1 |
Liu H, Du C, Liao L, et al. Approaching intrinsic dynamics of MXenes hybrid hydrogel for 3D printed multimodal intelligent devices with ultrahigh super elasticity and temperature sensitivity[J]. Nature Communications, 2022, 13(1): 1-11.
|
2 |
Ohm Y, Pan C, Ford M J, et al. An electrically conductive silver–polyacrylamide–alginate hydrogel composite for soft electronics[J]. Nature Electronics, 2021, 4(3): 185-192.
|
3 |
Wei H, Lei M, Zhang P, et al. Orthogonal photochemistry-assisted printing of 3D tough and stretchable conductive hydrogels[J]. Nature Communications, 2021, 12(1): 1-10.
|
4 |
Dobashi Y, Yao D, Petel Y, et al. Piezoionic mechanoreceptors: force-induced current generation in hydrogels[J]. Science, 2022, 376(6592): 502-507.
|
5 |
Zhang Y, Gong M, Wan P.MXene hydrogel for wearable electronics[J]. Matter, 2021, 4(8): 2655-2658.
|
6 |
Li L, Zhang Y, Lu H, et al. Cryopolymerization enables anisotropic polyaniline hybrid hydrogels with superelasticity and highly deformation-tolerant electrochemical energy storage[J]. Nature Communications, 2020, 11(1): 1-12.
|
7 |
Lin H, Tan J, Zhu J, et al. A programmable epidermal microfluidic valving system for wearable biofluid management and contextual biomarker analysis[J]. Nature Communications, 2020, 11(1): 1-12.
|
8 |
Yang C, Suo Z.Hydrogel ionotronics[J]. Nature Reviews Materials, 2018, 3(6): 125-142.
|
9 |
Hu Z, Lu J, Hu A, et al. Engineering BPQDs/PLGA nanospheres-integrated wood hydrogel bionic scaffold for combinatory bone repair and osteolytic tumor therapy[J]. Chemical Engineering Journal, 2022, 446: 137269.
|
10 |
Kim S H, Hong H, Ajiteru O, et al. D bioprinted silk fibroin hydrogels for tissue engineering[J]. Nature Protocols, 2021, 16(12): 5484-5532.
|
11 |
Chang S, Wang S, Liu Z, et al. Advances of stimulus-responsive hydrogels for bone defects repair in tissue engineering[J]. Gels, 2022, 8(6): 389.
|
12 |
Chen J, Zhu Y, Chang X, et al. Recent progress in essential functions of soft electronic skin[J]. Advanced Functional Materials, 2021, 31(42): 2104686.
|
13 |
Ying B, Liu X.Skin-like hydrogel devices for wearable sensing,soft robotics and beyond[J]. Iscience, 2021, 24(11): 103174.
|
14 |
Lee Y, Song W J, Sun J Y.Hydrogel soft robotics[J]. Materials Today Physics, 2020, 15: 100258.
|
15 |
Wang S, Sun Z, Zhao Y, et al. A highly stretchable hydrogel sensor for soft robot multi-modal perception[J]. Sensors and Actuators A: Physical, 2021, 331: 113006.
|
16 |
Sun X, Agate S, Salem K S, et al. Hydrogel-based sensor networks: compositions,properties,and applications—a review[J]. ACS Applied Bio Materials, 2020, 4(1): 140-162.
|
17 |
Rong Q, Lei W, Liu M.Conductive hydrogels as smart materials for flexible electronic devices[J]. Chemistry-A European Journal, 2018, 24(64): 16930-16943.
|
18 |
Li G, Zhang H, Fortin D, et al. Poly(vinyl alcohol)–poly(ethylene glycol) double-network hydrogel: a general approach to shape memory and self-healing functionalities[J]. Langmuir, 2015, 31(42): 11709-11716.
|
19 |
Liang R, Yu H, Wang L, et al. Highly tough hydrogels with the body temperature-responsive shape memory effect[J]. ACS Applied Materials & Interfaces, 2019, 11(46): 43563-43572.
|
20 |
Costa D C S, Costa P D C, Gomes M C, et al. Universal strategy for designing shape memory hydrogels[J]. ACS Materials Letters, 2022, 4(4): 701-706.
|
21 |
Hua L, Zhao C, Guan X, et al. Cold-induced shape memory hydrogels for strong and programmable artificial muscles[J]. Science China Materials, 2022, 65(8): 2274-2280.
|
22 |
Wu S, Shao Z, Xie H, et al. Salt-mediated triple shape-memory ionic conductive polyampholyte hydrogel for wearable flexible electronics[J]. Journal of Materials Chemistry A, 2021, 9(2): 1048-1061.
|
23 |
Li J, Chee H L, Chong Y T, et al. Hofmeister effect mediated strong PHEMA-gelatin hydrogel actuator[J]. ACS Applied Materials & Interfaces, 2022, 14(20): 23826-23838.
|
24 |
Qiao L, Liu C, Liu C, et al. Self-healing, pH-sensitive and shape memory hydrogels based on acylhydrazone and hydrogen bonds[J]. European Polymer Journal, 2022, 162: 110838.
|
25 |
Davidson-Rozenfeld G, Stricker L, Simke J, et al. Light-responsive arylazopyrazole-based hydrogels: their applications as shape-memory materials,self-healing matrices and controlled drug release systems[J]. Polymer Chemistry, 2019, 10(30): 4106-4115.
|
26 |
Yang T, Wang M, Jia F, et al. Thermo-responsive shape memory sensors based on tough,remolding and anti-freezing hydrogels[J]. Journal of Materials Chemistry C, 2020, 8(7): 2326-2335.
|
27 |
Zhang X, Cai J, Liu W, et al. Synthesis of strong and highly stretchable, electrically conductive hydrogel with multiple stimuli responsive shape memory behavior[J]. Polymer, 2020, 188: 122147.
|
28 |
Sivasankarapillai V S, Sharma T S K, Wabaidur K Y H S M, et al. MXene based sensing materials: current status and future perspectives[J]. ES Energy & Environment, 2022, 15: 4-14.
|
29 |
Zhou C, Zhao X, Xiong Y, et al. A review of etching methods of MXene and applications of MXene conductive hydrogels[J]. European Polymer Journal, 2022, 167: 111063.
|
30 |
Zou J, Wu J, Wang Y, et al. Additive-mediated intercalation and surface modification of MXenes[J]. Chemical Society Reviews, 2022, 51(8): 2972-2990.
|
31 |
Ge G, Zhang Y Z, Zhang W, et al. Ti3C2T x MXene-activated fast gelation of stretchable and self-healing hydrogels: a molecular approach[J]. ACS Nano, 2021, 15(2): 2698-2706.
|
32 |
居涛, 李国辉, 耿凤霞.一步法合成二维 及其电化学性能研究[J]. 化工学报, 2022, 73(2): 951-959.
|
|
Ju T, Li G H, Geng F X. One-step synthesis of two-dimensional Ti3C2 and its electrochemical performance[J]. CIESC Journal, 2022, 73(2): 951-959.
|
33 |
杨琴, 赵卫杰, 赵娜, 等.微晶和氢键双增强水凝胶AG/PVA/CB[7]的制备和性能[J]. 材料研究学报, 2020, 34(9): 691-696.
|
|
Yang Q, Zhao W J, Zhao N, et al. Preparation and properties of a novel AG/PVA/CB[7] hydrogel reinforced by microcrystalline and hydrogen bonds[J]. Chinese Journal of Materials Research, 2020, 34(9): 691-696.
|
34 |
Feng Y, Liu H, Zhu W, et al. Muscle-inspired MXene conductive hydrogels with anisotropy and low-temperature tolerance for wearable flexible sensors and arrays[J]. Advanced Functional Materials, 2021, 31(46): 2105264.
|
35 |
Yu Y, Feng Y, Liu F, et al. Carbon dots‐based ultra stretchable and conductive hydrogels for high-performance tactile sensors and self-powered electronic skin[J]. Small, 2022: 2204365.
|