化工学报 ›› 2022, Vol. 73 ›› Issue (7): 2924-2932.DOI: 10.11949/0438-1157.20220381
收稿日期:
2022-03-16
修回日期:
2022-04-28
出版日期:
2022-07-05
发布日期:
2022-08-01
通讯作者:
吴志根
作者简介:
陆威(1977—),女,博士,副教授,基金资助:
Wei LU1(),Ran MIAO1,Zhigen WU2(),Changchun WU2,Wei XIE1
Received:
2022-03-16
Revised:
2022-04-28
Online:
2022-07-05
Published:
2022-08-01
Contact:
Zhigen WU
摘要:
针对非牛顿流体在波节套管换热器管程的流动与换热进行了实验研究。重点研究了0.2%黄原胶溶液(XG)在不同波节套管换热器管程流动时的传热与阻力特性,并分析了强化传热机理。结果表明在相同工况下,随着管程黄原胶溶液Reynolds数ReXG的增大,套管换热器总传热系数k和管程进出口压降Δp逐渐增大;波高H和波距S影响黄原胶溶液在套管换热器管程的流动与换热。随波高H增大,黄原胶溶液受波节处的涡旋效应的影响更明显,流体层间剪切力变大导致黄原胶溶液黏度变小,湍流程度更大,管程传热性能提高,压降也增大,但综合传热性能不断优化;随波距S增大,单位长度波节数量减少,对黄原胶溶液扰动影响降低,湍流程度降低,管程传热系数先增大后减小,流动阻力不断降低,综合传热性能先提高后减弱。当H=3.5 mm、S=30 mm时管程波节管的综合换热因子ηtube达到最大,ηtube是相同条件下圆管的5.11~6.69倍。
中图分类号:
陆威, 苗冉, 吴志根, 吴长春, 谢伟. 非牛顿流体在波节套管换热器中流动与换热的实验研究[J]. 化工学报, 2022, 73(7): 2924-2932.
Wei LU, Ran MIAO, Zhigen WU, Changchun WU, Wei XIE. Experimental study on flow and heat transfer of non-Newtonian fluid in a corrugated double-tube heat exchanger[J]. CIESC Journal, 2022, 73(7): 2924-2932.
物性 | 公式 |
---|---|
表观黏度μ/(Pa·s) | |
密度ρ/(kg/m3) | |
热导率λ/(W/(m·K)) | |
比热容cp /(kJ/(kg·K)) |
表1 0.2%黄原胶物性[6,24]
Table 1 Physical properties of 0.2% XG[6,24]
物性 | 公式 |
---|---|
表观黏度μ/(Pa·s) | |
密度ρ/(kg/m3) | |
热导率λ/(W/(m·K)) | |
比热容cp /(kJ/(kg·K)) |
序号 | 波距S/mm | S/D | 波高H/mm | H/D |
---|---|---|---|---|
1 | 40 | 1.6 | 3.5 | 0.14 |
2 | 35 | 1.4 | 3.5 | 0.14 |
3 | 30 | 1.2 | 3.5 | 0.14 |
4 | 25 | 1.0 | 3.5 | 0.14 |
5 | 25 | 1.0 | 2.5 | 0.10 |
6 | 25 | 1.0 | 1.5 | 0.06 |
7 | 光滑圆管 |
表2 波节管的结构参数
Table 2 Structural parameters of nodal tube
序号 | 波距S/mm | S/D | 波高H/mm | H/D |
---|---|---|---|---|
1 | 40 | 1.6 | 3.5 | 0.14 |
2 | 35 | 1.4 | 3.5 | 0.14 |
3 | 30 | 1.2 | 3.5 | 0.14 |
4 | 25 | 1.0 | 3.5 | 0.14 |
5 | 25 | 1.0 | 2.5 | 0.10 |
6 | 25 | 1.0 | 1.5 | 0.06 |
7 | 光滑圆管 |
1 | Pandey S, Yoon S Y, Balachandar S, et al. Experimental and numerical investigations of thermal and flow characteristics of a shear-thinning non-Newtonian fluid in a differentially heated cavity[J]. International Journal of Heat and Mass Transfer, 2022, 187: 122570. |
2 | Lenci A, Chiapponi L. An experimental setup to investigate non-Newtonian fluid flow in variable aperture channels[J]. Water, 2020, 12(5): 1284. |
3 | Shojaeian M, Koşar A. Convective heat transfer of non-Newtonian power-law slip flows and plug flows with variable thermophysical properties in parallel-plate and circular microchannels[J]. International Journal of Thermal Sciences, 2016, 100: 155-168. |
4 | Zhang D, Zheng L, Xie G N, et al. An experimental study on heat transfer enhancement of non-Newtonian fluid in a rectangular channel with dimples/protrusions[J]. Journal of Electronic Packaging, 2014, 136(2): 682-694. |
5 | Pawar S S, Sunnapwar V K. Experimental and CFD investigation of convective heat transfer in helically coiled tube heat exchanger[J]. Chemical Engineering Research and Design, 2014, 92(11): 2294-2312. |
6 | 何振斌. 非牛顿流体在螺旋折流板椭圆管换热器壳程的传热强化研究和数值模拟[D]. 广州: 华南理工大学, 2017. |
He Z B. Experimental and numerical investigation on heat transfer enhancement of non-Newtonian in the shell side of helical baffled heat exchanger with elliptic tubes[D]. Guangzhou: South China University of Technology, 2017. | |
7 | Li P, Zhang D, Xie Y H, et al. Flow structure and heat transfer of non-Newtonian fluids in microchannel heat sinks with dimples and protrusions[J]. Applied Thermal Engineering, 2016, 94: 50-58. |
8 | 付金辉. 螺旋波节管管内外流体流动与传热的数值模拟[D]. 哈尔滨: 哈尔滨工业大学, 2018. |
Fu J H. Numerical simulation of flow and heat transfer of fluid in tube-side and shell-side of helical corrugated tube[D]. Harbin: Harbin Institute of Technology, 2018. | |
9 | Chen X, Han H Z, Lee K S, et al. Turbulent heat transfer enhancement in a heat exchanger using asymmetrical outward convex corrugated tubes[J]. Nuclear Engineering and Design, 2019, 350: 78-89. |
10 | 马乾, 刘雪东, 温传美, 等. 网纹内管双套管双管板安全型换热器的传热性能[J]. 化工进展, 2018, 37(6): 2109-2115. |
Ma Q, Liu X D, Wen C M, et al. Heat transfer performance of double tube and double tube sheet safety heat exchanger with the reticulate inner tube[J]. Chemical Industry and Engineering Progress, 2018, 37(6): 2109-2115. | |
11 | 曾敏, 石磊, 陶文铨. 波纹管管内层流流动和换热规律的实验研究及数值模拟[J]. 工程热物理学报, 2006, 27(1): 142-144. |
Zeng M, Shi L, Tao W Q. Experimental and numerical study of laminar flow and heat transfer characteristics in corrugated tubes[J]. Journal of Engineering Thermophysics, 2006, 27(1): 142-144. | |
12 | 肖金花, 钱才富, 王凤林. 波纹管对高黏度介质的强化传热研究[J]. 北京化工大学学报(自然科学版), 2007, 34(1): 53-57. |
Xiao J H, Qian C F, Wang F L. Heat transfer enhancement by corrugated tubes with high viscosity fluids[J]. Journal of Beijing University of Chemical Technology (Natural Science Edition), 2007, 34(1): 53-57. | |
13 | Wu Z G, Qiu L, Wu C C, et al. Study on flow and heat performance of thermal-hydrolyzed sludge in a double-pipe heat exchanger with a series of inner corrugated tubes[J]. International Journal of Thermal Sciences, 2021, 170: 107160. |
14 | Han H Z, Li B X, Yu B Y, et al. Numerical study of flow and heat transfer characteristics in outward convex corrugated tubes[J]. International Journal of Heat and Mass Transfer, 2012, 55(25/26): 7782-7802. |
15 | 韩怀志, 宋福元, 张国磊, 等. 外凸式波节管结合内插扭带复合强化换热性能分析[J]. 化工学报, 2016, 67(S1): 195-202. |
Han H Z, Song F Y, Zhang G L, et al. Analysis on compound heat transfer enhancement performance in outward convex corrugated tube with twisted insert[J]. CIESC Journal, 2016, 67(S1): 195-202. | |
16 | 陈鑫, 王维, 李炳熙, 等. 非对称波节管换热和阻力性能的实验研究[J]. 工程热物理学报, 2020, 41(7): 1797-1807. |
Chen X, Wang W, Li B X, et al. Experimental study on heat transfer and resistance performance in heat exchanger using asymmetric corrugated tube[J]. Journal of Engineering Thermophysics, 2020, 41(7): 1797-1807. | |
17 | 张亮, 原亚东, 孙志强, 等. 波纹管对管壳式换热器内流体传热及流动特性的影响[J]. 热能动力工程, 2019, 34(4): 73-78. |
Zhang L, Yuan Y D, Sun Z Q, et al. Effects of corrugated tube on heat transfer and flow characteristics of fluid in shell heat exchanger[J]. Journal of Engineering for Thermal Energy and Power, 2019, 34(4): 73-78. | |
18 | 张川, 宋小勇, 刘新阳, 等. 高黏度流体在三维内肋管中层流强化传热性能研究[J]. 流体机械, 2014, 42(3): 10-13, 18. |
Zhang C, Song X Y, Liu X Y, et al. Investigation on heat transfer augmentation of high viscosity fluid within three-dimensional internally crossing-finned tube in laminar flow[J]. Fluid Machinery, 2014, 42(3): 10-13, 18. | |
19 | 闫顺林, 张莎. 高黏度流体横掠麻面管的传热与流动特性研究[J]. 热能动力工程, 2020, 35(6): 143-149. |
Yan S L, Zhang S. Study on heat transfer and flow characteristics of high viscosity fluid across the pitted tube[J]. Journal of Engineering for Thermal Energy and Power, 2020, 35(6): 143-149. | |
20 | 张浩, 包晓琳, 康艳蓓. 幂律流体螺旋管内传热影响因素数值模拟[J]. 煤气与热力, 2020, 40(5): 1-4, 12. |
Zhang H, Bao X L, Kang Y B. Numerical simulation of factors influencing heat transfer in power-law fluid spiral tube[J]. Gas & Heat, 2020, 40(5): 1-4, 12. | |
21 | 张浩, 陈为花, 包晓琳, 等. 螺旋管内幂律流体流动换热数值模拟[J]. 山东建筑大学学报, 2021, 36(3): 1-8, 15. |
Zhang H, Chen W H, Bao X L, et al. Numerical simulation of heat transfer characteristics of power-law fluid flow in spiral tube[J]. Journal of Shandong Jianzhu University, 2021, 36(3): 1-8, 15. | |
22 | Xin F, Liu Z C, Zheng N B, et al. Numerical study on flow characteristics and heat transfer enhancement of oscillatory flow in a spirally corrugated tube[J]. International Journal of Heat and Mass Transfer, 2018, 127: 402-413. |
23 | 徐思思, 胡炎华, 黄金鑫. 黄原胶特性及其在食品和复配胶中的应用[J]. 发酵科技通讯, 2017, 46(1): 45-49. |
Xu S S, Hu Y H, Huang J X. Characteristics of xanthan gum and its application in food and compound gums[J]. Bulletin of Fermentation Science and Technology, 2017, 46(1): 45-49. | |
24 | 包晓琳. 幂律流体螺旋管内流场与温度场协同优化研究[D]. 济南: 山东建筑大学, 2020. |
Bao X L. Study on collaborative optimization of flow field and temperature field of power-law fluid in spiral tube[D]. Jinan: Shandong Jianzhu University, 2020. | |
25 | 罗涛. 波纹套管换热器内TiO2-水纳米流体强化传热特性研究[D]. 北京:中国矿业大学, 2019. |
Luo T. Study on enhanced heat transfer characteristics of TiO2-water nanofluids in corrugated tube heat exchanger[D].Beijing: China University of Mining and Technology, 2019. | |
26 | 陶文铨. 数值传热学[M]. 2版. 西安: 西安交通大学出版社, 2001. |
Tao W Q. Numerical Heat Transfer[M]. 2nd ed. Xi’an: Xi’an Jiaotong University Press, 2001. | |
27 | 王定标, 邓靜, 张灿灿, 等. 螺旋缠绕波节管传热与流动性能分析[J]. 化工进展, 2016, 35(7): 1994-2000. |
Wang D B, Deng J, Zhang C C, et al. Heat transfer and flow characteristics analyses of helical tube with corrugation[J]. Chemical Industry and Engineering Progress, 2016, 35(7): 1994-2000. | |
28 | 谭允开, 何振斌, 张正国. 非牛顿纳米流体在螺旋隔板翅片管换热器与弓形隔板光滑管换热器壳程的换热性能对比[J]. 工程热物理学报, 2016, 37(4): 818-824. |
Tan Y K, He Z B, Zhang Z G. Comparison on heat transfer performance of non-Newtonian nanofluids in shell side of heat exchangers with different types of baffles[J]. Journal of Engineering Thermophysics, 2016, 37(4): 818-824. |
[1] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[2] | 董鑫, 单永瑞, 刘易诺, 冯颖, 张建伟. 非牛顿流体气泡羽流涡特性数值模拟研究[J]. 化工学报, 2023, 74(5): 1950-1964. |
[3] | 郑书闽, 郭鹏程, 颜建国, 王帅, 李文博, 周淇. 微小通道内过冷流动沸腾阻力特性实验及预测研究[J]. 化工学报, 2023, 74(4): 1549-1560. |
[4] | 项星宇, 王忠东, 董艳鹏, 李守川, 朱春英, 马友光, 付涛涛. 微通道内屈服应力型流体的流变特性及多相流研究进展[J]. 化工学报, 2023, 74(2): 546-558. |
[5] | 苏晓辉, 张弛, 徐志锋, 金辉, 王治国. 黏弹性表面活性剂溶液中颗粒沉降特性研究[J]. 化工学报, 2022, 73(5): 1974-1985. |
[6] | 刘西洋, 付涛涛, 朱春英, 马友光. 微通道内非牛顿流体中液滴生成机理研究进展[J]. 化工学报, 2021, 72(2): 772-782. |
[7] | 王敏, 邵倩倩, 杨晓帆, 李敬法. 盘管组倾角对浮顶油罐内含蜡原油融化过程的影响研究[J]. 化工学报, 2020, 71(5): 2035-2048. |
[8] | 陈琦, 李京坤, 宋昱, 何倩, 李雪芳. 流动聚焦微通道内牛顿微液滴在幂律剪切致稀流体中的生成研究[J]. 化工学报, 2020, 71(4): 1510-1519. |
[9] | 田瑞超, 王淑彦, 邵宝力, 李好婷, 王玉琳. 基于粗糙颗粒动理学流化床内颗粒与幂律流体两相流动特性的数值模拟研究[J]. 化工学报, 2020, 71(4): 1528-1539. |
[10] | 刘稳文, 吕梦芸, 李学艺, 黄璟, 池立勋, 闫锋, 张劲军. 含蜡油凝点判断准则的力学涵义[J]. 化工学报, 2020, 71(2): 566-574. |
[11] | 刘作华,杨林荣,熊黠,陶长元,王运东,程芳琴. 多层刚柔组合桨诱发流场界面失稳强化非牛顿流体混沌混合行为[J]. 化工学报, 2020, 71(12): 5470-5478. |
[12] | 夏红桃, 邹思宇, 肖杰. 随机粗糙表面上剪切变稀流体液滴的沉积过程模拟[J]. 化工学报, 2019, 70(2): 634-645. |
[13] | 钟英杰, 黄其, 邓凯, 赵创要, 苏艺花. 三角槽道低Reynolds数脉动流的流动特性分析[J]. 化工学报, 2018, 69(9): 3806-3813. |
[14] | 董鑫, 许晓飞, 刘凤霞, 曾倩, 王晓娟, 魏炜, 刘志军. 鼓泡反应器中幂律型流体流动与传质特性[J]. 化工学报, 2018, 69(6): 2446-2454. |
[15] | 朱智强, 阎昌琪, 王建军, 田春平. 棒束通道内自然循环流动阻力特性[J]. 化工学报, 2018, 69(4): 1398-1404. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||