化工学报 ›› 2023, Vol. 74 ›› Issue (5): 1950-1964.DOI: 10.11949/0438-1157.20221462
收稿日期:
2022-11-08
修回日期:
2023-04-12
出版日期:
2023-05-05
发布日期:
2023-06-29
通讯作者:
冯颖
作者简介:
董鑫(1990—),女,博士,副教授,dongxin1106@syuct.edu.cn
基金资助:
Xin DONG(), Yongrui SHAN, Yinuo LIU, Ying FENG(), Jianwei ZHANG
Received:
2022-11-08
Revised:
2023-04-12
Online:
2023-05-05
Published:
2023-06-29
Contact:
Ying FENG
摘要:
为进一步探究非牛顿流体中气液两相流流动特性规律,采用大涡模拟方法(LES)对非牛顿流体气泡羽流的涡特性进行研究。以清水和不同质量分数的羧甲基纤维素钠(CMC)水溶液为研究对象,分析不同表观气速和液相流变特性下气体的运动速度、羽流结构、涡量及涡的演变规律。研究结果表明,涡的演变速率随非牛顿流体浓度的增加而减小。结合Q判据分析不同工况下涡特性分布,随着CMC水溶液浓度的增加流场中的Q值不断降低,且流场内涡的演变速率随着非牛顿流体特性的增加而减弱。
中图分类号:
董鑫, 单永瑞, 刘易诺, 冯颖, 张建伟. 非牛顿流体气泡羽流涡特性数值模拟研究[J]. 化工学报, 2023, 74(5): 1950-1964.
Xin DONG, Yongrui SHAN, Yinuo LIU, Ying FENG, Jianwei ZHANG. Numerical simulation of bubble plume vortex characteristics for non-Newtonian fluids[J]. CIESC Journal, 2023, 74(5): 1950-1964.
液相 | 质量分数c/% | 黏稠系数K/(Pa·s n ) | 流动指数n | 密度ρL/(kg/m3) | 表面张力σ/(mN/m) |
---|---|---|---|---|---|
清水 | 0 | 0.001 | 1 | 998.21 | 72.75 |
CMC水溶液 | 0.3 | 0.043 | 0.8363 | 1002.79 | 52.17 |
0.4 | 0.0745 | 0.8017 | 1004.54 | 53.98 | |
0.5 | 0.1685 | 0.7317 | 1005.43 | 66.04 |
表1 液相物性和流变参数
Table 1 Liquid phase properties and rheological parameters
液相 | 质量分数c/% | 黏稠系数K/(Pa·s n ) | 流动指数n | 密度ρL/(kg/m3) | 表面张力σ/(mN/m) |
---|---|---|---|---|---|
清水 | 0 | 0.001 | 1 | 998.21 | 72.75 |
CMC水溶液 | 0.3 | 0.043 | 0.8363 | 1002.79 | 52.17 |
0.4 | 0.0745 | 0.8017 | 1004.54 | 53.98 | |
0.5 | 0.1685 | 0.7317 | 1005.43 | 66.04 |
图4 实验装置1—空气泵;2—空气转子流量计;3—光源;4—微孔曝气盘;5—水箱;6—高速摄像机;7—计算机
Fig.4 Diagram of experimental device1—air pump; 2—air flow rate meter; 3—lighting source; 4—microbubble aerator; 5—water tank; 6—high speed camera; 7—computer
1 | Kubilius R, Pedersen G. Relative acoustic frequency response of induced methane, carbon dioxide and air gas bubble plumes, observed laterally[J]. The Journal of the Acoustical Society of America, 2016, 140(4): 2902-2912. |
2 | Li C P, Gou L M, You J C. Numerical simulation of bubble plumes and an analysis of their seismic attributes[J]. Journal of Ocean University of China, 2017, 16(2): 223-232. |
3 | 段沛然, 栾锡武, 余翼, 等. 海底冷泉气泡羽流地震波数值模拟[J]. 地球物理学报, 2020, 63(2): 753-765. |
Duan P R, Luan X W, Yu Y, et al. Numerical simulation of seismic waves of bubble plumes in submarine cold seepages[J]. Chinese Journal of Geophysics, 2020, 63(2): 753-765. | |
4 | 袁雷. 气泡羽流脱除CO2的传质建模与系统优化研究[D]. 西安: 西安建筑科技大学, 2019. |
Yuan L. Study on mass transfer modeling and system optimization of CO2 removal by bubble plume[D]. Xi’an: Xi’an University of Architecture and Technology, 2019. | |
5 | Huda K N U, Shimizu K, Gong X B, et al. Numerical investigation of COD reduction in compact bioreactor with bubble plumes[J]. Chemical Engineering Science, 2018, 185: 1-17. |
6 | Fraga B, Stoesser T. Influence of bubble size, diffuser width, and flow rate on the integral behavior of bubble plumes[J]. Journal of Geophysical Research: Oceans, 2016, 121(6): 3887-3904. |
7 | Liu W H, Wan T, Cheng W, et al. Research on the flow pattern of bubble plume in an aeration tank[J]. AIP Conference Proceedings, 2010, 1207(1): 646-652. |
8 | Neto I E L, Parente P A B. Influence of mass transfer on bubble plume hydrodynamics[J]. Anais Da Academia Brasileira De Ciencias, 2016, 88(1): 411-422. |
9 | Cheng W, Liu H, Wang M, et al. The effect of bubble plume on oxygen transfer for moving bed biofilm reactor[J]. Journal of Hydrodynamics, Ser. B, 2014, 26(4): 664-667. |
10 | Cheng Y X, Zhang Q, Jiang P, et al. Investigation of plume offset characteristics in bubble columns by Euler-Euler simulation[J]. Processes, 2020, 8(7): 795. |
11 | Besbes S, Hajem M H, Aissia H B, et al. PIV measurements and Eulerian-Lagrangian simulations of the unsteady gas-liquid flow in a needle sparger rectangular bubble column[J]. Chemical Engineering Science, 2015, 126: 560-572. |
12 | Gong X B, Takagi S, Matsumoto Y. The effect of bubble-induced liquid flow on mass transfer in bubble plumes[J]. International Journal of Multiphase Flow, 2009, 35(2): 155-162. |
13 | Laupsien D, Men C L, Cockx A, et al. Effects of liquid viscosity and bubble size distribution on bubble plume hydrodynamics[J]. Chemical Engineering Research and Design, 2022, 180: 451-469. |
14 | Dong X, Xu X F, Liu Z J. Behavior of bubble plume in shear-thinning crossflowing liquids[J]. Chemical Engineering Research and Design, 2021, 168: 288-296. |
15 | 王蒙, 孙楠, 王颖, 等. 曝气池中气液两相流速度场分布的实验研究与数值模拟[J]. 水利学报, 2016, 47(10): 1322-1331. |
Wang M, Sun N, Wang Y, et al. Experimental research and numerical simulation on gas-liquid two-phase flow of bubble velocity distribution in aeration tank[J]. Journal of Hydraulic Engineering, 2016, 47(10): 1322-1331. | |
16 | 肖浩飞, 周美华. 曝气池内气液两相流CFD模拟[J]. 安徽农业科学, 2010, 38(4): 1955-1957, 2057. |
Xiao H F, Zhou M H. CFD simulation of gas-liquid flow in aeration tank[J]. Journal of Anhui Agricultural Sciences, 2010, 38(4): 1955-1957, 2057. | |
17 | 罗玮, 周玮, 程文, 等. 曝气池中气液两相流数值模拟[J]. 水资源与水工程学报, 2007, 18(2): 69-71. |
Luo W, Zhou W, Cheng W, et al. Numerical simulation of gas-liquid two-phase flow in aeration basin[J]. Journal of Water Resources and Water Engineering, 2007, 18(2): 69-71. | |
18 | 程文, 宋策, 周孝德. 曝气池中气液两相流的数值模拟与实验研究[J]. 水利学报, 2001, 32(12): 32-35. |
Cheng W, Song C, Zhou X D. Experimental study and numerical model of gas-liquid two-phase flow in aeration tank[J]. Journal of Hydraulic Engineering, 2001, 32(12): 32-35. | |
19 | Karpinska A M, Bridgeman J. CFD as a tool to optimize aeration tank design and operation[J]. Journal of Environmental Engineering, 2018, 144(2): 0001307. |
20 | Nguyen V L, Degawa T, Uchiyama T. Numerical simulation of annular bubble plume by vortex in cell method[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2019, 29(3): 1103-1131. |
21 | Yamoah S, Martínez-Cuenca R, Monrós G, et al. Numerical investigation of models for drag, lift, wall lubrication and turbulent dispersion forces for the simulation of gas-liquid two-phase flow[J]. Chemical Engineering Research and Design, 2015, 98: 17-35. |
22 | Smith B L. On the modelling of bubble plumes in a liquid pool[J]. Applied Mathematical Modelling, 1998, 22(10): 773-797. |
23 | 胡瑞杰, 包佳琨, 李晓芳, 等. 中心进气式鼓泡反应器内气液流动的大涡模拟[J]. 天津大学学报, 2006, 39(5): 569-574. |
Hu R J, Bao J K, Li X F, et al. Large eddy simulation of gas-liquid flow in a centrally aerated bubble column reactor[J]. Journal of Tianjin University, 2006, 39(5): 569-574. | |
24 | 肖柏青, 张法星, 戎贵文. 气泡尺寸对曝气池内气液两相流数值模拟的影响[J]. 中国环境科学, 2012, 32(11): 2006-2010. |
Xiao B Q, Zhang F X, Rong G W. Influence of the bubble size on numerical simulation of the gas-liquid flow in aeration tanks[J]. China Environmental Science, 2012, 32(11): 2006-2010. | |
25 | Fraga B, Stoesser T, Lai C C K, et al. A LES-based Eulerian-Lagrangian approach to predict the dynamics of bubble plumes[J]. Ocean Modelling, 2016, 97: 27-36. |
26 | Lan C, Chen J G, Wang J F, et al. Application of circular bubble plume diffusers to restore water quality in a sub-deep reservoir[J]. International Journal of Environmental Research and Public Health, 2017, 14(11): 1298. |
27 | Cockx A, Do-Quang Z, Audic J M, et al. Global and local mass transfer coefficients in waste water treatment process by computational fluid dynamics[J]. Chemical Engineering and Processing: Process Intensification, 2001, 40(2): 187-194. |
28 | Ratkovich N, Horn W, Helmus F P, et al. Activated sludge rheology: a critical review on data collection and modelling[J]. Water Research, 2013, 47(2): 463-482. |
29 | 董鑫, 刘易诺, 叶陈, 等. 气泡羽流气液两相流动特性的研究进展[J]. 过程工程学报, 2023, 23(1): 15-24. |
Dong X, Liu Y N, Ye C, et al. Research progress on gas-liquid two-phase flow characteristics of bubble plume[J]. The Chinese Journal of Process Engineering, 2023, 23(1): 15-24. | |
30 | Dong X R, Hao C Y, Liu C Q. Correlation between vorticity, Liutex and shear in boundary layer transition[J]. Computers & Fluids, 2022, 238: 105371. |
31 | Hunt J, Wray A, Eddies Moin P., streams, and convergence zones in turbulent flows[C]//Proceedings of Summer Program in Center for Turbulence Research, 1988. |
32 | 高助威, 王娟, 王江云, 等. 基于Q判据的不同排气管直径旋风分离器内部涡分析[J]. 石油学报(石油加工), 2018, 34(6): 1172-1180. |
Gao Z W, Wang J, Wang J Y, et al. Vortex analysis for cyclone separators with different vortex finder diameters based on Q criterion[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2018, 34(6): 1172-1180. |
[1] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[2] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[3] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[4] | 袁佳琦, 刘政, 黄锐, 张乐福, 贺登辉. 泡状入流条件下旋流泵能量转换特性研究[J]. 化工学报, 2023, 74(9): 3807-3820. |
[5] | 温凯杰, 郭力, 夏诏杰, 陈建华. 一种耦合CFD与深度学习的气固快速模拟方法[J]. 化工学报, 2023, 74(9): 3775-3785. |
[6] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[7] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[8] | 岳林静, 廖艺涵, 薛源, 李雪洁, 李玉星, 刘翠伟. 凹坑缺陷对厚孔板喉部空化流动特性影响研究[J]. 化工学报, 2023, 74(8): 3292-3308. |
[9] | 高燕, 伍鹏, 尚超, 胡泽君, 陈晓东. 基于双流体喷嘴的磁性琼脂糖微球的制备及其蛋白吸附性能探究[J]. 化工学报, 2023, 74(8): 3457-3471. |
[10] | 汪林正, 陆俞冰, 张睿智, 罗永浩. 基于分子动力学模拟的VOCs热氧化特性分析[J]. 化工学报, 2023, 74(8): 3242-3255. |
[11] | 高金明, 郭玉娇, 鄂承林, 卢春喜. 一种封闭罩内顺流多旋臂气液分离器的分离特性研究[J]. 化工学报, 2023, 74(7): 2957-2966. |
[12] | 牛超, 沈胜强, 杨艳, 潘泊年, 李熠桥. 甲烷BOG喷射器流动过程计算与性能分析[J]. 化工学报, 2023, 74(7): 2858-2868. |
[13] | 何晓崐, 刘锐, 薛园, 左然. MOCVD生长AlN单晶薄膜的气相和表面化学反应综述[J]. 化工学报, 2023, 74(7): 2800-2813. |
[14] | 刘起超, 周云龙, 陈聪. 起伏振动垂直上升管气液两相流截面含气率分析与计算[J]. 化工学报, 2023, 74(6): 2391-2403. |
[15] | 刘道银, 陈柄岐, 张祖扬, 吴琰. 颗粒聚团结构对曳力特性影响的数值模拟[J]. 化工学报, 2023, 74(6): 2351-2362. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 132
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 279
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||