化工学报 ›› 2023, Vol. 74 ›› Issue (6): 2699-2707.DOI: 10.11949/0438-1157.20230261
收稿日期:
2023-03-20
修回日期:
2023-05-24
出版日期:
2023-06-05
发布日期:
2023-07-27
通讯作者:
杨琴
作者简介:
杨琴(1974—),女,博士,副教授,1004240879@qq.com
基金资助:
Qin YANG(), Chuanjian QIN, Mingzi LI, Wenjing YANG, Weijie ZHAO, Hu LIU
Received:
2023-03-20
Revised:
2023-05-24
Online:
2023-06-05
Published:
2023-07-27
Contact:
Qin YANG
摘要:
兼具优良导电性和多重形状记忆多功能水凝胶柔性传感器的构筑极具挑战。通过分子设计采用自由共聚和冷冻-解冻法将MXene纳米片引入兼具温度响应的高分子聚乙烯醇和金属离子响应的聚丙烯酸网络中,制备了具有双重形状记忆的导电水凝胶并构筑了应变传感器。采用透射电镜、扫描电镜、X射线衍射及傅里叶红外光谱等技术研究了该纳米片和复合水凝胶的形貌及结构,研究了MXene含量对该水凝胶力学性能、导电性能及形状记忆性能的影响规律。研究表明:MXene纳米片均匀分散在复合水凝胶中,且与水凝胶网络通过氢键交联,这不仅强化了该水凝胶的力学性能,而且提高了双重形状记性水凝胶的形状固定率。其中,复合水凝胶的抗拉强度提升至236.10 kPa,是纯水凝胶的7.3倍,对铁离子的形状固定率从69.44%增加至94.44%,对温度响应的形状固定率从63.89%增加至88.89%。该水凝胶传感器的信号在多次快速拉伸应变循环下表现出色的连续性和一致性,这为环境适应性柔性传感器的构筑提供了新思路。
中图分类号:
杨琴, 秦传鉴, 李明梓, 杨文晶, 赵卫杰, 刘虎. 用于柔性传感的双形状记忆MXene基水凝胶的制备及性能研究[J]. 化工学报, 2023, 74(6): 2699-2707.
Qin YANG, Chuanjian QIN, Mingzi LI, Wenjing YANG, Weijie ZHAO, Hu LIU. Fabrication and properties of dual shape memory MXene based hydrogels for flexible sensor[J]. CIESC Journal, 2023, 74(6): 2699-2707.
图1 MXene的TEM图像(a);MXene的元素映射照片[(b)、(c)];MXene/PVA/PAA水凝胶照片(d);MXene/PVA/PAA水凝胶的SEM图像(e);MXene/PVA/PAA水凝胶的元素映射图像(f)
Fig.1 TEM image of MXene (a); Element mapping images of MXene [(b), (c)];Photo of MXene/PVA/PAA hydrogel (d); SEM image of MXene/PVA/PAA hydrogel (e); Element mapping images of MXene/PVA/PAA hydrogel (f)
图2 MXene/PVA/PAA水凝胶、MXene、PVA/PAA水凝胶、PVA水凝胶和PAA水凝胶的FT-IR光谱
Fig.2 FT-IR spectra of MXene/PVA/PAA hydrogel, MXene, PVA/PAA hydrogel, PVA hydrogel and PAA hydrogel
图6 MXene/PVA/PAA水凝胶在不同刺激下的形状记忆示意图:(a)温度,(b)Fe3+;MXene含量对PVA/PAA/MXene水凝胶在不同刺激下的Rf影响: (c)温度, (d)Fe3+
Fig.6 Shape memory and recovery images under different stimuli: (a) temperature, (b) Fe3+; the effect of MXene content on Rf of PVA/PAA/MXene hydrogel under different stimuli: (c) temperature, (d) Fe3+
图7 MXene/PVA/PAA水凝胶传感器的电导性能: (a)MXene含量对MXene/PVA/PAA水凝胶的电导率影响;(b)MXene含量为0.10%(质量)的复合水凝胶在频率为每秒1次的拉伸应变循环下相对电阻变化率-时间曲线;(c)1 s循环2次变为2.5 s循环1次下相对电阻变化率-时间曲线;(d)不同应变下的灵敏因子曲线
Fig.7 Conductivity of MXene/PVA/PAA hydrogel sensor: (a) the effect of MXene content on the conductivity of MXene/PVA/PAA hydrogel; (b) the relative resistance change rate-time curve of relative resistance of composite hydrogel with 0.10%(mass) MXene content under tensile strain cycle with frequency of 1 time per second; (c) the relative resistance change rate-time curve of relative resistance under 2 cycles of 1 s to 1 cycle of 2.5 s; (d) gauge factor curves under different strains
1 | Liu H, Du C, Liao L, et al. Approaching intrinsic dynamics of MXenes hybrid hydrogel for 3D printed multimodal intelligent devices with ultrahigh super elasticity and temperature sensitivity[J]. Nature Communications, 2022, 13(1): 1-11. |
2 | Ohm Y, Pan C, Ford M J, et al. An electrically conductive silver–polyacrylamide–alginate hydrogel composite for soft electronics[J]. Nature Electronics, 2021, 4(3): 185-192. |
3 | Wei H, Lei M, Zhang P, et al. Orthogonal photochemistry-assisted printing of 3D tough and stretchable conductive hydrogels[J]. Nature Communications, 2021, 12(1): 1-10. |
4 | Dobashi Y, Yao D, Petel Y, et al. Piezoionic mechanoreceptors: force-induced current generation in hydrogels[J]. Science, 2022, 376(6592): 502-507. |
5 | Zhang Y, Gong M, Wan P.MXene hydrogel for wearable electronics[J]. Matter, 2021, 4(8): 2655-2658. |
6 | Li L, Zhang Y, Lu H, et al. Cryopolymerization enables anisotropic polyaniline hybrid hydrogels with superelasticity and highly deformation-tolerant electrochemical energy storage[J]. Nature Communications, 2020, 11(1): 1-12. |
7 | Lin H, Tan J, Zhu J, et al. A programmable epidermal microfluidic valving system for wearable biofluid management and contextual biomarker analysis[J]. Nature Communications, 2020, 11(1): 1-12. |
8 | Yang C, Suo Z.Hydrogel ionotronics[J]. Nature Reviews Materials, 2018, 3(6): 125-142. |
9 | Hu Z, Lu J, Hu A, et al. Engineering BPQDs/PLGA nanospheres-integrated wood hydrogel bionic scaffold for combinatory bone repair and osteolytic tumor therapy[J]. Chemical Engineering Journal, 2022, 446: 137269. |
10 | Kim S H, Hong H, Ajiteru O, et al. D bioprinted silk fibroin hydrogels for tissue engineering[J]. Nature Protocols, 2021, 16(12): 5484-5532. |
11 | Chang S, Wang S, Liu Z, et al. Advances of stimulus-responsive hydrogels for bone defects repair in tissue engineering[J]. Gels, 2022, 8(6): 389. |
12 | Chen J, Zhu Y, Chang X, et al. Recent progress in essential functions of soft electronic skin[J]. Advanced Functional Materials, 2021, 31(42): 2104686. |
13 | Ying B, Liu X.Skin-like hydrogel devices for wearable sensing,soft robotics and beyond[J]. Iscience, 2021, 24(11): 103174. |
14 | Lee Y, Song W J, Sun J Y.Hydrogel soft robotics[J]. Materials Today Physics, 2020, 15: 100258. |
15 | Wang S, Sun Z, Zhao Y, et al. A highly stretchable hydrogel sensor for soft robot multi-modal perception[J]. Sensors and Actuators A: Physical, 2021, 331: 113006. |
16 | Sun X, Agate S, Salem K S, et al. Hydrogel-based sensor networks: compositions,properties,and applications—a review[J]. ACS Applied Bio Materials, 2020, 4(1): 140-162. |
17 | Rong Q, Lei W, Liu M.Conductive hydrogels as smart materials for flexible electronic devices[J]. Chemistry-A European Journal, 2018, 24(64): 16930-16943. |
18 | Li G, Zhang H, Fortin D, et al. Poly(vinyl alcohol)–poly(ethylene glycol) double-network hydrogel: a general approach to shape memory and self-healing functionalities[J]. Langmuir, 2015, 31(42): 11709-11716. |
19 | Liang R, Yu H, Wang L, et al. Highly tough hydrogels with the body temperature-responsive shape memory effect[J]. ACS Applied Materials & Interfaces, 2019, 11(46): 43563-43572. |
20 | Costa D C S, Costa P D C, Gomes M C, et al. Universal strategy for designing shape memory hydrogels[J]. ACS Materials Letters, 2022, 4(4): 701-706. |
21 | Hua L, Zhao C, Guan X, et al. Cold-induced shape memory hydrogels for strong and programmable artificial muscles[J]. Science China Materials, 2022, 65(8): 2274-2280. |
22 | Wu S, Shao Z, Xie H, et al. Salt-mediated triple shape-memory ionic conductive polyampholyte hydrogel for wearable flexible electronics[J]. Journal of Materials Chemistry A, 2021, 9(2): 1048-1061. |
23 | Li J, Chee H L, Chong Y T, et al. Hofmeister effect mediated strong PHEMA-gelatin hydrogel actuator[J]. ACS Applied Materials & Interfaces, 2022, 14(20): 23826-23838. |
24 | Qiao L, Liu C, Liu C, et al. Self-healing, pH-sensitive and shape memory hydrogels based on acylhydrazone and hydrogen bonds[J]. European Polymer Journal, 2022, 162: 110838. |
25 | Davidson-Rozenfeld G, Stricker L, Simke J, et al. Light-responsive arylazopyrazole-based hydrogels: their applications as shape-memory materials,self-healing matrices and controlled drug release systems[J]. Polymer Chemistry, 2019, 10(30): 4106-4115. |
26 | Yang T, Wang M, Jia F, et al. Thermo-responsive shape memory sensors based on tough,remolding and anti-freezing hydrogels[J]. Journal of Materials Chemistry C, 2020, 8(7): 2326-2335. |
27 | Zhang X, Cai J, Liu W, et al. Synthesis of strong and highly stretchable, electrically conductive hydrogel with multiple stimuli responsive shape memory behavior[J]. Polymer, 2020, 188: 122147. |
28 | Sivasankarapillai V S, Sharma T S K, Wabaidur K Y H S M, et al. MXene based sensing materials: current status and future perspectives[J]. ES Energy & Environment, 2022, 15: 4-14. |
29 | Zhou C, Zhao X, Xiong Y, et al. A review of etching methods of MXene and applications of MXene conductive hydrogels[J]. European Polymer Journal, 2022, 167: 111063. |
30 | Zou J, Wu J, Wang Y, et al. Additive-mediated intercalation and surface modification of MXenes[J]. Chemical Society Reviews, 2022, 51(8): 2972-2990. |
31 | Ge G, Zhang Y Z, Zhang W, et al. Ti3C2T x MXene-activated fast gelation of stretchable and self-healing hydrogels: a molecular approach[J]. ACS Nano, 2021, 15(2): 2698-2706. |
32 | 居涛, 李国辉, 耿凤霞.一步法合成二维 及其电化学性能研究[J]. 化工学报, 2022, 73(2): 951-959. |
Ju T, Li G H, Geng F X. One-step synthesis of two-dimensional Ti3C2 and its electrochemical performance[J]. CIESC Journal, 2022, 73(2): 951-959. | |
33 | 杨琴, 赵卫杰, 赵娜, 等.微晶和氢键双增强水凝胶AG/PVA/CB[7]的制备和性能[J]. 材料研究学报, 2020, 34(9): 691-696. |
Yang Q, Zhao W J, Zhao N, et al. Preparation and properties of a novel AG/PVA/CB[7] hydrogel reinforced by microcrystalline and hydrogen bonds[J]. Chinese Journal of Materials Research, 2020, 34(9): 691-696. | |
34 | Feng Y, Liu H, Zhu W, et al. Muscle-inspired MXene conductive hydrogels with anisotropy and low-temperature tolerance for wearable flexible sensors and arrays[J]. Advanced Functional Materials, 2021, 31(46): 2105264. |
35 | Yu Y, Feng Y, Liu F, et al. Carbon dots‐based ultra stretchable and conductive hydrogels for high-performance tactile sensors and self-powered electronic skin[J]. Small, 2022: 2204365. |
[1] | 刘远超, 关斌, 钟建斌, 徐一帆, 蒋旭浩, 李耑. 单层XSe2(X=Zr/Hf)的热电输运特性研究[J]. 化工学报, 2023, 74(9): 3968-3978. |
[2] | 陈佳起, 赵万玉, 姚睿充, 侯道林, 董社英. 开心果壳基碳点的合成及其对Q235碳钢的缓蚀行为研究[J]. 化工学报, 2023, 74(8): 3446-3456. |
[3] | 高燕, 伍鹏, 尚超, 胡泽君, 陈晓东. 基于双流体喷嘴的磁性琼脂糖微球的制备及其蛋白吸附性能探究[J]. 化工学报, 2023, 74(8): 3457-3471. |
[4] | 徐文杰, 贾献峰, 王际童, 乔文明, 凌立成, 王任平, 余子舰, 张寅旭. 有机硅/酚醛杂化气凝胶的制备和性能研究[J]. 化工学报, 2023, 74(8): 3572-3583. |
[5] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
[6] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
[7] | 刘杰, 吴立盛, 李锦锦, 罗正鸿, 周寅宁. 含乙烯基胺酯键聚醚类可逆交联聚合物的制备及性能研究[J]. 化工学报, 2023, 74(7): 3051-3057. |
[8] | 邢美波, 张中天, 景栋梁, 张洪发. 磁调控水基碳纳米管协同多孔材料强化相变储/释能特性[J]. 化工学报, 2023, 74(7): 3093-3102. |
[9] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[10] | 谢诗婷, 刘壮, 谢锐, 巨晓洁, 汪伟, 潘大伟, 褚良银. 聚(N-异丙基丙烯酰胺-共聚-烯丙基硫脲)智能微凝胶的制备及其Hg2+响应性能的研究[J]. 化工学报, 2023, 74(6): 2689-2698. |
[11] | 董茂林, 陈李栋, 黄六莲, 吴伟兵, 戴红旗, 卞辉洋. 酸性助水溶剂制备木质纳米纤维素及功能应用研究进展[J]. 化工学报, 2023, 74(6): 2281-2295. |
[12] | 龙臻, 王谨航, 任俊杰, 何勇, 周雪冰, 梁德青. 离子液体协同PVCap抑制天然气水合物生成实验研究[J]. 化工学报, 2023, 74(6): 2639-2646. |
[13] | 刘远超, 蒋旭浩, 邵钶, 徐一帆, 钟建斌, 李耑. 几何尺寸及缺陷对石墨炔纳米带热输运特性的影响[J]. 化工学报, 2023, 74(6): 2708-2716. |
[14] | 张建华, 陈萌萌, 孙雅雯, 彭永臻. 部分短程硝化同步除磷耦合Anammox实现生活污水高效脱氮除磷[J]. 化工学报, 2023, 74(5): 2147-2156. |
[15] | 范坤阳, 杨景兴, 许海波, 连兴容, 何凤梅, 陈聪慧, 李增耀. 遮光剂掺杂SiO2气凝胶传热的统一格子Boltzmann模型研究[J]. 化工学报, 2023, 74(5): 1974-1981. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 462
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 406
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||