[1] |
CRETON B, DE B T, LACHET V, et al. Extension of a charged anisotropic united atoms model to polycyclic aromatic compounds[J]. Journal of Physical Chemistry B, 2010, 114(19):6522-6530.
|
[2] |
FENG H, GAO W, NIE J, et al. MD simulation of self-diffusion and structure in some n-alkanes over a wide temperature range at high pressures[J]. Journal of Molecular Modeling, 2013, 19(1):73-82.
|
[3] |
李蕾, 李书实, 王长生. 带电组氨酸侧链与DNA碱基间非键作用强度的理论研究[J]. 高等学校化学学报, 2017, 38(1):56-62. LI L, LI S S, WANG C S. Theoretical studies on noncovalent interactions between charged histidine side chain and DNA base[J]. Chemical Journal of Chinese Universities, 2017, 38(1):56-62.
|
[4] |
LIWO A, O?DZIEJ S, PINCUS M R, et al. A united residue force field for off lattice protein structure simulations(Ⅰ):Functional forms and parameters of long range side chain interaction potentials from protein crystal data[J]. Journal of Computational Chemistry, 1997, 18(7):849-873.
|
[5] |
CHEN P, NISHIYAMA Y, MAZEAU K. Atomic partial charges and one Lennard-Jones parameter crucial to model cellulose allomorphs[J]. Cellulose, 2014, 21(4):2207-2217.
|
[6] |
王琳琳. 烯烃类分子第一性原理分子力学力场的建立和应用[D]. 上海:上海交通大学, 2009. WANG L L. Development and application of a first-principle force field for alkenes[D]. Shanghai:Shanghai Jiao Tong University, 2009.
|
[7] |
王玲, 李晓锋, 赵立峰, 等. 醛酮类化合物的分子力场参数推导及热力学性质计算[J]. 化学学报, 2009, 67(23):2669-2677. WANG L, LI X F, ZHAO L F, et al. Force field development and predictions of thermodynamic properties for aldehydes and ketones[J]. Acta Chimica Sinica, 2009, 67(23):2669-2677.
|
[8] |
戴建兴. 分子力场方法预测混合液体性质及分子间相互作用研究[D]. 上海:上海交通大学, 2011. DAI J X. Prediction of mixture liquid properties using force field method and inter molecular interaction study[D]. Shanghai:Shanghai Jiao Tong University, 2011.
|
[9] |
王琳琳, 李晓锋, 孙淮. 烯烃类分子的分子力学力场及热力学性质预测[J]. 计算机与应用化学, 2009, 26(12):1547-1552. WANG L L, LI X F, SUN H. Force field development and prediction of thermodynamic properties for alkenes[J]. Computer and Applied Chemistry, 2009, 26(12):1547-1552.
|
[10] |
李晓锋, 吴智勇, 何文军, 等. 分子模拟方法预测流体热力学性质[J]. 计算机与应用化学, 2011, 28(8):21-24. LI X F, WU Z Y, HE W J, et al. Application of pinch technology for epichlorohydrin production via propylene acetate method[J]. Computer and Applied Chemistry, 2011, 28(8):21-24.
|
[11] |
LI X, ZHAO L, CHENG T, et al. One force field for predicting multiple thermodynamic properties of liquid and vapor ethylene oxide[J]. Fluid Phase Equilibria, 2008, 274(1/2):36-43.
|
[12] |
DAI J, LI X, ZHAO L, et al. Enthalpies of mixing predicted using molecular dynamics simulations and OPLS force field[J]. Fluid Phase Equilibria, 2010, 289(2):156-165.
|
[13] |
LINDAHL E, HESS B, GROENHOF G, et al. GROMACS:fast, flexible, and free[J]. Journal of Computational Chemistry, 2005, 26(16):1701-1718.
|
[14] |
HESS B. Determining the shear viscosity of model liquids from molecular dynamics simulations[J]. Journal of Chemical Physics, 2002, 116(1):209-217.
|
[15] |
ALLEN M P, TILDESLEY D J. Computer Simulations of Liquids[M]. Oxford:Oxford Science Publications, 1987:385.
|
[16] |
OLIVEIRA C M B P, WAKEHAM W A. The viscosity of five liquid hydrocarbons at pressures up to 250 MPa[J]. International Journal of Thermophysics, 1992, 13(5):773-790.
|
[17] |
KUMAGAI A, TAKAHASHI S. Viscosity and density of liquid mixtures of n-alkanes with squalane[J]. International Journal of Thermophysics, 1995, 16(3):773-779.
|
[18] |
CHAPPELOW C C, SNYDER P S, WINNICK J. Density of liquid n-octane[J]. Journal of Chemical & Engineering Data, 1971, 16(4):440-442.
|
[19] |
REGUEIRA T, PANTELIDE G, YAN W, et al. Density and phase equilibrium of the binary system methane + n-decane under high temperatures and pressures[J]. Fluid Phase Equilibria, 2016, 428(1):48-61.
|
[20] |
SANTOS T V M, PEREIRA M F V, AVELINO H M N T, et al. Viscosity and density measurements on liquid n-tetradecane at moderately high pressures[J]. Fluid Phase Equilibria, 2017, 453(1):46-57.
|
[21] |
GLOS S, KLEINRAHM R. Measurement of the (p, ρ, T) relation of propane, propylene, n-butane, and isobutane in the temperature range from (95 to 340) K at pressures up to 12 MPa using an accurate two-sinker densimeter[J]. The Journal of Chemical Thermodynamics, 2004, 36(12):1037-1059.
|
[22] |
SCHILLING G, KLEINRAHM R, WAGNER, W. Measurement and correlation of the (p, ρ, T) relation of liquid n-heptane, n-nonane, 2, 4-dichlorotoluene, and bromobenzene in the temperature range from (233.15 to 473.15)K at pressures up to 30 MPa for use as density reference liquids[J]. The Journal of Chemical Thermodynamics, 2008, 40(7):1095-1105.
|
[23] |
YUCEL H G, UYSAL A. Measurements of viscosity and density of n-alkane and their mixtures[C]//17th European Conference on Thermophysical Properties Collection of Manuscripts. Kazakhstan:Suleyman Demirel University, 2005:7-8.
|
[24] |
MAKRODIMITRI Z Α, HELLER A, KOLLER T M, et al. Viscosity of heavy n-alkanes and diffusion of gases therein based on molecular dynamics simulations and empirical correlations[J]. Journal of Chemical Thermodynamics, 2015, 91(1):101-107.
|
[25] |
KNPSTAD B, SKJOELSVIK P A, OEYE H A. Viscosity of pure hydrocarbons[J]. Journal of Chemical & Engineering Data, 1989, 34(1):37-43.
|
[26] |
BARRUFET M A, HALL K R, ESTRADA B A, et al. Liquid viscosity of octane and pentane + octane mixtures from 298.15 K to 373.15 K up to 25 MPa[J]. Journal of Chemical & Engineering Data, 1999, 44(6):1310-1314.
|
[27] |
SASTRI S R S, RAO K K. A new group contribution method for predicting viscosity of organic liquids[J]. Chemical Engineering Journal, 1992, 50(1):9-25.
|
[28] |
阎建民, 乐生龙, KRISHNA R. 二元液体混合物扩散系数的理论计算[J]. 高校化学工程学报, 2007, 21(6):919-923. YAN J M, LE S L, KRISHNA R. Theoretical calculation of diffusivity in binary liquid mixtures[J]. Journal of Chemical Engineering of Chinese Universities, 2007, 21(6):919-923.
|
[29] |
COELHO L A F, OLIVEIRA J V, TAVARES F W. Dense fluid self-diffusion coefficient calculations using perturbation theory and molecular dynamics[J]. Brazilian Journal of Chemical Engineering, 1999, 16(3):319-329.
|
[30] |
ASSAEL M J, DYMOND J H, TSELEKIDOU V. Correlation of high-pressure thermal conductivity, viscosity, and diffusion coefficients for n-alkanes[J]. International Journal of Thermophysics, 1990, 11(5):863-873.
|
[31] |
BACHL F. NMR-spektroskopische untersuchungen zur dynamik einfacher kohlenwasserstoffe bis 600 MPa[D]. Regensburg:Universität Regensburg, 1988.
|
[32] |
GLASSTONE S, LAIDLER K J, EYRING H. The Theory of Rate Processes:the Kinetics of Chemical Reactions, Viscosity, Diffusion and Electrochemical Phenomena[M]. New York:McGraw-Hill Inc., 1941:611.
|
[33] |
陈六平, 韩世钧. 液体分子自扩散系数的预测[J]. 高等学校化学学报, 1992, 13(2):231-234. CHEN L P, HAN S J. Prediction of self-diffusion coefficients of molecular in liquids[J]. Chemical Journal of Chinese Universities, 1992, 13(2):231-234.
|
[34] |
PE?AR D, DOLE?EK V. Isothermal compressibilities and isobaric expansibilities of pentane, hexane, heptane and their binary and ternary mixtures from density measurements[J]. Fluid Phase Equilibria, 2003, 211(1):109-127.
|
[35] |
RASA H. Measurements and calculations of hydrocarbon mixtures liquid density by simple cubic equations of state[J]. Physics & Chemistry of Liquids, 2009, 47(2):140-147.
|
[36] |
DYMOND J H, ROBERTSON J, ISDALE J D. Transport properties of nonelectrolyte liquid mixtures(Ⅲ):Viscosity coefficients for n-octane, n-dodecane, and equimolar mixtures of n-octane + n-dodecane and n-hexane + n-dodecane from 25 to 100℃ at pressures up to the freezing pressure or 500 MPa[J]. International Journal of Thermophysics, 1981, 2(2):133-154.
|
[37] |
GRUNBERG L, NISSAN A H. Mixture law for viscosity[J]. Nature, 1949, 164(4175):799.
|