化工学报 ›› 2021, Vol. 72 ›› Issue (2): 772-782.DOI: 10.11949/0438-1157.20200994
收稿日期:
2020-07-23
修回日期:
2020-09-11
出版日期:
2021-02-05
发布日期:
2021-02-05
通讯作者:
付涛涛
作者简介:
刘西洋(1997—),男,硕士研究生,基金资助:
LIU Xiyang(),FU Taotao(),ZHU Chunying,MA Youguang
Received:
2020-07-23
Revised:
2020-09-11
Online:
2021-02-05
Published:
2021-02-05
Contact:
FU Taotao
摘要:
微流体技术良好的可控性为制备均一可控的微液滴提供了新的途径,而非牛顿流体因广泛的应用而受到关注。综述了近年来剪切变稀和黏弹性两类典型非牛顿流体中液滴生成机理的研究进展。围绕流动聚焦型和T型微通道两种典型微通道构型,介绍了非牛顿流体分别作为分散相和连续相时液滴生成过程的界面演化动力学,并与牛顿流体液滴生成过程进行了对比,分析了剪切变稀特性和弹性对主液滴和卫星液滴生成的影响。展望了非牛顿流体液滴生成过程待解决的关键科学问题,为进一步的模拟和实验研究提供了借鉴和参考。
中图分类号:
刘西洋, 付涛涛, 朱春英, 马友光. 微通道内非牛顿流体中液滴生成机理研究进展[J]. 化工学报, 2021, 72(2): 772-782.
LIU Xiyang, FU Taotao, ZHU Chunying, MA Youguang. Progress on droplet formation mechanism in non-Newtonian fluids in microchannels[J]. CIESC Journal, 2021, 72(2): 772-782.
1 | Tirtaatmadja V, McKinley G H, Cooper-White J J. Drop formation and breakup of low viscosity elastic fluids: effects of molecular weight and concentration[J]. Physics of Fluids, 2006, 18(4): 043101. |
2 | Salehi M S, Esfidani M T, Afshin H, et al. Experimental investigation and comparison of Newtonian and non-Newtonian shear-thinning drop formation[J]. Experimental Thermal and Fluid Science, 2018, 94: 148-158. |
3 | Cohen I, Brenner M P, Eggers J, et al. Two fluid drop snap-off problem: experiments and theory[J]. Physical Review Letters, 1999, 83(6): 1147-1150. |
4 | Doshi P, Basaran O A. Self-similar pinch-off of power law fluids[J]. Physics of Fluids, 2004, 16(3): 585-593. |
5 | Stone H A, Stroock A D, Ajdari A. Engineering flows in small devices[J]. Annual Review of Fluid Mechanics, 2004, 36(1): 381-411. |
6 | Utada A S, Lorenceau E, Link D R, et al. Monodisperse double emulsions generated from a microcapillary device[J]. Science, 2005, 308(5721): 537-541. |
7 | Abate A R, Thiele J, Weitz D A. One-step formation of multiple emulsions in microfluidics[J]. Lab on a Chip, 2011, 11(2): 253-258. |
8 | 刘兆利, 张鹏飞. 微反应器在化学化工领域中的应用[J]. 化工进展, 2016, 35(1): 10-17. |
Liu Z L, Zhang P F. Applications of microreactor in chemistry and chemical engineering[J]. Chemical Industry and Engineering Progress, 2016, 35(1): 10-17. | |
9 | Song H, Chen D L, Ismagilov R F. Reactions in droplets in microfluidic channels[J]. Angewandte Chemie-International Edition, 2006, 45(44): 7336-7356. |
10 | Morrison N F, Harlen O G. Viscoelasticity in inkjet printing[J]. Rheologica Acta, 2010, 49(6): 619-632. |
11 | Hoath S D, Hsiao W K, Martin G D, et al. Oscillations of aqueous PEDOT: PSS fluid droplets and the properties of complex fluids in drop-on-demand inkjet printing[J]. Journal of Non-Newtonian Fluid Mechanics, 2015, 223: 28-36. |
12 | Anton N, Bally F, Serra C A, et al. A new microfluidic setup for precise control of the polymer nanoprecipitation process and lipophilic drug encapsulation[J]. Soft Matter, 2012, 8(41): 10628-10635. |
13 | Dittrich P S, Manz A. Lab-on-a-chip: microfluidics in drug discovery[J]. Nature Reviews Drug Discovery, 2006, 5(3): 210-218. |
14 | Rubio M, Ponce-Torres A, Vega E J, et al. Complex behavior very close to the pinching of a liquid free surface[J]. Physical Review Fluids, 2019, 4(2): 021602. |
15 | Fu T, Wu Y, Ma Y, et al. Droplet formation and breakup dynamics in microfluidic flow-focusing devices: from dripping to jetting[J]. Chemical Engineering Science, 2012, 84: 207-217. |
16 | Renardy M. Self-similar jet breakup for a generalized PTT model[J]. Journal of Non-Newtonian Fluid Mechanics, 2002, 103(2/3): 261-269. |
17 | 骆广生, 王凯, 王佩坚, 等. 微反应器内聚合物合成研究进展[J]. 化工学报, 2014, 65(7): 2563-2573. |
Luo G S, Wang K, Wang P J, et al. Advances in polymer synthesis in microreactors[J]. CIESC Journal, 2014, 65(7): 2563-2573. | |
18 | 付涛涛, 朱春英, 马友光. 微通道内卫星液滴生成机理与惯性分离机制[J]. 化工学报, 2020, 71(2): 451-458. |
Fu T T, Zhu C Y, Ma Y G. Mechanism of generation and inertial separation of satellite droplets in microchannels[J]. CIESC Journal, 2020, 71(2): 451-458. | |
19 | Vladisavljević G T, Kobayashi I, Nakajima M. Production of uniform droplets using membrane, microchannel and microfluidic emulsification devices[J]. Microfluidics and Nanofluidics, 2012, 13(1): 151-178. |
20 | Harvie D J E, Davidson M R, Cooper-White J J, et al. A parametric study of droplet deformation through a microfluidic contraction: shear thinning liquids[J]. International Journal of Multiphase Flow, 2007, 33(5): 545-556. |
21 | Hong J S, Cooper-White J. Drop formation of carbopol dispersions displaying yield stress, shear thinning and elastic properties in a flow-focusing microfluidic channel[J]. Korea-Australia Rheology Journal, 2009, 21(4): 269-280. |
22 | Du W, Fu T, Duan Y, et al. Breakup dynamics for droplet formation in shear-thinning fluids in a flow-focusing device[J]. Chemical Engineering Science, 2018, 176: 66-76. |
23 | Arratia P E, Gollub J P, Durian D J. Polymeric filament thinning and breakup in microchannels[J]. Physical Review E, 2008, 77(3Pt 2): 036309. |
24 | Du W, Fu T, Zhang Q, et al. Self-similar breakup of viscoelastic thread for droplet formation in flow-focusing devices[J]. AIChE Journal, 2017, 63(11): 5196-5206. |
25 | Zhang Q, Zhu C, Du W, et al. Formation dynamics of elastic droplets in a microfluidic T-junction[J]. Chemical Engineering Research and Design, 2018, 139: 188-196. |
26 | Jiang X F, Wu Y N, Ma Y, et al. Formation and breakup dynamics of ferrofluid drops[J]. Chemical Engineering Research & Design, 2016, 115: 262-269. |
27 | Steinhaus B, Shen A Q, Sureshkumar R. Dynamics of viscoelastic fluid filaments in microfluidic devices[J]. Physics of Fluids, 2007, 19(7): 073103. |
28 | Zenit R, Feng J J. Hydrodynamic interactions among bubbles, drops, and particles in non-Newtonian liquids[J]. Annual Review of Fluid Mechanics, 2018, 50: 505-534. |
29 | Bird R B, Careau P J. A nonlinear viscoelastic model for polymer solutions and melts—I[J]. Chemical Engineering Science, 1968, 23(5): 427-434. |
30 | Rostami B, Morini G L. Experimental characterization of a micro cross-junction as generator of Newtonian and non-Newtonian droplets in silicone oil flow at low capillary numbers[J]. Experimental Thermal and Fluid Science, 2019, 103: 191-200. |
31 | Rostami B, Morini G L. Generation of Newtonian and non-Newtonian droplets in silicone oil flow by means of a micro cross-junction[J]. International Journal of Multiphase Flow, 2018, 105: 202-216. |
32 | Rostami B, Morini G L. Micro droplets of non-Newtonian solutions in silicone oil flow through a hydrophobic micro cross-junction[C]//Ricci R, Dalessandro V. 35th UIT Heat Transfer Conference. Bristol, England: Iop Publishing Ltd., 2017: UNSP 012021. |
33 | 杜威. 微通道内非常规流体液滴生成与界面动力学研究[D]. 天津: 天津大学, 2017. |
Du W. Study on droplet formation and interfacial dynamic in unconventional fluids in microchannels[D]. Tianjin: Tianjin University, 2017. | |
34 | Fu T, Ma Y, Li H Z. Breakup dynamics of slender droplet formation in shear-thinning fluids in flow-focusing devices[J]. Chemical Engineering Science, 2016, 144: 75-86. |
35 | Shi Y, Tang G H. Lattice Boltzmann simulation of droplet formation in non-Newtonian fluids[J]. Communications in Computational Physics, 2015, 17(4): 1056-1072. |
36 | Chen Q, Li J, Song Y, et al. Modeling of Newtonian droplet formation in power-law non-Newtonian fluids in a flow-focusing device[J]. Heat and Mass Transfer, 2020, 56(9): 2711-2723. |
37 | 陈琦, 李京坤, 宋昱, 等. 流动聚焦微通道内牛顿微液滴在幂律剪切致稀流体中的生成研究[J]. 化工学报, 2020, 71(4): 1510-1519. |
Chen Q, Li J K, Song Y, et al. Newtonian droplet generation in shear-thinning fluids in flow-focusing microchannel[J]. CIESC Journal, 2020, 71(4): 1510-1519. | |
38 | Liu H, Zhang Y. Droplet formation in microfluidic cross-junctions[J]. Physics of Fluids, 2011, 23(8): 082101. |
39 | Chiarello E, Gupta A, Mistura G, et al. Droplet breakup driven by shear thinning solutions in a microfluidic T-junction[J]. Physical Review Fluids, 2017, 2(12): 123602. |
40 | Wong V L, Loizou K, Lau P L, et al. Characterizing droplet breakup rates of shear-thinning dispersed phase in microreactors[J]. Chemical Engineering Research and Design, 2019, 144: 370-385. |
41 | Sang L, Hong Y, Wang F. Investigation of viscosity effect on droplet formation in T-shaped microchannels by numerical and analytical methods[J]. Microfluidics and Nanofluidics, 2009, 6(5): 621-635. |
42 | Agarwal V G, Singh R, Bahga S S, et al. Dynamics of droplet formation and flow regime transition in a T-shaped microfluidic device with a shear-thinning continuous phase[J]. Physical Review Fluids, 2020, 5(4): 044203. |
43 | Sontti S G, Atta A. CFD analysis of microfluidic droplet formation in non-Newtonian liquid[J]. Chemical Engineering Journal, 2017, 330: 245-261. |
44 | Chiarello E, Derzsi L, Pierno M, et al. Generation of oil droplets in a non-Newtonian liquid using a microfluidic T-junction[J]. Micromachines, 2015, 6(12): 1825-1835. |
45 | Roumpea E, Chinaud M, Angeli P. Experimental investigations of non-Newtonian/Newtonian liquid-liquid flows in microchannels[J]. AIChE Journal, 2017, 63(8): 3599-3609. |
46 | Fu T, Wei L, Zhu C, et al. Flow patterns of liquid-liquid two-phase flow in non-Newtonian fluids in rectangular microchannels[J]. Chemical Engineering and Processing: Process Intensification, 2015, 91: 114-120. |
47 | Arratia P E, Cramer L A, Gollub J P, et al. The effects of polymer molecular weight on filament thinning and drop breakup in microchannels[J]. New Journal of Physics, 2009, 11: 115006. |
48 | Derzsi L, Kasprzyk M, Plog J P, et al. Flow focusing with viscoelastic liquids[J]. Physics of Fluids, 2013, 25(9): 092001. |
49 | Anna S L, Mayer H C. Microscale tipstreaming in a microfluidic flow focusing device[J]. Physics of Fluids, 2006, 18(12): 121512. |
50 | Montanero J M, Gañán-Calvo A M. Dripping, jetting and tip streaming[J]. Reports on Progress in Physics, 2020, 83(9): 097001. |
51 | Zhou C, Yue P, Feng J J. Formation of simple and compound drops in microfluidic devices[J]. Physics of Fluids, 2006, 18(9): 092105. |
52 | Gupta A, Sbragaglia M. A lattice Boltzmann study of the effects of viscoelasticity on droplet formation in microfluidic cross-junctions[J]. The European Physical Journal E, 2016, 39(1): 2. |
53 | Lee W, Walker L M, Anna S L. Competition between viscoelasticity and surfactant dynamics in flow focusing microfluidics[J]. Macromolecular Materials and Engineering, 2011, 296(3/4): 203-213. |
54 | Du W, Fu T, Zhang Q, et al. Breakup dynamics for droplet formation in a flow-focusing device: rupture position of viscoelastic thread from matrix[J]. Chemical Engineering Science, 2016, 153: 255-269. |
55 | Zhao C X, Miller E, Cooper-White J J, et al. Effects of fluid-fluid interfacial elasticity on droplet formation in microfluidic devices[J]. AIChE Journal, 2011, 57(7): 1669-1677. |
56 | 张沁丹, 付涛涛, 朱春英, 等. 十字聚焦型微通道内弹状液滴在黏弹性流体中的生成与尺寸预测[J]. 化工学报, 2016, 67(2): 504-511. |
Zhang Q D, Fu T T, Zhu C Y, et al. Formation and size prediction of slug droplet in viscoelastic fluid in flow-focusing microchannel[J]. CIESC Journal, 2016, 67(2): 504-511. | |
57 | Dollet B, van Hoeve W, Raven J P, et al. Role of the channel geometry on the bubble pinch-off in flow-focusing devices[J]. Physical Review Letters, 2008, 100(3): 034504. |
58 | Nooranidoost M, Izbassarov D, Muradoglu M. Droplet formation in a flow focusing configuration: effects of viscoelasticity[J]. Physics of Fluids, 2016, 28(12): 123102. |
59 | Li X B, Li F C, Kinoshita H, et al. Dynamics of viscoelastic fluid droplet under very low interfacial tension in a serpentine T-junction microchannel[J]. Microfluidics and Nanofluidics, 2015, 18(5/6): 1007-1021. |
60 | Denn M M. Fifty years of non-Newtonian fluid dynamics[J]. AIChE Journal, 2004, 50(10): 2335-2345. |
61 | Marshall K A, Walker T W. Investigating the dynamics of droplet breakup in a microfluidic cross-slot device for characterizing the extensional properties of weakly-viscoelastic fluids[J]. Rheologica Acta, 2019, 58(9): 573-590. |
62 | Christopher G F, Anna S L. Passive breakup of viscoelastic droplets and filament self-thinning at a microfluidic T-junction[J]. Journal of Rheology, 2009, 53(3): 663-683. |
63 | Husny J, Cooper-White J J. The effect of elasticity on drop creation in T-shaped microchannels[J]. Journal of Non-Newtonian Fluid Mechanics, 2006, 137(1/2/3): 121-136. |
64 | Clasen C, Eggers J, Fontelos M A, et al. The beads-on-string structure of viscoelastic threads[J]. Journal of Fluid Mechanics, 2006, 556: 283-308. |
65 | Sostarecz M C, Belmonte A. Beads-on-string phenomena in wormlike micellar fluids[J]. Physics of Fluids, 2004, 16(9): L67-L70. |
66 | Oliveira M S N, McKinley G H. Iterated stretching and multiple beads-on-a-string phenomena in dilute solutions of highly extensible flexible polymers[J]. Physics of Fluids, 2005, 17(7): 071704. |
67 | Bhat P P, Pasquali M, Basaran O A. Beads-on-string formation during filament pinch-off: dynamics with the PTT model for non-affine motion[J]. Journal of Non-Newtonian Fluid Mechanics, 2009, 159(1/2/3): 64-71. |
68 | Clasen C, Bico J, Entov V M, et al. ‘Gobbling drops': the jetting-dripping transition in flows of polymer solutions[J]. Journal of Fluid Mechanics, 2009, 636: 5-40. |
69 | Wagner C, Amarouchene Y, Bonn D, et al. Droplet detachment and satellite bead formation in viscoelastic fluids[J]. Physical Review Letters, 2005, 95(16): 164504. |
70 | Pingulkar H, Peixinho J, Crumeyrolle O. Drop dynamics of viscoelastic filaments[J]. Physical Review Fluids, 2020, 5(1): 011301. |
71 | Oliveira M S N, Yeh R, McKinley G H. Iterated stretching, extensional rheology and formation of beads-on-a-string structures in polymer solutions[J]. Journal of Non-Newtonian Fluid Mechanics, 2006, 137(1/2/3): 137-148. |
72 | Sattler R, Gier S, Eggers J, et al. The final stages of capillary break-up of polymer solutions[J]. Physics of Fluids, 2012, 24(2): 023101. |
73 | Sattler R, Wagner C, Eggers J. Blistering pattern and formation of nanofibers in capillary thinning of polymer solutions[J]. Physical Review Letters, 2008, 100(16): 164502. |
74 | Eggers J. Instability of a polymeric thread[J]. Physics of Fluids, 2014, 26(3): 033106. |
75 | Christanti Y, Walker L M. Effect of fluid relaxation time of dilute polymer solutions on jet breakup due to a forced disturbance[J]. Journal of Rheology, 2002, 46(3): 733-748. |
76 | Deblais A, Velikov K P, Bonn D. Pearling instabilities of a viscoelastic thread[J]. Physical Review Letters, 2018, 120(19): 194501. |
[1] | 吴馨, 龚建英, 靳龙, 王宇涛, 黄睿宁. 超声波激励下铝板表面液滴群输运特性的研究[J]. 化工学报, 2023, 74(S1): 104-112. |
[2] | 周晓庆, 李春煜, 杨光, 蔡爱峰, 吴静怡. 液滴撞击不同曲率过冷波纹面结冰动力学行为及机理研究[J]. 化工学报, 2023, 74(S1): 141-153. |
[3] | 毕丽森, 刘斌, 胡恒祥, 曾涛, 李卓睿, 宋健飞, 吴翰铭. 粗糙界面上纳米液滴蒸发模式的分子动力学研究[J]. 化工学报, 2023, 74(S1): 172-178. |
[4] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[5] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[6] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和耗散的微通道拓扑优化研究[J]. 化工学报, 2023, 74(8): 3329-3341. |
[7] | 何宣志, 何永清, 闻桂叶, 焦凤. 磁液液滴颈部自相似破裂行为[J]. 化工学报, 2023, 74(7): 2889-2897. |
[8] | 张澳, 罗英武. 低模量、高弹性、高剥离强度丙烯酸酯压敏胶[J]. 化工学报, 2023, 74(7): 3079-3092. |
[9] | 董鑫, 单永瑞, 刘易诺, 冯颖, 张建伟. 非牛顿流体气泡羽流涡特性数值模拟研究[J]. 化工学报, 2023, 74(5): 1950-1964. |
[10] | 李正涛, 袁志杰, 贺高红, 姜晓滨. 疏水界面上的NaCl液滴蒸发过程内环流调控机制研究[J]. 化工学报, 2023, 74(5): 1904-1913. |
[11] | 邓璐, 巨晓洁, 张文杰, 谢锐, 汪伟, 刘壮, 潘大伟, 褚良银. 微流控法可控制备放射性壳聚糖栓塞微球[J]. 化工学报, 2023, 74(4): 1781-1794. |
[12] | 贾露凡, 王艺颖, 董钰漫, 李沁园, 谢鑫, 苑昊, 孟涛. 微流控双水相贴壁液滴流动强化酶促反应研究[J]. 化工学报, 2023, 74(3): 1239-1246. |
[13] | 张雪婷, 胡激江, 赵晶, 李伯耿. 高分子量聚丙二醇在微通道反应器中的制备[J]. 化工学报, 2023, 74(3): 1343-1351. |
[14] | 何万媛, 陈一宇, 朱春英, 付涛涛, 高习群, 马友光. 阵列凸起微通道内气液两相传质特性研究[J]. 化工学报, 2023, 74(2): 690-697. |
[15] | 杨星宇, 马优, 朱春英, 付涛涛, 马友光. 梳状并行微通道内液液分布规律研究[J]. 化工学报, 2023, 74(2): 698-706. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||