宗冬. 翅片式振荡热管强化传热数值模拟[D]. 衡阳: 南华大学, 2015. |
Mo Z D. Numerical simulation of fin oscillating heat pipe heat shtrengthened[D]. Hengyang: University of South China, 2015. | |
134 | 黄坤荣, 莫宗冬, 王虎. 振荡热管翅片散热器传热分析[J]. 机械工程师, 2015(10): 66-68. |
Huang K R, Mo Z D, Wang H. Heat transfer analysis of oscillating heat pipe fins radiator[J]. Mechanical Engineer, 2015(10): 66-68. | |
135 | 华超. 耦合泡沫金属的改进型脉动热管的理论与实验研究[D]. 杭州: 浙江大学, 2018. |
Hua C. Theoretical and experimental investigation on an improved PHP coupling with metal foam[D]. Hangzhou: Zhejiang University, 2018. | |
136 | Zhao J T, Jiang W, Liu C Z, et al. Thermal performance enhancement of an oscillating heat pipe with external expansion structure for thermal energy recovery and storage[J]. Applied Thermal Engineering, 2019, 155: 667-675. |
137 | Yeboah S K, Darkwa J. Experimental data on helically coiled oscillating heat pipe (HCOHP) design and thermal performance[J]. Data in Brief, 2020, 33: 106505. |
138 | de Vries S F, Florea D, Homburg F G A, et al. Design and operation of a Tesla-type valve for pulsating heat pipes[J]. International Journal of Heat and Mass Transfer, 2017, 105: 1-11. |
139 | Sedighi E, Amarloo A, Shafii B. Numerical and experimental investigation of flat-plate pulsating heat pipes with extra branches in the evaporator section[J]. International Journal of Heat and Mass Transfer, 2018, 126: 431-441. |
140 | 曹滨斌. 纳米流体扩容型脉动热管的传热研究[D]. 天津: 天津大学, 2010. |
Cao B B. Heat transfer research on the dilatant closed-loop pulsating heat pipe using nano-fluids[D]. Tianjin: Tianjin University, 2010. | |
141 | 曹滨斌, 李惟毅. 储液器对脉动热管启动及传热性能的影响[J]. 动力工程学报, 2010, 30(11): 861-865. |
Cao B B, Li W Y. Effects of liquid receiver on the start-up and heat transfer performance of the pulsating heat pipe[J]. Journal of Chinese Society of Power Engineering, 2010, 30(11): 861-865. | |
142 | Wang W W, Wang L, Cai Y, et al. Thermo-hydrodynamic model and parametric optimization of a novel miniature closed oscillating heat pipe with periodic expansion-constriction condensers[J]. International Journal of Heat and Mass Transfer, 2020, 152: 119460. |
143 | Davari H, Goshayeshi H R, Öztop H F, et al. Experimental investigation of oscillating heat pipe efficiency for a novel condenser by using Fe3O4 nanofluid[J]. Journal of Thermal Analysis and Calorimetry, 2020, 140(6): 2605-2614. |
144 | Nagasaki T, Hokazono T, Ito Y. Heat transport characteristics of a pulsating heat pipe[C]//Proceedings of ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference Collocated with the ASME 2007 InterPACK Conference. Vancouver, British Columbia, Canada, 2009: 763-770. |
145 | 屈健, 彭友权, 孙芹. 带平板蒸发器的紧凑型三维脉动热管传热特性[J]. 化工学报, 2018, 69(7): 2899-2907. |
Qu J, Peng Y Q, Sun Q. Heat transfer performance of three-dimensional oscillating heat pipe with flat-plate evaporator[J]. CIESC Journal, 2018, 69(7): 2899-2907. | |
146 | 屈健, 杨学贵, 彭友权, 等. 紧凑型脉动热管大功率LED的冷却试验[J]. 江苏大学学报(自然科学版), 2020, 41(4): 399-404. |
Qu J, Yang X G, Peng Y Q, et al. Experiment of compact oscillating heat pipe for high-power LED cooling[J]. Journal of Jiangsu University (Natural Science Edition), 2020, 41(4): 399-404. | |
147 | 王亚雄, 丁祥云. 新型三维脉动热管的性能[J]. 化工进展, 2016, 35(8): 2367-2372. |
Wang Y X, Ding X Y. Performance study for new type of three-dimensional pulsating heat pipe[J]. Chemical Industry and Engineering Progress, 2016, 35(8): 2367-2372. | |
148 | 范是龙. 脉动热管散热装置传热性能实验研究与应用[D]. 长春: 长春工程学院, 2020. |
Fan S L. The heat transfer performance of pulsating heat pipe heat sink on experimental study and its application[D]. Changchun: Changchun Institute of Technology, 2020. | |
149 | 夏侯国伟, 刘业鹏, 王当, 等. 多脉动冷端热管散热器的散热性能[J]. 中南大学学报(自然科学版), 2017, 48(2): 533-539. |
Xiahou G W, Liu Y P, Wang D, et al. Thermal performance of multiple pulsating cold end heat pipe radiator[J]. Journal of Central South University (Science and Technology), 2017, 48(2): 533-539. | |
150 | Mahajan G, Cho H, Smith A, et al. Experimental analysis of atypically long finned oscillating heat pipe for ventilation waste heat recovery application[J]. Journal of Thermal Science, 2020, 29(3): 667-675. |
151 | Mahajan G, Thompson S M, Cho H. Energy and cost savings potential of oscillating heat pipes for waste heat recovery ventilation[J]. Energy Reports, 2017, 3: 46-53. |
152 | 邓阿强. 板式脉动热管用于LED散热研究[D]. 北京: 北京交通大学, 2011. |
Deng A Q. Study on cooling of LED with plate pulsating heat pipe[D]. Beijing: Beijing Jiaotong University, 2011. | |
153 | 邓阿强, 贾力, 许文云. 板式脉动热管用于LED散热研究[J]. 工程热物理学报, 2012, 33(9): 1567-1570. |
Deng A, Jia L, Xu W Y. Study on cooling of LED with plate pulsating heat pipe[J]. Journal of Engineering Thermophysics, 2012, 33(9): 1567-1570. | |
154 | Maydanik Y F, Dmitrin V I, Pastukhov V G. Compact cooler for electronics on the basis of a pulsating heat pipe[J]. Applied Thermal Engineering, 2009, 29(17): 3511-3517. |
155 | Dmitrin V I, Maidanik Y F, Pastukhov V G. Development and investigation of compact cooler using a pulsating heat pipe[J]. High Temperature, 2010, 48(4): 565-571. |
156 | 胡靓靓. 基于脉动热管的大功率LED散热问题研究[D]. 株洲: 湖南工业大学, 2013. |
Hu L L. Research on cooling of high-power LED based on pulsating heat pipe[D]. Zhuzhou: Hunan University of Technology, 2013. | |
157 | Burban G, Ayel V, Alexandre A, et al. Experimental investigation of a pulsating heat pipe for hybrid vehicle applications[J]. Applied Thermal Engineering, 2013, 50(1): 94-103. |
158 | Tseng C Y, Wu H M, Wong S C, et al. A novel thermal module with 3-D configuration pulsating heat pipe for high-flux applications[J]. Energies, 2018, 11(12): 3425. |
159 | 周智程, 魏爱博, 屈健, 等. 管板结构脉动热管冷却动力电池的传热特性[J]. 化工进展, 2020, 39(10): 3916-3925. |
Zhou Z C, Wei A B, Qu J, et al. Heat transfer characteristics of oscillating heat pipe and its application in power battery cooling[J]. Chemical Industry and Engineering Progress, 2020, 39(10): 3916-3925. | |
160 | Liang Q, Li Y, Wang Q L. Study on a neon cryogenic oscillating heat pipe with long heat transport distance[J]. Heat and Mass Transfer, 2018, 54(6): 1721-1727. |
161 | Siriwan N, Chompookham T, Ding Y, et al. Heat transfer predictions for helical oscillating heat pipe heat exchanger: transient condition[J]. Journal of Mechanical Science and Technology, 2017, 31(7): 3553-3562. |
162 | Sriudom Y, Rittidech S, Chompookham T. The helical oscillating heat pipe: flow pattern behaviour study[J]. Advances in Mechanical Engineering, 2015, 7(1): 194374. |
163 | 包康丽, 杨泽科, 方一波, 等. 倾斜角对金属泡沫脉动热管传热性能研究[J]. 工程热物理学报, 2019, 40(8): 1723-1728. |
Bao K L, Yang Z K, Fang Y B, et al. Experimental study on the effect of inclination angles on the heat transfer performance of metal foam pulsating heat pipe[J]. Journal of Engineering Thermophysics, 2019, 40(8): 1723-1728. | |
164 | 刘建红, 商福民, 刘登瀛. 脉动热管间协同耦合强化传热特性实验分析[J]. 化工学报, 2011, 62(6): 1549-1553. |
Liu J H, Shang F M, Liu D Y. Enhanced heat transfer characteristics of synergistic coupling between pulsating heat pipes[J]. CIESC Journal, 2011, 62(6): 1549-1553. | |
165 | Kammuang-Lue N, On-Ai K, Sakulchangsatjatai P, et al. Thermal characteristics of a rotating closed-loop pulsating heat pipe affected by centrifugal accelerations and numbers of turns[J]. Journal of Mechanical Engineering, 2017, 4(3): 35-50. |
166 | Kelly B, Hayashi Y, Kim Y J. Novel radial pulsating heat-pipe for high heat-flux thermal spreading[J]. International Journal of Heat and Mass Transfer, 2018, 121: 97-106. |
167 | 王宇, 李惟毅. 多通道并联回路型脉动热管运行特性的试验研究[J]. 动力工程学报, 2011, 31(4): 273-278. |
Wang Y, Li W Y. Operation performance of a closed loop pulsating heat pipe with parallel channels[J]. Journal of Chinese Society of Power Engineering, 2011, 31(4): 273-278. | |
168 | 王宇. 回路脉动热管运行传热特性及管路结构改进的研究[D]. 天津: 天津大学, 2012. |
Wang Y. Study on operational and thermal performance and pipeline configuration improvement of closed loop pulsating heat pipe[D]. Tianjin: Tianjin University, 2012. | |
169 | Thompson S M, Ma H B, Wilson C. Investigation of a flat-plate oscillating heat pipe with Tesla-type check valves[J]. Experimental Thermal and Fluid Science, 2011, 35(7): 1265-1273. |
170 | Qian N, Fu Y C, Zhang Y W, et al. Experimental investigation of thermal performance of the oscillating heat pipe for the grinding wheel[J]. International Journal of Heat and Mass Transfer, 2019, 136: 911-923. |
171 | Qian N, Fu Y C, Marengo M, et al. Heat transport capacity of an axial-rotating single-loop oscillating heat pipe for abrasive-milling tools[J]. Energies, 2020, 13(9): 2145. |
172 | Aboutalebi M, Nikravan Moghaddam A M, Mohammadi N, et al. Experimental investigation on performance of a rotating closed loop pulsating heat pipe[J]. International Communications in Heat and Mass Transfer, 2013, 45: 137-145. |
173 | Ebrahimi Dehshali M, Nazari M A, Shafii M B. Thermal performance of rotating closed-loop pulsating heat pipes: experimental investigation and semi-empirical correlation[J]. International Journal of Thermal Sciences, 2018, 123: 14-26. |
174 | Laun F F, Lu H, Ma H B. An experimental investigation of an oscillating heat pipe heat spreader[J]. Journal of Thermal Science and Engineering Applications, 2015, 7(2): 021005. |
175 | 赵佳腾. 面向储热的脉动热管流动与传热特性及强化机理研究[D]. 徐州: 中国矿业大学, 2018. |
Zhao J T. Characteristics of flow and heat transfer and enhancement mechanism of oscillating heat pipe for thermal energy storage[D]. Xuzhou: China University of Mining and Technology, 2018. | |
176 | Zhao J T, Jiang W, Rao Z H. Thermal performance investigation of an oscillating heat pipe with external expansion structure used for thermal energy recovery and storage[J]. International Journal of Heat and Mass Transfer, 2019, 132: 920-928. |
177 | 许登科, 庞建勇, 杜传梅, 等. 常温并联式脉动热管启动及运行特性的实验研究[J]. 制冷学报, 2018, 39(2): 113-118. |
Xu D K, Pang J Y, Du C M, et al. Experimental study on startup and operating characteristics of parallel type pulsating heat pipe under normal temperature[J]. Journal of Refrigeration, 2018, 39(2): 113-118. | |
178 | 夏侯国伟, 张俊杰, 龙葵, 等. 用于空调能量回收的板式脉动热管换热器[J]. 化工进展, 2018, 37(8): 2919-2926. |
Xiahou G W, Zhang J J, Long K, et al. A plate pulsating heat pipe heat exchanger for air-conditioning energy recovery[J]. Chemical Industry and Engineering Progress, 2018, 37(8): 2919-2926. | |
179 | 梁玉辉. 并联型脉动热管实验研究[D]. 天津: 天津大学, 2012. |
Liang Y H. Experimental research on parallel type pulsating heat pipe[D]. Tianjin: Tianjin University, 2012. | |
180 | 史维秀, 潘利生, 李惟毅. 倾角及冷却工况对多通路并联回路板式脉动热管传热性能的影响[J]. 化工学报, 2014, 65(2): 532-537. |
Shi W X, Pan L S, Li W Y. Influences of inclination and cooling condition on heat transfer performance of closed loop plate pulsating heat pipe with parallel channels[J]. CIESC Journal, 2014, 65(2): 532-537. | |
181 | 史维秀, 李惟毅, 潘利生. 多通路并联回路板式脉动热管可视化及启动性能试验研究[J]. 机械工程学报, 2014, 50(4): 155-161. |
Shi W X, Li W Y, Pan L S. Experiment study on visualization and start-up performance of closed loop plate pulsating heat pipe with parallel channels[J]. Journal of Mechanical Engineering, 2014, 50(4): 155-161. | |
182 | Ebrahimi M, Shafii M B, Bijarchi M A. Experimental investigation of the thermal management of flat-plate closed-loop pulsating heat pipes with interconnecting channels[J]. Applied Thermal Engineering, 2015, 90: 838-847. |
183 | 周春鹏. 板式单回路脉动热管两相流动传热及强化的实验研究[D]. 上海: 上海交通大学, 2017. |
Zhou C P. Experimental study on two phase flow visualization and heat transfer enhancement of flat-plate single-loop pulsating heat pipes[D]. Shanghai: Shanghai Jiao Tong University, 2017. | |
184 | Liu X D, Chen X, Zhang Z W, et al. Thermal performance of a novel dual-serpentine-channel flat-plate oscillating heat pipe used for multiple heat sources and sinks[J]. International Journal of Heat and Mass Transfer, 2020, 161: 120293. |
185 | Fairley J D, Thompson S M, Anderson D. Time-frequency analysis of flat-plate oscillating heat pipes[J]. International Journal of Thermal Sciences, 2015, 91: 113-124. |
186 | Hathaway A A, Wilson C A, Ma H B. Experimental investigation of uneven-turn water and acetone oscillating heat pipes[J]. Journal of Thermophysics and Heat Transfer, 2012, 26(1): 115-122. |
187 | Tseng C Y, Yang K S, Chien K H, et al. A novel double pipe pulsating heat pipe design to tackle inverted heat source arrangement[J]. Applied Thermal Engineering, 2016, 106: 697-701. |
188 | 谢付波. 几何结构和多热源场对脉动热管流动与传热性能影响的数值研究[D]. 合肥: 中国科学技术大学, 2020. |
Xie F B. Numerical study on effects of geometry and multisource heat input on flow and heat transfer in single closed-loop pulsating heat pipe[D]. Hefei: University of Science and Technology of China, 2020. | |
189 | Qu J, Zhao J T, Rao Z H. Experimental investigation on thermal performance of multi-layers three-dimensional oscillating heat pipes[J]. International Journal of Heat and Mass Transfer, 2017, 115: 810-819. |
190 | Qu J, Zhao J T, Rao Z H. Experimental investigation on the thermal performance of three-dimensional oscillating heat pipe[J]. International Journal of Heat and Mass Transfer, 2017, 109: 589-600. |
191 | Qu J, Ke Z Q, Zuo A H, et al. Experimental investigation on thermal performance of phase change material coupled with three-dimensional oscillating heat pipe (PCM/3D-OHP) for thermal management application[J]. International Journal of Heat and Mass Transfer, 2019, 129: 773-782. |
192 | Ling Y Z, Zhang X S, Wang F, et al. Performance study of phase change materials coupled with three-dimensional oscillating heat pipes with different structures for electronic cooling[J]. Renewable Energy, 2020, 154: 636-649. |
193 | 凌云志. 基于相变材料/脉动热管耦合模块的数据中心热管理研究[D]. 南京: 东南大学, 2019. |
Ling Y Z. Thermal Management of data center based on phase change material/pulsating heat pipe coupling module[D]. Nanjing: Southeast University, 2019. | |
194 | Chen Y, He Y Q, Zhu X Q. Flower-type pulsating heat pipe for a solar collector[J]. International Journal of Energy Research, 2020, 44(9): 7734-7745. |
195 | 陈洋. “花”型脉动热管太阳能集热器热性能的实验研究[D]. 昆明: 昆明理工大学, 2020. |
Chen Y. Experimental study on thermal performance of flower type pulsating heat pipe solar collector[D]. Kunming: Kunming University of Science and Technology, 2020. | |
196 | Czajkowski C, Nowak A I, Pietrowicz S. Flower shape oscillating heat pipe — a novel type of oscillating heat pipe in a rotary system of coordinates — an experimental investigation[J]. Applied Thermal Engineering, 2020, 179: 115702. |
197 | Sarangi R K, Rane M V. Experimental investigations for start up and maximum heat load of closed loop pulsating heat pipe[J]. Procedia Engineering, 2013, 51: 683-687. |
198 | 兰晗晖. 大尺寸脉动热管的制造及其传热性能研究[D]. 北京: 华北电力大学, 2020. |
Lan H H. The manufacturing of A large-scale pulsating heat pipe and its heat transfer performance[D]. Beijing: North China Electric Power University, 2020. | |
199 | Qu J, Zuo A H, Liu H, et al. Three-dimensional oscillating heat pipes with novel structure for latent heat thermal energy storage application[J]. Applied Thermal Engineering, 2021, 187: 116574. |
200 | 白雪玉. 部分水平结构脉动热管的性能研究[D]. 天津: 天津大学, 2018. |
Bai X Y. Investigation of pulsating heat pipe with partial horizontal structure[D]. Tianjin: Tianjin University, 2018. | |
201 | 汪健生, 白雪玉. 水平蒸发与冷凝结构脉动热管的热力性能[J]. 化学工程, 2018, 46(6): 31-36. |
Wang J S, Bai X Y. Thermal performance of pulsating heat pipe with horizontal evaporator and condenser structure[J]. Chemical Engineering (China), 2018, 46(6): 31-36. | |
202 | 李德辉, 鲁祥友, 景艳阳, 等. 一种新型结构的脉动热管启动特性实验研究[J]. 科技创新与应用, 2021, 11(13): 30-32, 36. |
Li D H, Lu X Y, Jing Y Y, et al. Experimental study on start-up characteristics of a new type of pulsating heat pipe [J]. Technology Innovation and Application, 2021, 11(13): 30-32, 36. | |
203 | Borgmeyer B, Wilson C, Winholtz R A, et al. Heat transport capability and fluid flow neutron radiography of three-dimensional oscillating heat pipes[J]. Journal of Heat Transfer, 2010, 132(6): 061502. |
204 | Cheng P, Thompson S, Boswell J, et al. An investigation of flat-plate oscillating heat pipes[J]. Journal of Electronic Packaging, 2010, 132(4): 041009. |
205 | Thompson S M, Ma H B, Winholtz R A, et al. Experimental investigation of miniature three-dimensional flat-plate oscillating heat pipe[J]. Journal of Heat Transfer, 2009, 131(4): 043210. |
206 | Thompson S M, Cheng P, Ma H B. An experimental investigation of a three-dimensional flat-plate oscillating heat pipe with staggered microchannels[J]. International Journal of Heat and Mass Transfer, 2011, 54(17 ): 3951-3959. |
207 | Thompson S M, Tessler B S, Ma H B, et al. Ultra-high thermal conductivity of three-dimensional flat-plate oscillating heat pipes for electromagnetic launcher cooling[C]//2012 16th International Symposium on Electromagnetic Launch Technology. Beijing, 2012: 1-5. |
208 | Smoot C D, Ma H B. Experimental investigation of a three-layer oscillating heat pipe[J]. Journal of Heat Transfer, 2014, 136(5): 051501. |
209 | Miyazaki Y. Cooling of notebook PCs by flexible oscillating heat pipes[C]//Proceedings of ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems Collocated with the ASME 2005 Heat Transfer Summer Conference. San Francisco, California, USA, 2009: 65-69. |
210 | Wu Z, Xing Y Q, Liu L, et al. Design, fabrication and performance evaluation of pulsating heat pipe assisted tool holder[J]. Journal of Manufacturing Processes, 2020, 50: 224-233. |
211 | Rittidech S, Donmaung A, Kumsombut K. Experimental study of the performance of a circular tube solar collector with closed-loop oscillating heat-pipe with check valve (CLOHP/CV)[J]. Renewable Energy, 2009, 34(10): 2234-2238. |
212 | Mangini D, Mameli M, Georgoulas A, et al. A pulsating heat pipe for space applications: ground and microgravity experiments[J]. International Journal of Thermal Sciences, 2015, 95: 53-63. |
[1] | 周绍华, 詹飞龙, 丁国良, 张浩, 邵艳坡, 刘艳涛, 郜哲明. 短管节流阀内流动噪声的实验研究及降噪措施[J]. 化工学报, 2023, 74(S1): 113-121. |
[2] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[3] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[4] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[5] | 刘明栖, 吴延鹏. 导光管直径和长度对传热影响的模拟分析[J]. 化工学报, 2023, 74(S1): 206-212. |
[6] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[7] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[8] | 杨欣, 王文, 徐凯, 马凡华. 高压氢气加注过程中温度特征仿真分析[J]. 化工学报, 2023, 74(S1): 280-286. |
[9] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[10] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[11] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[12] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[13] | 温凯杰, 郭力, 夏诏杰, 陈建华. 一种耦合CFD与深度学习的气固快速模拟方法[J]. 化工学报, 2023, 74(9): 3775-3785. |
[14] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[15] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||