化工学报 ›› 2023, Vol. 74 ›› Issue (7): 3068-3078.DOI: 10.11949/0438-1157.20230383
王杰1,2(), 丘晓琳1,2(), 赵烨1,2, 刘鑫洋1,2, 韩忠强3, 许雍3, 蒋文瀚3
收稿日期:
2023-04-18
修回日期:
2023-06-25
出版日期:
2023-07-05
发布日期:
2023-08-31
通讯作者:
丘晓琳
作者简介:
王杰(1995—),男,硕士研究生,wangjie9535@163.com
基金资助:
Jie WANG1,2(), Xiaolin QIU1,2(), Ye ZHAO1,2, Xinyang LIU1,2, Zhongqiang HAN3, Yong XU3, Wenhan JIANG3
Received:
2023-04-18
Revised:
2023-06-25
Online:
2023-07-05
Published:
2023-08-31
Contact:
Xiaolin QIU
摘要:
食品中的过渡金属离子能够催化氧化脂质导致食品质量下降,因此开展抗氧化包装研究具有重要意义。本研究以覆盖聚丙烯酸(PAA)接枝层的聚(3-羟基丁酸酯-co-3-羟基戊酸酯)(PHBV)薄膜为基材,壳聚糖(CS)和海藻酸钠(SA)为聚电解质,通过层层自组装法制得具备金属螯合能力的PHBV-g-PAA/(CS/SA) n 非释放型抗氧化包装膜,研究聚电解质溶液浓度和pH对活性膜化学性质、微观形貌、活性基团含量以及Cu(Ⅱ)离子螯合能力的影响。结果表明:通过傅里叶变换红外光谱仪与酸性橙7染色法对活性膜进行表征,证明CS和SA聚电解质已成功交替组装到PHBV-g-PAA薄膜表面;通过SEM观察活性膜形貌结构发现,随着聚电解质溶液浓度和pH增大,组装层厚度不断增加,当CS和SA聚电解质溶液浓度为1.0 mg/ml、pH分别为5.0和7.0时,聚电解质组装层较为均匀平整;此时,活性膜表面氨基密度为136.38 nmol/cm2,Cu(Ⅱ) 离子螯合量为124.93 nmol/cm2。该活性膜具备一定的抗氧化能力且高于PHBV及PHBV-g-PAA薄膜,在食品包装领域具有广阔的应用前景。
中图分类号:
王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078.
Jie WANG, Xiaolin QIU, Ye ZHAO, Xinyang LIU, Zhongqiang HAN, Yong XU, Wenhan JIANG. Preparation and properties of polyelectrolyte electrostatic deposition modified PHBV antioxidant films[J]. CIESC Journal, 2023, 74(7): 3068-3078.
样品编号 | CS浓度/(mg/ml) | 溶剂 |
---|---|---|
0.5-3.0 | 0.5 | 稀乙酸(pH=2.8) |
0.5-5.0 | 0.5 | 乙酸盐缓冲液(pH=4.8) |
1.0-3.0 | 1.0 | 稀乙酸(pH=2.8) |
1.0-5.0 | 1.0 | 乙酸盐缓冲液(pH=4.8) |
3.0-3.5 | 3.0 | 稀乙酸(pH=2.8) |
5.0-3.5 | 5.0 | 稀乙酸(pH=2.8) |
5.0-4.5 | 5.0 | 乙酸盐缓冲液(pH=3.8) |
5.0-5.5 | 5.0 | 乙酸盐缓冲液(pH=4.8) |
表1 CS聚电解质溶液制备的工艺参数
Table 1 Process parameters for preparation of CS polyelectrolyte solutions
样品编号 | CS浓度/(mg/ml) | 溶剂 |
---|---|---|
0.5-3.0 | 0.5 | 稀乙酸(pH=2.8) |
0.5-5.0 | 0.5 | 乙酸盐缓冲液(pH=4.8) |
1.0-3.0 | 1.0 | 稀乙酸(pH=2.8) |
1.0-5.0 | 1.0 | 乙酸盐缓冲液(pH=4.8) |
3.0-3.5 | 3.0 | 稀乙酸(pH=2.8) |
5.0-3.5 | 5.0 | 稀乙酸(pH=2.8) |
5.0-4.5 | 5.0 | 乙酸盐缓冲液(pH=3.8) |
5.0-5.5 | 5.0 | 乙酸盐缓冲液(pH=4.8) |
样品编号 | CS溶液pH | SA溶液pH |
---|---|---|
0.5-3.0 | 3.10 ± 0.03 | 7.03 ± 0.03 |
0.5-5.0 | 4.82 ± 0.02 | |
1.0-3.0 | 3.20± 0.02 | 6.90 ± 0.04 |
1.0-5.0 | 4.95 ± 0.02 | |
3.0-3.5 | 3.61 ± 0.03 | 6.49 ± 0.03 |
5.0-3.5 | 3.81 ± 0.01 | 6.33 ± 0.02 |
5.0-4.5 | 4.47 ± 0.02 | |
5.0-5.5 | 5.71 ± 0.03 |
表2 聚电解质溶液pH
Table 2 pH of polyelectrolyte solution
样品编号 | CS溶液pH | SA溶液pH |
---|---|---|
0.5-3.0 | 3.10 ± 0.03 | 7.03 ± 0.03 |
0.5-5.0 | 4.82 ± 0.02 | |
1.0-3.0 | 3.20± 0.02 | 6.90 ± 0.04 |
1.0-5.0 | 4.95 ± 0.02 | |
3.0-3.5 | 3.61 ± 0.03 | 6.49 ± 0.03 |
5.0-3.5 | 3.81 ± 0.01 | 6.33 ± 0.02 |
5.0-4.5 | 4.47 ± 0.02 | |
5.0-5.5 | 5.71 ± 0.03 |
样品编号 | CS溶液透光率/% | SA溶液透光率/% |
---|---|---|
0.5-3.0 | 99.60 ± 0.20 | 99.50 ± 0.30 |
0.5-5.0 | 99.60 ± 0.10 | |
1.0-3.0 | 99.50 ± 0.05 | 99.50 ± 0.10 |
1.0-5.0 | 99.50 ± 0.10 | |
3.0-3.5 | 98.80 ± 0.10 | 98.40 ± 0.30 |
5.0-3.5 | 97.90 ± 0.10 | 97.30 ± 0.20 |
5.0-4.5 | 97.60 ± 0.50 | |
5.0-5.5 | 48.60 ± 0.50 |
表3 聚电解质溶液透光率
Table 3 Light transmission of polyelectrolyte solution
样品编号 | CS溶液透光率/% | SA溶液透光率/% |
---|---|---|
0.5-3.0 | 99.60 ± 0.20 | 99.50 ± 0.30 |
0.5-5.0 | 99.60 ± 0.10 | |
1.0-3.0 | 99.50 ± 0.05 | 99.50 ± 0.10 |
1.0-5.0 | 99.50 ± 0.10 | |
3.0-3.5 | 98.80 ± 0.10 | 98.40 ± 0.30 |
5.0-3.5 | 97.90 ± 0.10 | 97.30 ± 0.20 |
5.0-4.5 | 97.60 ± 0.50 | |
5.0-5.5 | 48.60 ± 0.50 |
图4 不同聚电解质溶液参数制得的PHBV-g-PAA/(CS/SA)15.5活性膜的红外光谱图
Fig.4 FT-IR spectra of PHBV-g-PAA/(CS/SA)15.5 active membranes prepared with different polyelectrolyte solution parameters
样品编号 | 表面氨基密度/(nmol/cm2) | 标准差SD | 相对标准差RSD/% |
---|---|---|---|
PHBV-g-PAA | 8.58 | 0.79 | 9.26 |
0.5—3.0 | 54.75 | 3.13 | 5.73 |
0.5—5.0 | 81.78 | 9.46 | 11.57 |
1.0—3.0 | 120.57 | 14.72 | 12.21 |
1.0—5.0 | 136.38 | 10.85 | 7.95 |
3.0—3.5 | 141.41 | 15.65 | 11.07 |
5.0—3.5 | 253.48 | 37.88 | 14.94 |
5.0—4.5 | 267.84 | 46.17 | 17.24 |
5.0—5.5 | 405.09 | 84.54 | 20.87 |
表4 不同溶液参数制得活性膜的表面氨基含量
Table 4 Surface amino content of active membranes prepared with different solution parameters
样品编号 | 表面氨基密度/(nmol/cm2) | 标准差SD | 相对标准差RSD/% |
---|---|---|---|
PHBV-g-PAA | 8.58 | 0.79 | 9.26 |
0.5—3.0 | 54.75 | 3.13 | 5.73 |
0.5—5.0 | 81.78 | 9.46 | 11.57 |
1.0—3.0 | 120.57 | 14.72 | 12.21 |
1.0—5.0 | 136.38 | 10.85 | 7.95 |
3.0—3.5 | 141.41 | 15.65 | 11.07 |
5.0—3.5 | 253.48 | 37.88 | 14.94 |
5.0—4.5 | 267.84 | 46.17 | 17.24 |
5.0—5.5 | 405.09 | 84.54 | 20.87 |
样品编号 | Cu(Ⅱ)离子螯合量/(nmol/cm2) | 标准差SD |
---|---|---|
PHBV | 0 | — |
PHBV-g-PAA | 112.64 | 6.55 |
0.5-3.0 | 114.56 | 4.80 |
0.5-5.0 | 118.90 | 6.18 |
1.0-3.0 | 116.64 | 5.21 |
1.0-5.0 | 124.93 | 4.80 |
3.0-3.5 | 129.97 | 9.63 |
5.0-3.5 | 155.95 | 11.95 |
5.0-4.5 | 170.14 | 18.73 |
5.0-5.5 | 202.40 | 23.51 |
表5 不同溶液参数制得活性膜的Cu(Ⅱ)离子螯合量
Table 5 Adsorption of Cu(Ⅱ) ions on active membranes prepared with different solution parameters
样品编号 | Cu(Ⅱ)离子螯合量/(nmol/cm2) | 标准差SD |
---|---|---|
PHBV | 0 | — |
PHBV-g-PAA | 112.64 | 6.55 |
0.5-3.0 | 114.56 | 4.80 |
0.5-5.0 | 118.90 | 6.18 |
1.0-3.0 | 116.64 | 5.21 |
1.0-5.0 | 124.93 | 4.80 |
3.0-3.5 | 129.97 | 9.63 |
5.0-3.5 | 155.95 | 11.95 |
5.0-4.5 | 170.14 | 18.73 |
5.0-5.5 | 202.40 | 23.51 |
1 | Uluata S, McClements D J, Decker E A. How the multiple antioxidant properties of ascorbic acid affect lipid oxidation in oil-in-water emulsions[J]. Journal of Agricultural and Food Chemistry, 2015, 63(6): 1819-1824. |
2 | Gómez-Estaca J, López-de-Dicastillo C, Hernández-Muñoz P, et al. Advances in antioxidant active food packaging[J]. Trends in Food Science & Technology, 2014, 35(1): 42-51. |
3 | Zhu P, Lin Z, Goddard J M. Performance of photo-curable metal-chelating active packaging coating in complex food matrices[J]. Food Chemistry, 2019, 286: 154-159. |
4 | Hong S, Kim M J, Park S, et al. Effects of hydrogen-donating or metal-chelating antioxidants on the oxidative stability of organogels made of beeswax and grapeseed oil exposed to light irradiation[J]. Journal of Food Science, 2018, 83(4): 885-891. |
5 | Mastromatteo M, Mastromatteo M, Conte A, et al. Advances in controlled release devices for food packaging applications[J]. Trends in Food Science & Technology, 2010, 21(12): 591-598. |
6 | Domínguez R, Barba F J, Gómez B, et al. Active packaging films with natural antioxidants to be used in meat industry: a review[J]. Food Research International, 2018, 113: 93-101. |
7 | Roman M J, Decker E A, Goddard J M. Retaining oxidative stability of emulsified foods by novel nonmigratory polyphenol coated active packaging[J]. Journal of Agricultural and Food Chemistry, 2016, 64(27): 5574-5582. |
8 | Tian F, Decker E A, Goddard J M. Controlling lipid oxidation of food by active packaging technologies[J]. Food & Function, 2013, 4(5): 669-680. |
9 | Jokar M, Rahman R A, Abdullah L C. Physical and antimicrobial characterization of self assembled silver nanoparticle/chitosan onto low density polyethylene film as active packaging polymer[J]. Journal of Nano Research, 2014, 27: 53-64. |
10 | Arrua D, Strumia M C, Nazareno M A. Immobilization of caffeic acid on a polypropylene film: synthesis and antioxidant properties[J]. Journal of Agricultural and Food Chemistry, 2010, 58(16): 9228-9234. |
11 | Yu Z, Lu L X, Lu L J, et al. Development and antioxidation of metal ion chelating packaging film[J]. Food Packaging and Shelf Life, 2022, 32: 100846. |
12 | 于振, 卢莉璟, 卢立新, 等. 聚丙烯酸表面接枝改性聚丙烯抗氧化膜的制备与性能[J]. 高分子材料科学与工程, 2020, 36(7): 134-139, 148. |
Yu Z, Lu L J, Lu L X, et al. Preparation and characterization of anti-oxidation packaging films based on poly (acrylic acid) grafting polypropylene surface[J]. Polymer Materials Science & Engineering, 2020, 36(7): 134-139, 148. | |
13 | Tian F, Decker E A, Goddard J M. Development of an iron chelating polyethylene film for active packaging applications [J]. Journal of Agricultural and Food Chemistry, 2012, 60(8): 2046-2052. |
14 | Wang C Y, Liu Y, Chen W Q, et al. Critical review of global plastics stock and flow data[J]. Journal of Industrial Ecology, 2021, 25(5): 1300-1317. |
15 | Siracusa V, Rocculi P, Romani S, et al. Biodegradable polymers for food packaging: a review[J]. Trends in Food Science & Technology, 2008, 19(12): 634-643. |
16 | Piontek W. The circular plastics economy and the instruments to implement it[J]. Economics and Environment, 2019, 70: 18-33. |
17 | Chen M, Li R, Runge T, et al. Degradable polymeric package from whole cell wall biomass[J]. Materials Today Sustainability, 2019, 3/4: 100008. |
18 | Guo C Y, Guo H G. Progress in the degradability of biodegradable film materials for packaging[J]. Membranes, 2022, 12(5): 500. |
19 | Chen J X, Wu D F, Tam K C, et al. Effect of surface modification of cellulose nanocrystal on nonisothermal crystallization of poly(β-hydroxybutyrate) composites[J]. Carbohydrate Polymers, 2017, 157: 1821-1829. |
20 | López-Maldonado E A, Zavala García O G, Escobedo K C, et al. Evaluation of the chelating performance of biopolyelectrolyte green complexes (NIBPEGCs) for wastewater treatment from the metal finishing industry[J]. Journal of Hazardous Materials, 2017, 335: 18-27. |
21 | Herskovitz J E, Goddard J M. Reactive extrusion of nonmigratory antioxidant poly(lactic acid) packaging[J]. Journal of Agricultural and Food Chemistry, 2020, 68(7): 2164-2173. |
22 | Wang Y J, Ke Y, Ren L, et al. Photografting polymerization of polyacrylamide on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) films ( Ⅱ ) : Wettability and crystallization behaviors of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-graft-polyacrylamide films[J]. Journal of Applied Polymer Science, 2008, 107(6): 3765-3772. |
23 | Zhao X X, Liu H R, Hu Y B, et al. A novel gelatin-AgNPs coating preparing method for fabrication of antibacterial and no inflammation inducible coatings on PHBV[J]. Reactive and Functional Polymers, 2016, 107: 54-59. |
24 | Ali K A, Hassan M E, Elnashar M M M. Development of functionalized carrageenan, chitosan and alginate as polymeric chelating ligands for water softening[J]. International Journal of Environmental Science and Technology, 2017, 14(9): 2009-2014. |
25 | Lee K Y, Mooney D J. Alginate: properties and biomedical applications[J]. Progress in Polymer Science, 2012, 37(1): 106-126. |
26 | Wang H X, Qian J, Ding F Y. Emerging chitosan-based films for food packaging applications[J]. Journal of Agricultural and Food Chemistry, 2018, 66(2): 395-413. |
27 | Vartiainen J, Laine C, Willberg-Keyriläinen P, et al. Biobased mineral-oil barrier-coated food packaging films[J]. Journal of Applied Polymer Science, 2017, 134(9): 44586. |
28 | Vartiainen J, Shen Y F, Kaljunen T, et al. Bio-based multilayer barrier films by extrusion, dispersion coating and atomic layer deposition[J]. Journal of Applied Polymer Science, 2016, 133(2): 42260. |
29 | Li H, Peng L C. Antimicrobial and antioxidant surface modification of cellulose fibers using layer-by-layer deposition of chitosan and lignosulfonates [J]. Carbohydrate Polymers, 2015, 124: 35-42. |
30 | Gu C H, Wang J J, Yu Y, et al. Biodegradable multilayer barrier films based on alginate/polyethyleneimine and biaxially oriented poly(lactic acid)[J]. Carbohydrate Polymers, 2013, 92(2): 1579-1585. |
31 | Schoeler B, Kumaraswamy G, Caruso F. Investigation of the influence of polyelectrolyte charge density on the growth of multilayer thin films prepared by the layer-by-layer technique[J]. Macromolecules, 2002, 35(3): 889-897. |
32 | Caridade S G, Monge C, Gilde F, et al. Free-standing polyelectrolyte membranes made of chitosan and alginate[J]. Biomacromolecules, 2013, 14(5): 1653-1660. |
33 | Zhu Y X, Xuan H Y, Ren J Y, et al. Self-healing multilayer polyelectrolyte composite film with chitosan and poly(acrylic acid)[J]. Soft Matter, 2015, 11(43): 8452-8459. |
34 | 王杰, 丘晓琳, 赵烨, 等. 接枝聚丙烯酸改性聚(3-羟基丁酸 酯-co-3-羟基戊酸酯)抗氧化膜的制备与性能[J]. 复合材料学报, 2023, 40(6): 1-10. |
Wang J, Qiu X L, Zhao Y, et al. Preparation and properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) antioxidant film modified by graft polyacrylic acid[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 1-10. | |
35 | Yuan W Y, Weng G M, Lipton J, et al. Weak polyelectrolyte-based multilayers via layer-by-layer assembly: approaches, properties, and applications[J]. Advances in Colloid and Interface Science, 2020, 282: 102200. |
36 | Kiechel M A, Schauer C L. Non-covalent crosslinkers for electrospun chitosan fibers[J]. Carbohydrate Polymers, 2013, 95(1): 123-133. |
37 | Ma Q Y, Du L, Yang Y, et al. Rheology of film-forming solutions and physical properties of Tara gum film reinforced with polyvinyl alcohol (PVA)[J]. Food Hydrocolloids, 2017, 63: 677-684. |
38 | Gao Q, Lei M, Zhou K M, et al. Preparation of a microfibrillated cellulose/chitosan/polypyrrole film for active food packaging [J]. Progress in Organic Coatings, 2020, 149: 105907. |
39 | Lin Z S, Goddard J. Photo-curable metal-chelating coatings offer a scalable approach to production of antioxidant active packaging[J]. Journal of Food Science, 2018, 83(2): 367-376. |
40 | Zheng X Y, Zheng H L, Xiong Z K, et al. Novel anionic polyacrylamide-modify-chitosan magnetic composite nanoparticles with excellent adsorption capacity for cationic dyes and pH-independent adsorption capability for metal ions [J]. Chemical Engineering Journal, 2020, 392: 123706. |
[1] | 胡兴枝, 张皓焱, 庄境坤, 范雨晴, 张开银, 向军. 嵌有超小CeO2纳米粒子的碳纳米纤维的制备及其吸波性能[J]. 化工学报, 2023, 74(8): 3584-3596. |
[2] | 张澳, 罗英武. 低模量、高弹性、高剥离强度丙烯酸酯压敏胶[J]. 化工学报, 2023, 74(7): 3079-3092. |
[3] | 刘杰, 吴立盛, 李锦锦, 罗正鸿, 周寅宁. 含乙烯基胺酯键聚醚类可逆交联聚合物的制备及性能研究[J]. 化工学报, 2023, 74(7): 3051-3057. |
[4] | 蔡斌, 张效林, 罗倩, 党江涛, 左栗源, 刘欣梅. 导电薄膜材料的研究进展[J]. 化工学报, 2023, 74(6): 2308-2321. |
[5] | 龙臻, 王谨航, 任俊杰, 何勇, 周雪冰, 梁德青. 离子液体协同PVCap抑制天然气水合物生成实验研究[J]. 化工学报, 2023, 74(6): 2639-2646. |
[6] | 崔张宁, 胡紫璇, 吴雷, 周军, 叶干, 刘田田, 张秋利, 宋永辉. 可降解纤维素基材料的耐水性能研究进展[J]. 化工学报, 2023, 74(6): 2296-2307. |
[7] | 杨琴, 秦传鉴, 李明梓, 杨文晶, 赵卫杰, 刘虎. 用于柔性传感的双形状记忆MXene基水凝胶的制备及性能研究[J]. 化工学报, 2023, 74(6): 2699-2707. |
[8] | 李振, 张博, 王丽伟. PEG-EG固-固相变材料的制备和性能研究[J]. 化工学报, 2023, 74(6): 2680-2688. |
[9] | 代佳琳, 毕唯东, 雍玉梅, 陈文强, 莫晗旸, 孙兵, 杨超. 热物性对混合型CPCMs固液相变特性影响模拟研究[J]. 化工学报, 2023, 74(5): 1914-1927. |
[10] | 张建华, 陈萌萌, 孙雅雯, 彭永臻. 部分短程硝化同步除磷耦合Anammox实现生活污水高效脱氮除磷[J]. 化工学报, 2023, 74(5): 2147-2156. |
[11] | 陈韶云, 徐东, 陈龙, 张禹, 张远方, 尤庆亮, 胡成龙, 陈建. 单层聚苯胺微球阵列结构的制备及其吸附性能[J]. 化工学报, 2023, 74(5): 2228-2238. |
[12] | 罗来明, 张劲, 郭志斌, 王海宁, 卢善富, 相艳. 1~5 kW高温聚合物电解质膜燃料电池堆的理论模拟与组装测试[J]. 化工学报, 2023, 74(4): 1724-1734. |
[13] | 龙臻, 王谨航, 何勇, 梁德青. 离子液体与动力学抑制剂作用下混合气体水合物生成特性研究[J]. 化工学报, 2023, 74(4): 1703-1711. |
[14] | 吴学红, 栾林林, 陈亚南, 赵敏, 吕财, 刘勇. 可降解柔性相变薄膜的制备及其热性能[J]. 化工学报, 2023, 74(4): 1818-1826. |
[15] | 吕阳光, 左培培, 杨正金, 徐铜文. 三嗪框架聚合物膜用于有机纳滤甲醇/正己烷分离[J]. 化工学报, 2023, 74(4): 1598-1606. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 227
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 136
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||