化工学报 ›› 2023, Vol. 74 ›› Issue (1): 105-115.DOI: 10.11949/0438-1157.20220994
收稿日期:
2022-07-14
修回日期:
2022-11-09
出版日期:
2023-01-05
发布日期:
2023-03-20
通讯作者:
邢卫红
作者简介:
陈献富(1989—),男,博士,副教授,chenxianfu@njtech.edu.cn
基金资助:
Xianfu CHEN(), Dongyu WANG, Yiqun FAN, Weihong XING(), Xu QIAO
Received:
2022-07-14
Revised:
2022-11-09
Online:
2023-01-05
Published:
2023-03-20
Contact:
Weihong XING
摘要:
高性能膜材料是膜分离技术的“芯片”,发展新型高效制备方法是膜分离领域的重要研究方向。以数字模型为基础的3D打印技术,在复杂结构器件精密构筑方面展现出了优异的灵活性。近年来,3D打印技术在高性能膜材料开发方面的应用被广泛关注。本文从制备方法、性能强化等方面介绍了3D打印多孔陶瓷膜的研究进展,探讨了多孔陶瓷膜3D打印技术面临的挑战,并对3D打印技术在陶瓷膜领域的潜在发展方向进行了展望。
中图分类号:
陈献富, 王冬雨, 范益群, 邢卫红, 乔旭. 基于3D打印的多孔陶瓷膜研究进展[J]. 化工学报, 2023, 74(1): 105-115.
Xianfu CHEN, Dongyu WANG, Yiqun FAN, Weihong XING, Xu QIAO. Research progress of porous ceramic membranes based on 3D printing technologies[J]. CIESC Journal, 2023, 74(1): 105-115.
成型方法 | 支撑体 | 膜层 | 孔径/μm | 水通量/(m3·m-2·h-1·MPa-1) | 文献 |
---|---|---|---|---|---|
3D打印(DLP) | 氧化铝 | 无 | 0.86 | 27.0 | [ |
0.47 | 8.0 | ||||
氧化铝 | 0.11 | 10.5 | |||
3D打印(IJP) | 黏土 | 无 | 2~8 | 14.0② | [ |
3D打印(IJP) | 黏土 | 无 | 7.8① | 5.0③ | [ |
3D打印(SLA) | 氧化铝 | 无 | 约0.01 | — | [ |
3D打印(DLP) | 氧化铝 | 氧化铝 | 0.18 | 1.5 | [ |
3D打印(DIW) | — | 氧化铝 | 0.07~0.09 | 42.0 | [ |
间接3D打印(SLA) | 碳化硅 | 无 | 1.3 | — | [ |
挤出 | 氧化铝 | 无 | 1.0 | 18.0 | [ |
挤出 | 粉煤灰 | 无 | 1.25 | 31.6 | [ |
0.3 | 4.6 | ||||
干压 | 粉煤灰 | 无 | 1.3 | 21 | [ |
冷冻铸造 | 波特兰水泥 | 无 | 2 | 18 | [ |
挤出 | 氧化铝 | 氧化铝 | 0.5 | 14.7 | [ |
碳化硅 | 碳化硅 | 0.5 | 49.8 | ||
挤出 | 氧化铝 | 氧化锆 | 0.5 | 10.5 | [ |
0.2 | 6.3 | ||||
0.05 | 3.6 | ||||
挤出 | 氧化铝 | 氧化铝 | 0.2 | 10.2 | [ |
表1 3D打印与其他方法制备的陶瓷膜性能对比
Table 1 Comparison of the performances of ceramic membranes prepared via 3D printing and other methods
成型方法 | 支撑体 | 膜层 | 孔径/μm | 水通量/(m3·m-2·h-1·MPa-1) | 文献 |
---|---|---|---|---|---|
3D打印(DLP) | 氧化铝 | 无 | 0.86 | 27.0 | [ |
0.47 | 8.0 | ||||
氧化铝 | 0.11 | 10.5 | |||
3D打印(IJP) | 黏土 | 无 | 2~8 | 14.0② | [ |
3D打印(IJP) | 黏土 | 无 | 7.8① | 5.0③ | [ |
3D打印(SLA) | 氧化铝 | 无 | 约0.01 | — | [ |
3D打印(DLP) | 氧化铝 | 氧化铝 | 0.18 | 1.5 | [ |
3D打印(DIW) | — | 氧化铝 | 0.07~0.09 | 42.0 | [ |
间接3D打印(SLA) | 碳化硅 | 无 | 1.3 | — | [ |
挤出 | 氧化铝 | 无 | 1.0 | 18.0 | [ |
挤出 | 粉煤灰 | 无 | 1.25 | 31.6 | [ |
0.3 | 4.6 | ||||
干压 | 粉煤灰 | 无 | 1.3 | 21 | [ |
冷冻铸造 | 波特兰水泥 | 无 | 2 | 18 | [ |
挤出 | 氧化铝 | 氧化铝 | 0.5 | 14.7 | [ |
碳化硅 | 碳化硅 | 0.5 | 49.8 | ||
挤出 | 氧化铝 | 氧化锆 | 0.5 | 10.5 | [ |
0.2 | 6.3 | ||||
0.05 | 3.6 | ||||
挤出 | 氧化铝 | 氧化铝 | 0.2 | 10.2 | [ |
1 | Li J H, Pumera M. 3D printing of functional microrobots[J]. Chemical Society Reviews, 2021, 50(4): 2794-2838. |
2 | Jiménez M, Romero L, Domínguez I A, et al. Additive manufacturing technologies: an overview about 3D printing methods and future prospects[J]. Complexity, 2019, 2019: 9656938. |
3 | Lee J Y, An J, Chua C K. Fundamentals and applications of 3D printing for novel materials[J]. Applied Materials Today, 2017, 7: 120-133. |
4 | Zhu J, Wu P W, Chao Y H, et al. Recent advances in 3D printing for catalytic applications[J]. Chemical Engineering Journal, 2022, 433: 134341. |
5 | Karakurt I, Lin L W. 3D printing technologies: techniques, materials, and post-processing[J]. Current Opinion in Chemical Engineering, 2020, 28: 134-143. |
6 | Kantaros A, Diegel O, Piromalis D, et al. 3D printing: making an innovative technology widely accessible through makerspaces and outsourced services[J]. Materials Today: Proceedings, 2022, 49: 2712-2723. |
7 | Berman B. 3-D printing: the new industrial revolution[J]. Business Horizons, 2012, 55(2): 155-162. |
8 | 卢秉恒. 增材制造技术: 现状与未来[J]. 中国机械工程, 2020, 31(1): 19-23. |
Lu B H. Additive manufacturing—current situation and future[J]. China Mechanical Engineering, 2020, 31(1): 19-23. | |
9 | Germaini M M, Belhabib S, Guessasma S, et al. Additive manufacturing of biomaterials for bone tissue engineering—a critical review of the state of the art and new concepts[J]. Progress in Materials Science, 2022, 130: 100963. |
10 | 史冬梅, 张雷, 李丹. 高性能膜材料国内外发展现状与趋势[J]. 科技中国, 2019(4): 4-7. |
Shi D M, Zhang L, Li D. Development status and trend of domestic and foreign high-performance membrane materials [J]. China Scitechnology Business, 2019(4): 4-7. | |
11 | Soo A, Ali S M, Shon H K. 3D printing for membrane desalination: challenges and future prospects[J]. Desalination, 2021, 520: 115366. |
12 | Tijing L D, Dizon J R C, Ibrahim I, et al. 3D printing for membrane separation, desalination and water treatment[J]. Applied Materials Today, 2020, 18: 100486. |
13 | Woldemariam M, Filimonov R, Purtonen T, et al. Mixing performance evaluation of additive manufactured milli-scale reactors[J]. Chemical Engineering Science, 2016, 152: 26-34. |
14 | Chowdhury M R, Steffes J, Huey B D, et al. 3D printed polyamide membranes for desalination[J]. Science, 2018, 361(6403): 682-686. |
15 | Yuan S S, Strobbe D, Li X, et al. 3D printed chemically and mechanically robust membrane by selective laser sintering for separation of oil/water and immiscible organic mixtures[J]. Chemical Engineering Journal, 2020, 385: 123816. |
16 | Al-Shimmery A, Mazinani S, Ji J, et al. 3D printed composite membranes with enhanced anti-fouling behaviour[J]. Journal of Membrane Science, 2019, 574: 76-85. |
17 | Balogun H A, Sulaiman R, Marzouk S S, et al. 3D printing and surface imprinting technologies for water treatment: a review[J]. Journal of Water Process Engineering, 2019, 31: 100786. |
18 | Yanar N, Son M, Park H, et al. Toward greener membranes with 3D printing technology[J]. Environmental Engineering Research, 2021, 26(2): 200027. |
19 | 邢卫红, 范益群, 仲兆祥, 等. 面向过程工业的陶瓷膜制备与应用进展[J]. 化工学报, 2009, 60(11): 2679-2688. |
Xing W H, Fan Y Q, Zhong Z X, et al. Recent advances in process-engineering oriented preparation and application of ceramic membranes[J]. CIESC Journal, 2009, 60(11): 2679-2688. | |
20 | 范益群, 漆虹, 徐南平. 多孔陶瓷膜制备技术研究进展[J]. 化工学报, 2013, 64(1): 107-115. |
Fan Y Q, Qi H, Xu N P. Advance in preparation techniques of porous ceramic membranes[J]. CIESC Journal, 2013, 64(1): 107-115. | |
21 | Chen Z W, Li Z Y, Li J J, et al. 3D printing of ceramics: a review[J]. Journal of the European Ceramic Society, 2019, 39(4): 661-687. |
22 | Schlacher J, Lube T, Harrer W, et al. Strength of additive manufactured alumina[J]. Journal of the European Ceramic Society, 2020, 40(14): 4737-4745. |
23 | Wang J C, Dommati H, Hsieh S J. Review of additive manufacturing methods for high-performance ceramic materials[J]. The International Journal of Advanced Manufacturing Technology, 2019, 103: 2627-2647. |
24 | Hwa L C, Rajoo S, Noor A M, et al. Recent advances in 3D printing of porous ceramics: a review[J]. Current Opinion in Solid State and Materials Science, 2017, 21(6): 323-347. |
25 | Scheithauer U, Kerber F, Füssel A, et al. Alternative process routes to manufacture porous ceramics-opportunities and challenges[J]. Materials, 2019, 12(4): 663. |
26 | Dommati H, Ray S S, Wang J C, et al. A comprehensive review of recent developments in 3D printing technique for ceramic membrane fabrication for water purification[J]. RSC Advances, 2019, 9(29): 16869-16883. |
27 | Low Z X, Chua Y T, Ray B M, et al. Perspective on 3D printing of separation membranes and comparison to related unconventional fabrication techniques[J]. Journal of Membrane Science, 2017, 523: 596-613. |
28 | Pan Z X, Wang D, Guo X, et al. High strength and microwave-absorbing polymer-derived SiCN honeycomb ceramic prepared by 3D printing[J]. Journal of the European Ceramic Society, 2022, 42(4): 1322-1331. |
29 | Man Y R, Ding G Q, Luo X D, et al. A review on porous ceramics with hierarchical pore structure by 3D printing-based combined route[J]. Journal of Asian Ceramic Societies, 2021, 9(4): 1377-1389. |
30 | Zhang F, Li Z A, Xu M J, et al. A review of 3D printed porous ceramics[J]. Journal of the European Ceramic Society, 2022, 42(8): 3351-3373. |
31 | Zeng Q F, Yang C H, Tang D Y, et al. Additive manufacturing alumina components with lattice structures by digital light processing technique[J]. Journal of Materials Science & Technology, 2019, 35(12): 2751-2755. |
32 | Jin Z P, Mei H, Yan Y K, et al. 3D-printed controllable gradient pore superwetting structures for high temperature efficient oil-water separation[J]. Journal of Materiomics, 2021, 7(1): 8-18. |
33 | Jiao C, Gu J J, Cao Y, et al. Preparation of Al2O3-ZrO2 scaffolds with controllable multi-level pores via digital light processing[J]. Journal of the European Ceramic Society, 2020, 40(15): 6087-6094. |
34 | Zeng Y, Yan Y Z, Yan H F, et al. 3D printing of hydroxyapatite scaffolds withgood mechanical and biocompatible properties by digital light processing[J]. Journal of Materials Science, 2018, 53(9): 6291-6301. |
35 | Guo J, Zeng Y, Li P R, et al. Fine lattice structural titanium dioxide ceramic produced by DLP 3D printing[J]. Ceramics International, 2019, 45(17): 23007-23012. |
36 | Toombs J T, Luitz M, Cook C C, et al. Volumetric additive manufacturing of silica glass with microscale computed axial lithography[J]. Science, 2022, 376(6590): 308-312. |
37 | Minas C, Carnelli D, Tervoort E, et al. 3D printing of emulsions and foams into hierarchical porous ceramics[J]. Advanced Materials, 2016, 28(45): 9993-9999. |
38 | Muth J T, Dixon P G, Woish L, et al. Architected cellular ceramics with tailored stiffness via direct foam writing[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(8): 1832-1837. |
39 | Sun X M, Zeng T, Zhou Y K, et al. 3D printing of porous SiC ceramics added with SiO2 hollow microspheres[J]. Ceramics International, 2020, 46(14): 22797-22804. |
40 | Choe G B, Kim G N, Lee H, et al. Novel camphene/photopolymer solution as pore-forming agent for photocuring-assisted additive manufacturing of porous ceramics[J]. Journal of the European Ceramic Society, 2021, 41(1): 655-662. |
41 | Jonhson W, Xu X, Bian K, et al. 3D-printed hierarchical ceramic architectures for ultrafast emulsion treatment and simultaneous oil-water filtration[J]. ACS Materials Letters, 2022, 4(4): 740-750. |
42 | Chen Z, Zhang D W, Peng E, et al. 3D-printed ceramic structures with in situ grown whiskers for effective oil/water separation[J]. Chemical Engineering Journal, 2019, 373: 1223-1232. |
43 | Hwa L C, Uday M B, Ahmad N, et al. Integration and fabrication of the cheap ceramic membrane through 3D printing technology[J]. Materials Today Communications, 2018, 15: 134-142. |
44 | He Z M, Shanmugasundaram T S, Singh G. Inkjet 3D printing of clay ceramics for water treatment[J]. Progress in Additive Manufacturing, 2018, 3(4): 215-219. |
45 | Ray S S, Dommati H, Wang J C, et al. Solvent based slurry stereolithography 3D printed hydrophilic ceramic membrane for ultrafiltration application[J]. Ceramics International, 2020, 46(8): 12480-12488. |
46 | Song S, Rong L W, Dong K J, et al. Pore-scale numerical study of intrinsic permeability for fluid flow through asymmetric ceramic microfiltration membranes[J]. Journal of Membrane Science, 2022, 642: 119920. |
47 | Zhang Z X, Gu Q L, Ng T C A, et al. Hierarchically porous interlayer for highly permeable and fouling-resistant ceramic membranes in water treatment[J]. Separation and Purification Technology, 2022, 293: 121092. |
48 | Ng T C A, Lyu Z Y, Gu Q L, et al. Effect of gradient profile in ceramic membranes on filtration characteristics: implications for membrane development[J]. Journal of Membrane Science, 2020, 595: 117576. |
49 | Ye Y Y, Du Y, Hu T Y, et al. 3D printing of integrated ceramic membranes by the DLP method[J]. Industrial & Engineering Chemistry Research, 2021, 60(26): 9368-9377. |
50 | Chen T, Wang D Y, Chen X F, et al. Three-dimensional printing of high-flux ceramic membranes with an asymmetric structure via digital light processing[J]. Ceramics International, 2022, 48(1): 304-312. |
51 | Wang D Y, Chen T, Zeng Y, et al. Optimization of UV-curable alumina suspension for digital light processing of ceramic membranes[J]. Journal of Membrane Science, 2022, 643: 120066. |
52 | Ma J, Du B, He C, et al. Corrosion resistance properties of porous alumina-mullite ceramic membrane supports[J]. Advanced Engineering Materials, 2020, 22(7): 1901442. |
53 | Şahin A, Alp E, Eserci D, et al. Effective diffusion constant and adsorption constant of synthesized alumina, zirconia, and alumina-zirconia composite material[J]. Chemical Engineering Communications, 2017, 204(10): 1129-1142. |
54 | Lorente-Ayza M M, Mestre S, Sanz V, et al. On the underestimated effect of the starch ash on the characteristics of low cost ceramic membranes[J]. Ceramics International, 2016, 42(16): 18944-18954. |
55 | Zou D, Qiu M H, Chen X F, et al. One-step preparation of high-performance bilayer α-alumina ultrafiltration membranes via co-sintering process[J]. Journal of Membrane Science, 2017, 524: 141-150. |
56 | Wang D Y, Chen T, Zeng Y, et al. Rapid construction of ceramic microfiltration membranes with a gradient pore structure using UV-curable alumina suspension[J]. Ceramics International, 2022, 48(23): 34817-34827. |
57 | Majouli A, Tahiri S, Younssi S A, et al. Elaboration of new tubular ceramic membrane from local Moroccan Perlite for microfiltration process. Application to treatment of industrial wastewaters[J]. Ceramics International, 2012, 38(5): 4295-4303. |
58 | Geens J, der Bruggen B V, Vandecasteele C. Transport model for solvent permeation through nanofiltration membranes[J]. Separation and Purification Technology, 2006, 48(3): 255-263. |
59 | Zhang Y, Gao Y, Wang P, et al. SiC foam with a hollow skeleton and microporous strut wall used as a membrane contactor for the liquid-liquid extraction of Ce3+ and Pr3+ [J]. Journal of Membrane Science, 2021, 637: 119640. |
60 | Lyu Z Y, Ng T C A, Tran-Duc T, et al. 3D-printed surface-patterned ceramic membrane with enhanced performance in crossflow filtration[J]. Journal of Membrane Science, 2020, 606: 118138. |
61 | Qin G T, Lü X, Wei W, et al. Microfiltration of kiwifruit juice and fouling mechanism using fly-ash-based ceramic membranes[J]. Food and Bioproducts Processing, 2015, 96: 278-284. |
62 | Zou D, Fan W, Xu J R, et al. One-step engineering of low-cost kaolin/fly ash ceramic membranes for efficient separation of oil-water emulsions[J]. Journal of Membrane Science, 2021, 621: 118954. |
63 | Abdullayev A, Kamm P H, Bekheet M F, et al. Fabrication and characterization of ice templated membrane supports from Portland cement[J]. Membranes, 2020, 10(5): 93. |
64 | 李秀秀, 魏逸彬, 谢子萱, 等. Al2O3和SiC微滤膜的疏水改性及其油固分离性能研究[J]. 化工学报, 2019, 70(7): 2737-2747. |
Li X X, Wei Y B, Xie Z X, et al. Hydrophobic modification of Al2O3 and SiC microfiltration membranes for oil-solid separation[J]. CIESC Journal, 2019, 70(7): 2737-2747. | |
65 | Zhang Q, Xu R, Xu P W, et al. Performance study of ZrO2 ceramic micro-filtration membranes used in pretreatment of DMF wastewater[J]. Desalination, 2014, 346: 1-8. |
66 | Jokić A, Pajčin I, Grahovac J, et al. Energy efficient turbulence promoter flux-enhanced microfiltration for the harvesting of rod-shaped bacteria using tubular ceramic membrane[J]. Chemical Engineering Research and Design, 2019, 150: 359-368. |
67 | Mazinani S, Al-Shimmery A, Chew Y M J, et al. 3D printed fouling-resistant composite membranes[J]. ACS Applied Materials & Interfaces, 2019, 11(29): 26373-26383. |
68 | Ng T C A, Lyu Z Y, Wang C S, et al. Effect of surface-patterned topographies of ceramic membranes on the filtration of activated sludge and their interaction with different particle sizes[J]. Journal of Membrane Science, 2022, 645: 120125. |
69 | Gu Q L, Ng T C A, Bao Y P, et al. Developing better ceramic membranes for water and wastewater treatment: where microstructure integrates with chemistry and functionalities[J]. Chemical Engineering Journal, 2022, 428: 130456. |
70 | Xu N, Xing W H, Xu N P, et al. Application of turbulence promoters in ceramic membrane bioreactor used for municipal wastewater reclamation[J]. Journal of Membrane Science, 2002, 210(2): 307-313. |
71 | Wu Y, Hua C, Li W L, et al. Intensification of micromixing efficiency in a ceramic membrane reactor with turbulence promoter[J]. Journal of Membrane Science, 2009, 328(1/2): 219-227. |
72 | Tsai H Y, Huang A, soesanto J F, et al. 3D printing design of turbulence promoters in a cross-flow microfiltration system for fine particles removal[J]. Journal of Membrane Science, 2019, 573: 647-656. |
73 | Ferreira F B, Ullmann G, Vieira L G M, et al. Hydrodynamic performance of 3D printed turbulence promoters in cross-flow ultrafiltrations of Psidium myrtoides extract[J]. Chemical Engineering and Processing-Process Intensification, 2020, 154: 108005. |
74 | Armbruster S, Cheong O, Lölsberg J, et al. Fouling mitigation in tubular membranes by 3D-printed turbulence promoters[J]. Journal of Membrane Science, 2018, 554: 156-163. |
75 | Troksa A L, Eshelman H V, Chandrasekaran S, et al. 3D-printed nanoporous ceramics: tunable feedstock for direct ink write and projection microstereolithography[J]. Materials & Design, 2021, 198: 109337. |
76 | Grossin D, Montón A, Navarrete-Segado P, et al. A review of additive manufacturing of ceramics by powder bed selective laser processing (sintering/melting): calcium phosphate, silicon carbide, zirconia, alumina, and their composites[J]. Open Ceramics, 2021, 5: 100073. |
77 | Wang X F, Schmidt F, Hanaor D, et al. Additive manufacturing of ceramics from preceramic polymers: a versatile stereolithographic approach assisted by thiol-ene click chemistry[J]. Additive Manufacturing, 2019, 27: 80-90. |
78 | Nunes S P, Culfaz-Emecen P Z, Ramon G Z, et al. Thinking the future of membranes: perspectives for advanced and new membrane materials and manufacturing processes[J]. Journal of Membrane Science, 2020, 598: 117761. |
79 | Zhang J, Amini N, Morton D A V, et al. 3D printing with particles as feedstock materials[J]. Advanced Powder Technology, 2021, 32(9): 3324-3345. |
80 | Lalegani Dezaki M, Serjouei A, Zolfagharian A, et al. A review on additive/subtractive hybrid manufacturing of directed energy deposition (DED) process[J]. Advanced Powder Materials, 2022, 1(4): 100054. |
81 | Oran D, Rodriques S G, Gao R, et al. 3D nanofabrication by volumetric deposition and controlled shrinkage of patterned scaffolds[J]. Science, 2018, 362(6420): 1281-1285. |
82 | Liu G, Zhao Y, Wu G, et al. Origami and 4D printing of elastomer-derived ceramic structures[J]. Science Advances, 2018, 4(8): eaat0641. |
83 | Liu G, Zhang X F, Chen X L, et al. Additive manufacturing of structural materials[J]. Materials Science and Engineering: R: Reports, 2021, 145: 100596. |
84 | Kuang X, Zhao Z A, Chen K J, et al. High-speed 3D printing of high-performance thermosetting polymers via two-stage curing[J]. Macromolecular Rapid Communications, 2018, 39(7): e1700809. |
85 | 宿彦京, 付华栋, 白洋, 等. 中国材料基因工程研究进展[J]. 金属学报, 2020, 56(10): 1313-1323. |
Su Y J, Fu H D, Bai Y, et al. Progress in materials genome engineering in China[J]. Acta Metallurgica Sinica, 2020, 56(10): 1313-1323. | |
86 | 谢建新, 宿彦京, 薛德祯, 等. 机器学习在材料研发中的应用[J]. 金属学报, 2021, 57(11): 1343-1361. |
Xie J X, Su Y J, Xue D Z, et al. Machine learning for materials research and development[J]. Acta Metallurgica Sinica, 2021, 57(11): 1343-1361. | |
87 | Erps T, Foshey M, Luković M K, et al. Accelerated discovery of 3D printing materials using data-driven multiobjective optimization[J]. Science Advances, 2021, 7(42): eabf7435. |
88 | Moorehead M, Bertsch K, Niezgoda M, et al. High-throughput synthesis of Mo-Nb-Ta-W high-entropy alloys via additive manufacturing[J]. Materials & Design, 2020, 187: 108358. |
[1] | 史昊鹏, 钟达文, 廉学新, 张君峰. 朝下多尺度沟槽翅片结构表面沸腾换热实验研究[J]. 化工学报, 2023, 74(7): 2880-2888. |
[2] | 何汉兵, 刘真, 陈勇, 王小锋, 曾婧. 直写成型电极锰氧化物粉末的合成与浆料调控[J]. 化工学报, 2023, 74(5): 2239-2247. |
[3] | 王思琪, 顾天宇, 陈献富, 王通, 李佳, 柯威, 李小锋, 范益群. 陶瓷膜用于杜仲叶提取液澄清的分离特性与膜污染机制研究[J]. 化工学报, 2023, 74(3): 1113-1125. |
[4] | 张梦波, 楼琳瑾, 冯艺荣, 郑雨婷, 张浩淼, 王靖岱, 阳永荣. 烷基铝氧烷合成技术研究进展[J]. 化工学报, 2023, 74(2): 525-534. |
[5] | 马语峻, 刘向军. 多孔陶瓷膜烟气水分回收理论与模型研究[J]. 化工学报, 2022, 73(9): 4103-4112. |
[6] | 季超, 刘炜, 漆虹. 基于空冷的疏水陶瓷膜冷凝器用于烟气脱湿过程强化的实验研究[J]. 化工学报, 2022, 73(5): 2174-2182. |
[7] | 马文峻, 陈卓, 凌斯达, 张经纬, 徐建鸿. 3D打印微流控通道快速可控制备核壳微纤维[J]. 化工学报, 2022, 73(1): 434-440. |
[8] | 滕达, 李铁林, 李昂, 安连锁, 沈国清, 张世平. 单通道陶瓷膜管低压透水性能实验分析[J]. 化工学报, 2020, 71(S1): 261-271. |
[9] | 杨东升, 阿嵘, 张建斌, 王大鹏, 张斌, 徐迎丽, 秦俊杰, 刘淑芬. 航天器舱内环境下非金属增材制造热效应分析[J]. 化工学报, 2020, 71(S1): 486-493. |
[10] | 周鑫, 邱鸣慧, 罗平. 陶瓷膜接触器化学吸收氮氧化物的传质过程与阻力分析[J]. 化工学报, 2020, 71(8): 3652-3660. |
[11] | 李秀秀, 魏逸彬, 谢子萱, 漆虹. Al2O3和SiC微滤膜的疏水改性及其油固分离性能研究[J]. 化工学报, 2019, 70(7): 2737-2747. |
[12] | 曹语, 王乐, 季超, 黄延召, 薛志磊, 陆剑鸣, 漆虹. 陶瓷膜冷凝器用于烟气脱白烟过程的中试研究[J]. 化工学报, 2019, 70(6): 2192-2201. |
[13] | 李冬燕, 魏巍, 韩峰. 高温除尘碳化硅膜的制备及其抗腐蚀特性[J]. 化工学报, 2019, 70(1): 336-344. |
[14] | 崔建东, 崔兆惠, 苏志国, 郑春杨, 马光辉, 张松平. 生物3D打印蓖麻油基水性聚氨酯涂层固定化碳酸酐酶[J]. 化工学报, 2018, 69(8): 3577-3584. |
[15] | 任常在, 王文龙, 李国麟, 王彪. 固废基硫铝酸盐胶凝材料用于建筑3D打印的特性与过程仿真[J]. 化工学报, 2018, 69(7): 3270-3278. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||