化工学报 ›› 2024, Vol. 75 ›› Issue (10): 3825-3834.DOI: 10.11949/0438-1157.20240397
• 过程安全 • 上一篇
收稿日期:
2024-04-09
修回日期:
2024-05-03
出版日期:
2024-10-25
发布日期:
2024-11-04
通讯作者:
贾海林
作者简介:
贾海林(1980—),男,博士,副教授,jiahailin@hpu.edu.cn
基金资助:
Hailin JIA(), Jinxiang ZENG, Rongkun PAN, Shili PAN, Kaixuan ZHOU
Received:
2024-04-09
Revised:
2024-05-03
Online:
2024-10-25
Published:
2024-11-04
Contact:
Hailin JIA
摘要:
针对低碳醇调控碳氢和有机硅表面活性剂制备无氟泡沫灭火剂路线的广泛适用性以及小尺度灭火实验评价灭火效果的局限性,选取一种新型有机硅表面活性剂SILOK与两类碳氢表面活性剂CHX-3和SDS为关键组分,开展无氟泡沫灭火剂的复配方案设计、泡沫性能测试、真火灭火实验和分子动力学模拟。测试结果表明:CHX-3/SILOK/异丁醇和SDS/SILOK/异丁醇两类复配体系5种复配方案的无氟泡沫灭火剂均具有良好的泡沫基础性能,设计方案的表面张力为20.3~22.7 mN/m,稳泡系数为0.9617~0.9762,25%析液时间为203~238 s。相对来说,CHX-3/SILOK/异丁醇的质量分数为0.48%/0.1%/0.03%的Case5配方具有更加优良的泡沫基础性能,表面张力低,发泡性和稳泡性能良好。真火灭火实验证明:CHX-3/SILOK/异丁醇体系的Case5方案,90%控火时间仅为42 s;灭火时间最短,仅为49 s;平均灭火降温速率最大,达到了7.59℃/s。通过分子动力学模拟研究了复配体系的氢键和扩散系数,阐明了CHX-3和SDS对泡沫稳定性和表面张力的影响规律。研究成果能够为无氟泡沫灭火剂的开发、应用和推广提供数据支持和理论支撑。
中图分类号:
贾海林, 曾锦祥, 潘荣锟, 潘仕利, 周凯旋. 无氟泡沫灭火剂真火实验与分子动力学模拟[J]. 化工学报, 2024, 75(10): 3825-3834.
Hailin JIA, Jinxiang ZENG, Rongkun PAN, Shili PAN, Kaixuan ZHOU. True fire experimental and molecular dynamic simulation of fluorine-free foam extinguishing agent[J]. CIESC Journal, 2024, 75(10): 3825-3834.
原材料 | 生产厂商 | 主要成分及含量 | 离子属性 | CMC/%(质量) | 平衡表面 张力/(mN/m) |
---|---|---|---|---|---|
SILOK | 广州斯洛柯高子聚合物有限公司 | 甲基(丙基氢氧化物、乙氧基化物)双(三甲基甲硅烷氧基)硅烷65%~70% | 阴离子 | 0.04 | 21.7 |
SDS | 广东高顺化工进出口有限公司 | 十二烷基硫酸钠98.5% | 阴离子 | 0.03 | 29.6 |
CHX-3 | 成都科宏达科技有限公司 | 月桂酰胺丙基甜菜碱 45% | 两性离子 | 0.48 | 28.3 |
异丁醇 | 天津市风船化剂科技有限公司 | 异丁醇 99% | — | — | — |
表1 无氟泡沫灭火剂的基剂信息
Table 1 Base agent information of fluorine-free foam extinguishing agent
原材料 | 生产厂商 | 主要成分及含量 | 离子属性 | CMC/%(质量) | 平衡表面 张力/(mN/m) |
---|---|---|---|---|---|
SILOK | 广州斯洛柯高子聚合物有限公司 | 甲基(丙基氢氧化物、乙氧基化物)双(三甲基甲硅烷氧基)硅烷65%~70% | 阴离子 | 0.04 | 21.7 |
SDS | 广东高顺化工进出口有限公司 | 十二烷基硫酸钠98.5% | 阴离子 | 0.03 | 29.6 |
CHX-3 | 成都科宏达科技有限公司 | 月桂酰胺丙基甜菜碱 45% | 两性离子 | 0.48 | 28.3 |
异丁醇 | 天津市风船化剂科技有限公司 | 异丁醇 99% | — | — | — |
配方 | SILOK | 异丁醇 | SDS | CHX-3 | 黄原胶 | 二乙二醇丁醚 | 尿素 | APP | 乙二醇 | 水 |
---|---|---|---|---|---|---|---|---|---|---|
Case1 | 0.040% | 0.100% | 0.030% | — | 0.004% | 0.010% | 0.300% | 0.150% | 0.150% | 99.216% |
Case2 | 0.040% | 0.030% | 0.030% | — | 0.004% | 0.010% | 0.300% | 0.150% | 0.150% | 99.286% |
Case3 | 0.040% | 0.100% | — | 0.480% | 0.004% | 0.010% | 0.300% | 0.150% | 0.150% | 98.766% |
Case4 | 0.100% | 0.100% | — | 0.480% | 0.004% | 0.010% | 0.300% | 0.150% | 0.150% | 98.706% |
Case5 | 0.100% | 0.030% | — | 0.480% | 0.004% | 0.010% | 0.300% | 0.150% | 0.150% | 98.776% |
表2 无氟泡沫灭火剂的复配方案
Table 2 Compositional formulation of fluorine-free foam extinguishing agent
配方 | SILOK | 异丁醇 | SDS | CHX-3 | 黄原胶 | 二乙二醇丁醚 | 尿素 | APP | 乙二醇 | 水 |
---|---|---|---|---|---|---|---|---|---|---|
Case1 | 0.040% | 0.100% | 0.030% | — | 0.004% | 0.010% | 0.300% | 0.150% | 0.150% | 99.216% |
Case2 | 0.040% | 0.030% | 0.030% | — | 0.004% | 0.010% | 0.300% | 0.150% | 0.150% | 99.286% |
Case3 | 0.040% | 0.100% | — | 0.480% | 0.004% | 0.010% | 0.300% | 0.150% | 0.150% | 98.766% |
Case4 | 0.100% | 0.100% | — | 0.480% | 0.004% | 0.010% | 0.300% | 0.150% | 0.150% | 98.706% |
Case5 | 0.100% | 0.030% | — | 0.480% | 0.004% | 0.010% | 0.300% | 0.150% | 0.150% | 98.776% |
方案 | 表面张力/(mN/m) | 发泡高度/mm | 稳泡系数 | 发泡倍数 | 25%析液时间/s |
---|---|---|---|---|---|
Case1 | 22.6 | 167 | 0.9640 | 5.6 | 206 |
Case2 | 22.7 | 183 | 0.9617 | 6.6 | 203 |
Case3 | 21.3 | 196 | 0.9695 | 6.9 | 223 |
Case4 | 20.3 | 187 | 0.9733 | 6.7 | 238 |
Case5 | 20.5 | 210 | 0.9762 | 7.6 | 236 |
表3 无氟泡沫灭火剂的泡沫基础性能
Table 3 Foam base property of fluorine-free foam extinguishing agent
方案 | 表面张力/(mN/m) | 发泡高度/mm | 稳泡系数 | 发泡倍数 | 25%析液时间/s |
---|---|---|---|---|---|
Case1 | 22.6 | 167 | 0.9640 | 5.6 | 206 |
Case2 | 22.7 | 183 | 0.9617 | 6.6 | 203 |
Case3 | 21.3 | 196 | 0.9695 | 6.9 | 223 |
Case4 | 20.3 | 187 | 0.9733 | 6.7 | 238 |
Case5 | 20.5 | 210 | 0.9762 | 7.6 | 236 |
泡沫复配体系 | 与水成氢键的分子 | 最小键长/nm | 最大键长/nm | 最小键角/(°) | 最大键角/(°) |
---|---|---|---|---|---|
CHX-3/SILOK/异丁醇体系 | CHX-3 | 0.173 | 0.237 | 104.36 | 132.40 |
异丁醇 | 0.257 | 0.304 | 108.05 | 134.11 | |
SILOK | 0.232 | 0.311 | 95.18 | 155.08 | |
SDS/SILOK/异丁醇体系 | SDS | 0.239 | 0.318 | 103.24 | 129.91 |
异丁醇 | 0.248 | 0.308 | 109.02 | 133.87 | |
SILOK | 0.228 | 0.315 | 96.47 | 148.91 |
表4 两类复配体系中的氢键键长与键角
Table 4 Hydrogen bond length and bond angle of two kinds of compound system
泡沫复配体系 | 与水成氢键的分子 | 最小键长/nm | 最大键长/nm | 最小键角/(°) | 最大键角/(°) |
---|---|---|---|---|---|
CHX-3/SILOK/异丁醇体系 | CHX-3 | 0.173 | 0.237 | 104.36 | 132.40 |
异丁醇 | 0.257 | 0.304 | 108.05 | 134.11 | |
SILOK | 0.232 | 0.311 | 95.18 | 155.08 | |
SDS/SILOK/异丁醇体系 | SDS | 0.239 | 0.318 | 103.24 | 129.91 |
异丁醇 | 0.248 | 0.308 | 109.02 | 133.87 | |
SILOK | 0.228 | 0.315 | 96.47 | 148.91 |
1 | 孙金华, 胡隆华. 城市高层建筑重大火灾防控立项报告[J]. 科技资讯, 2016, 14(32): 186. |
Sun J H, Hu L H. Proposal of 973 project “fire protection for city high-rise buildings”[J]. Science & Technology Information, 2016, 14(32): 186. | |
2 | Zhou B, Yang W Y, Yoshioka H, et al. Research on suppression effectiveness of compressed air foam for oil-immersed transformer hot oil fire[J]. Case Studies in Thermal Engineering, 2023, 49: 103272. |
3 | Jiang W X, Wang J F, Varbanov P S, et al. Hybrid data-mechanism-driven model of the unsteady soil temperature field for long-buried crude oil pipelines with non-isothermal batch transportation[J]. Energy, 2024, 292: 130354. |
4 | Lyu Y, Huang Q Y, Liu L Q, et al. Experimental and molecular dynamics simulation investigations of adhesion in heavy oil/water/pipeline wall systems during cold transportation[J]. Energy, 2022, 250: 123811. |
5 | 邓军, 李鑫, 王凯, 等. 矿井火灾智能监测预警技术近20年研究进展及展望[J]. 煤炭科学技术, 2024, 52(1): 154-177. |
Deng J, Li X, Wang K, et al. Research progress and prospect of mine fire intelligent monitoring and early warning technology in recent 20 years[J]. Coal Science and Technology, 2024, 52(1): 154-177. | |
6 | 余明高, 王亮, 李海涛, 等. 我国煤矿防灭火材料的研究现状及发展趋势[J]. 矿业安全与环保, 2022, 49(4): 22-36. |
Yu M G, Wang L, Li H T, et al. Research status and development trend of fire-extinguishing materials in Chinese coal mines[J]. Mining Safety & Environmental Protection, 2022, 49(4): 22-36. | |
7 | Zhang Z Y, Zong R W, Tao C F, et al. Experimental study on flame height of two oil tank fires under different lip heights and distances[J]. Process Safety and Environmental Protection, 2020, 139: 182-190. |
8 | Kang W D, Xu Z S, Yan L, et al. Preparation of fluorine-free foam extinguishing agent based on silicone and hydrocarbon surfactants for markedly suppressing the pool fire[J]. Thermal Science and Engineering Progress, 2023, 40: 101761. |
9 | Ratzer A F. History and development of foam as a fire extinguishing medium[J]. Industrial & Engineering Chemistry, 1956, 48(11): 2013-2016. |
10 | 余明高, 徐俊, 于水军, 等. 含复合添加剂细水雾熄灭煤油池火实验[J]. 煤炭学报, 2007, 32(3): 288-291. |
Yu M G, Xu J, Yu S J, et al. Experimental on water mist contained compound additives extinguish kerosene pool fire[J]. Journal of China Coal Society, 2007, 32(3): 288-291. | |
11 | Zhou Y T, Jin Y, Shen Y C, et al. Adjustable surface activity and wetting ability of anionic hydrocarbon and nonionic short-chain fluorocarbon surfactant mixtures: effects of Li+ and Mg2+ [J]. Journal of Molecular Liquids, 2022, 350: 118538. |
12 | 秦波涛, 冯乐乐, 蒋文婕, 等. 矿井泡沫防灭火技术研究进展[J]. 煤炭科技, 2022, 43(5): 1-12, 26. |
Qin B T, Feng L L, Jiang W J, et al. Research progress on extinguishing foam of coal mine[J]. Coal Science & Technology Magazine, 2022, 43(5): 1-12, 26. | |
13 | Tu J P, Pau D, Yang T Q, et al. Effect of foam air mixing on flame intensification — comparative experimental study of foam and water sprays extinguishing transformer oil pool fire[J]. Fire Safety Journal, 2022, 133: 103664. |
14 | 余潇阳. 高稳定无氟蛋白泡沫的稳定机制与灭火性能研究[D]. 合肥: 中国科学技术大学, 2023. |
Yu X Y. Stability mechanism and fire extinguishing performance of highly stable fluorine-free protein foam[D]. Hefei: University of Science and Technology of China, 2023. | |
15 | Chen T, Zhang P, Wang D Z, et al. Research on suppression effect of low-expansion AFFF, AFFF/AR and FFFP foam on hot oil fire for oil-immersed transformers[J]. Thermal Science and Engineering Progress, 2023, 43: 101991. |
16 | Tang Y, Hou F, Zhong X X, et al. Combination of heat energy extraction and fire control in underground high-temperature zones of coal fire areas[J]. Energy, 2023, 278: 127801. |
17 | Li H, Yu X Y, Qiu K, et al. Role of salts in fire extinguishing performance of aqueous film-forming foam (AFFF)[J]. Case Studies in Thermal Engineering, 2023, 49: 103159. |
18 | Szymczyk K, Zdziennicka A, Jańczuk B. Properties of some nonionic fluorocarbon surfactants and their mixtures with hydrocarbon ones[J]. Advances in Colloid and Interface Science, 2021, 292: 102421. |
19 | Yang L, Min R, Wang G J, et al. Evaluation of interfacial, micellar, and foaming properties of the solutions comprising fluorocarbon surfactant, cocamidopropyl betaine, and Gleditsia saponin as fire-extinguishing agents[J]. Chemical Engineering Science, 2023,272:118590. |
20 | Yu X Y, Qiu K, Yu X, et al. Stability and thinning behaviour of aqueous foam films containing fluorocarbon and hydrocarbon surfactant mixtures[J]. Journal of Molecular Liquids, 2022, 359: 119225. |
21 | Yang Y P, Tan H L, Zhang J Q, et al. Surface activity and foam properties of novel Gemini short-chain fluorocarbon and hydrocarbon mixed system in aqueous solutions[J]. Thermal Science and Engineering Progress, 2023, 38: 101628. |
22 | Jiang N, Sheng Y J, Li C H, et al. Surface activity, foam properties and aggregation behavior of mixtures of short-chain fluorocarbon and hydrocarbon surfactants[J]. Journal of Molecular Liquids, 2018, 268: 249-255. |
23 | Kong D P, Wang D S, Chen J, et al. Assessing the mixed foam stability of different foam extinguishing agents under room temperature and thermal radiation: an experimental study[J]. Journal of Molecular Liquids, 2023, 369: 120805. |
24 | Ananth R, Snow A W, Hinnant K M, et al. Synergisms between siloxane-polyoxyethylene and alkyl polyglycoside surfactants in foam stability and pool fire extinction[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 579: 123686. |
25 | Yu X Y, Jiang N, Miao X Y, et al. Comparative studies on foam stability, oil-film interaction and fire extinguishing performance for fluorine-free and fluorinated foams[J]. Process Safety and Environmental Protection, 2020, 133: 201-215. |
26 | 张华海, 王悦琳, 王铁峰. 全浓度范围下醇类表面活性剂对气泡聚并影响的实验研究[J]. 化工学报, 2020, 71(9): 4161-4167. |
Zhang H H, Wang Y L, Wang T F. Experimental study on effect of alcohol surfactants on bubble coalescence in full range of concentrations[J]. CIESC Journal, 2020, 71(9): 4161-4167. | |
27 | 蒋新生, 吕科宗, 魏树旺, 等. 基于响应曲面法的三相泡沫灭火剂基础配方优化设计[J]. 化工学报, 2017, 68(7): 2886-2895. |
Jiang X S, Lü K Z, Wei S W, et al. Optimal design of three phase fire-fighting foam formulation based on response surface methodology[J]. CIESC Journal, 2017, 68(7): 2886-2895. | |
28 | Liu J J, Zhang Y H, Li F, et al. Contamination status, partitioning behavior, ecological risks assessment of legacy and emerging per- and polyfluoroalkyl substances in a typical heavily polluted semi-enclosed bay, China[J]. Environmental Research, 2024, 247: 118214. |
29 | 任志远, 彭政, 姜晨, 等. 典型新污染物治理国际经验研究: 以《斯德哥尔摩公约》管控的持久性有机污染物为例[J]. 环境影响评价, 2023, 45(2): 18-25. |
Ren Z Y, Peng Z, Jiang C, et al. International experience in the management of typical new pollutants: a case study of POPs regulated under Stockholm convention[J]. Environmental Impact Assessment, 2023, 45(2): 18-25. | |
30 | 贾海林, 崔博, 陈南, 等. 低碳醇改性无氟泡沫的性能分析与扑灭油池火的实验研究[J]. 化工学报, 2022, 73(9): 4235-4244. |
Jia H L, Cui B, Chen N, et al. Foam performance analysis of fluorine-free foam modified by low carbon alcohol and experimental study on extinguishing oil pool fire[J]. CIESC Journal, 2022, 73(9): 4235-4244. | |
31 | Zhao W H, Cheng Y Q, Lu S, et al. Synthesis and surface activity of two novel phosphate silicone surfactants[J]. Journal of Molecular Liquids, 2023, 390: 123154. |
32 | 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. 泡沫灭火剂: [S]. 北京: 中国标准出版社, 2006. |
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China,Standardization Administration of the People's Repubic of China. Foam extinguishing agent: [S]. Beijing: Standards Press of China, 2006. | |
33 | 张兴强. 基于池火灾模型与事故树分析的石油库安全评价[J]. 石油库与加油站, 2021, 30(1): 7-11. |
Zhang X Q. Safety evaluation of oil depot based on pool fire model and fault tree analysis[J]. Oil Depot and Gas Station, 2021, 30(1): 7-11. | |
34 | 胡超, 朱国庆, 吴维华, 等. 池火危害模型化计算分析研究[J]. 消防科学与技术, 2011, 30(7): 570-573. |
Hu C, Zhu G Q, Wu W H, et al. The model calculation and analysis of the pool fire hazards[J]. Fire Science and Technology, 2011, 30(7): 570-573. | |
35 | 孔得朋, 刘鹏翔, 王昌建, 等. 小尺度沸溢油池火灾燃烧速率特性试验研究[J]. 中国石油大学学报(自然科学版), 2017, 41(3): 136-143. |
Kong D P, Liu P X, Wang C J, et al. Small scale experiment study on burning rate characteristics of boilovers[J]. Journal of China University of Petroleum (Edition of Natural Science), 2017, 41(3): 136-143. | |
36 | 刘文川, 汤积仁, 张慧栋, 等. 过热液体闪沸喷射钻进羽流相互作用调控及成孔直径预测[J]. 煤炭学报, 2022, 47(9): 3270-3283. |
Liu W C, Tang J R, Zhang H D, et al. Modulation of plume interaction and diameter prediction of boreholes induced by novel flash boiling jet drilling[J]. Journal of China Coal Society, 2022, 47(9): 3270-3283. | |
37 | 赵振, 王睿坤, 叶学民, 等. 吸附剂表面含氧官能团对苯酚吸附特性的分子动力学模拟[J]. 煤炭学报, 2019, 44(S1): 296-304. |
Zhao Z, Wang R K, Ye X M, et al. Molecular dynamics simulation on adsorption performances of phenol by oxygenic functional groups on adsorbent surface[J]. Journal of China Coal Society, 2019, 44(S1): 296-304. | |
38 | Rachuru S, Vandanapu J, Skelton A A. Non-linear Taft relationship applied to surface tensions of aliphatic acids: inter-molecular hydrogen bonding versus intra-molecular hydrogen bonding[J]. Journal of Molecular Liquids, 2016, 224: 43-46. |
39 | Jin H, Zhang Y S, Zhang M, et al. Molecular simulation study of the influence of different surfactants on the wetting characteristics of anthracite[J]. Arabian Journal of Chemistry, 2024, 17(3): 105637. |
40 | Guo J Y, Xia Y C, Liu Y T, et al. Microscopic adsorption behaviors of ionic surfactants on lignite surface and its effect on the wettability of lignite: a simulation and experimental study[J]. Journal of Molecular Liquids, 2022, 345: 117851. |
41 | Tao W H, Jiang B Y, Zheng Y N, et al. Molecular dynamics study on the effect of inorganic salts on the wettability of surfactants on bituminous coal: sodium dodecyl sulfate and sodium chloride as representatives[J]. Fuel, 2024, 359: 130397. |
[1] | 徐娜, 李子璇, 刘子璐, 吕耀东, 张释文. 溶液环境对液相纳米颗粒体系分散稳定性的影响[J]. 化工学报, 2024, 75(10): 3815-3824. |
[2] | 于宏鑫, 邵双全. 水结晶过程的分子动力学模拟分析[J]. 化工学报, 2023, 74(S1): 250-258. |
[3] | 毕丽森, 刘斌, 胡恒祥, 曾涛, 李卓睿, 宋健飞, 吴翰铭. 粗糙界面上纳米液滴蒸发模式的分子动力学研究[J]. 化工学报, 2023, 74(S1): 172-178. |
[4] | 米泽豪, 花儿. 基于DFT和COSMO-RS理论研究多元胺型离子液体吸收SO2气体[J]. 化工学报, 2023, 74(9): 3681-3696. |
[5] | 曾如宾, 沈中杰, 梁钦锋, 许建良, 代正华, 刘海峰. 基于分子动力学模拟的Fe2O3纳米颗粒烧结机制研究[J]. 化工学报, 2023, 74(8): 3353-3365. |
[6] | 张永泉, 玄伟伟. 碱金属/(FeO+CaO+MgO)对硅酸盐灰熔渣结构和黏度的影响机理[J]. 化工学报, 2023, 74(4): 1764-1771. |
[7] | 贾海林, 崔博, 陈南, 杨永钦, 王庆银, 朱福敏. 低碳醇改性无氟泡沫的性能分析与扑灭油池火的实验研究[J]. 化工学报, 2022, 73(9): 4235-4244. |
[8] | 袁妮妮, 郭拓, 白红存, 何育荣, 袁永宁, 马晶晶, 郭庆杰. 化学链燃烧过程Fe2O3/Al2O3载氧体表面CH4反应:ReaxFF-MD模拟[J]. 化工学报, 2022, 73(9): 4054-4061. |
[9] | 刘洪超, 陈苏航, 段先力, 吴凡, 徐小飞, 宋先雨, 赵双良, 刘洪来. Janus石墨烯量子点在生物膜中的输运行为:分子动力学模拟[J]. 化工学报, 2022, 73(7): 2835-2843. |
[10] | 刘佳鑫, 徐宇, 花儿. 异辛基乙二胺-酰基丙氨酸型质子化离子液体的分子间氢键相互作用[J]. 化工学报, 2020, 71(S1): 15-22. |
[11] | 于泽沛, 冯妍卉, 冯黛丽, 张欣欣. 三维石墨烯-碳纳米管复合结构热导率的分子动力学模拟[J]. 化工学报, 2020, 71(4): 1822-1827. |
[12] | 刘明, 徐哲. 甲烷水合物声子导热及量子修正[J]. 化工学报, 2020, 71(4): 1424-1431. |
[13] | 张霞, 周玲, 尹秋响. 溶剂对磺胺甲基嘧啶溶剂化合物形成的影响[J]. 化工学报, 2020, 71(2): 680-687. |
[14] | 刘万强,杨帆,袁华,张远达,易平贵,周虎. 醇类有机物热传导的分子动力学模拟及微观机理研究[J]. 化工学报, 2020, 71(11): 5159-5168. |
[15] | 周梦迪, 沈嘉炜, 梁立军, 李嘉辰, 金乐红, 王琦. 石墨烯生物毒性的计算机模拟研究进展[J]. 化工学报, 2020, 71(1): 148-165. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 89
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 |
|
|||||||||||||||||||||||||||||||||||||||||||||||||