化工学报 ›› 2023, Vol. 74 ›› Issue (7): 3093-3102.DOI: 10.11949/0438-1157.20230359
收稿日期:
2023-04-10
修回日期:
2023-07-05
出版日期:
2023-07-05
发布日期:
2023-08-31
通讯作者:
邢美波
作者简介:
邢美波(1987—),女,博士,副教授,xingmeibo@bucea.edu.cn
基金资助:
Meibo XING(), Zhongtian ZHANG, Dongliang JING, Hongfa ZHANG
Received:
2023-04-10
Revised:
2023-07-05
Online:
2023-07-05
Published:
2023-08-31
Contact:
Meibo XING
摘要:
采用多孔材料复合水基磁性多壁碳纳米管(multi-walled carbon nanotube, MWCNT)强化凝固/融化相变过程。将Fe3O4包覆于MWCNT侧壁对MWCNT进行磁化改性,并实验研究了多孔材料特性与磁场作用下水基磁性MWCNT相变工质凝固/融化特性的协同效应。结果表明,与纯水相比,添加膨胀石墨、泡沫镍、泡沫铜等多孔材料使相变材料的热循环时间分别缩短了30.9%、15.6%、36.9%。相变材料储/释冷量随泡沫铜孔隙率的增大、孔密度的减小而上升。在75 mT磁场作用下,与其他规格的泡沫铜相比,复合孔隙率95%,孔密度5 PPI的泡沫铜使浓度为0.08%(质量)的水基磁性MWCNT相变工质具有最高的储/释冷量和平均速率。与纯水相比,过冷度降低了74.4%,热循环时间缩短了38.9%,平均速率升高了50.3%,储/释冷量却仅降低4.7%和4.9%。
中图分类号:
邢美波, 张中天, 景栋梁, 张洪发. 磁调控水基碳纳米管协同多孔材料强化相变储/释能特性[J]. 化工学报, 2023, 74(7): 3093-3102.
Meibo XING, Zhongtian ZHANG, Dongliang JING, Hongfa ZHANG. Enhanced phase change energy storage/release properties by combining porous materials and water-based carbon nanotube under magnetic regulation[J]. CIESC Journal, 2023, 74(7): 3093-3102.
种类 | 实物图 | 规格参数 | |||
---|---|---|---|---|---|
孔隙率/ % | 孔密度/PPI | 质量/g | 体积/cm3 | ||
泡沫铜 | 90 | 5 | 11.2 | 2.8 | |
90 | 10 | 11.6 | 3.1 | ||
90 | 20 | 14.4 | 3.6 | ||
95 | 5 | 10.4 | 2.3 | ||
95 | 10 | 10.7 | 2.5 | ||
95 | 20 | 13.1 | 2.9 | ||
泡沫镍 | 90 | 10 | 11.4 | 3.1 | |
膨胀石墨 | 规格:50目,膨胀倍数200~300, 含碳量99% |
表1 多孔材料规格
Table 1 Specification of porous materials
种类 | 实物图 | 规格参数 | |||
---|---|---|---|---|---|
孔隙率/ % | 孔密度/PPI | 质量/g | 体积/cm3 | ||
泡沫铜 | 90 | 5 | 11.2 | 2.8 | |
90 | 10 | 11.6 | 3.1 | ||
90 | 20 | 14.4 | 3.6 | ||
95 | 5 | 10.4 | 2.3 | ||
95 | 10 | 10.7 | 2.5 | ||
95 | 20 | 13.1 | 2.9 | ||
泡沫镍 | 90 | 10 | 11.4 | 3.1 | |
膨胀石墨 | 规格:50目,膨胀倍数200~300, 含碳量99% |
质量分数/% | 液相/固相热物性 | ||
---|---|---|---|
密度/(kg/m3) | 比热容/(J/(kg·K)) | 相变潜热/(kJ/kg) | |
0(纯水) | 1000/920 | 4200/2100 | 335 |
0.08 | 1000.6/920.6 | 4197.4/2098.9 | 334.9 |
表2 水基磁性碳纳米管的热物性参数
Table 2 Thermophysical parameters of magnetic nanofluids
质量分数/% | 液相/固相热物性 | ||
---|---|---|---|
密度/(kg/m3) | 比热容/(J/(kg·K)) | 相变潜热/(kJ/kg) | |
0(纯水) | 1000/920 | 4200/2100 | 335 |
0.08 | 1000.6/920.6 | 4197.4/2098.9 | 334.9 |
1 | Semeraro C, Aljaghoub H, Ali Abdelkareem M, et al. Digital twin in battery energy storage systems: trends and gaps detection through association rule mining[J]. Energy, 2023, 273: 127086. |
2 | Zhang S, Yan Y Y. Energy, exergy and economic analysis of ceramic foam-enhanced molten salt as phase change material for medium- and high-temperature thermal energy storage[J]. Energy, 2023, 262: 125462. |
3 | Lin Y X, Alva G, Fang G Y. Review on thermal performances and applications of thermal energy storage systems with inorganic phase change materials[J]. Energy, 2018, 165: 685-708. |
4 | Abdulateef A M, Mat S, Abdulateef J, et al. Geometric and design parameters of fins employed for enhancing thermal energy storage systems: a review[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 1620-1635. |
5 | 钱宇, 陈耀熙, 史晓斐, 等. 太阳能波动特性大数据分析与风光互补耦合制氢系统集成[J]. 化工学报, 2022, 73(5): 2101-2110. |
Qian Y, Chen Y X, Shi X F, et al. Big data analysis of solar energy fluctuation characteristics and integration of wind-photovoltaic to hydrogen system[J]. CIESC Journal, 2022, 73(5): 2101-2110. | |
6 | Tan K M, Babu T S, Ramachandaramurthy V K, et al. Empowering smart grid: a comprehensive review of energy storage technology and application with renewable energy integration[J]. Journal of Energy Storage, 2021, 39: 102591. |
7 | Jouhara H, Żabnieńska-Góra A, Khordehgah N, et al. Latent thermal energy storage technologies and applications: a review[J]. International Journal of Thermofluids, 2020, 5/6: 100039. |
8 | 刘庆祎, 肖桐, 孙文杰, 等. 纳米二氧化钛强化的相变储能研究进展[J]. 化工学报, 2022, 73(5): 1863-1882. |
Liu Q Y, Xiao T, Sun W J, et al. Progress in the research of phase change energy storage enhanced by titanium dioxide nanoparticles[J]. CIESC Journal, 2022, 73(5): 1863-1882. | |
9 | Gao Y T, Zhang X L, Xu X F, et al. Application and research progress of phase change energy storage in new energy utilization[J]. Journal of Molecular Liquids, 2021, 343: 117554. |
10 | Saha S, Ruslan A R M, Monjur Morshed A K M, et al. Global prospects and challenges of latent heat thermal energy storage: a review[J]. Clean Technologies and Environmental Policy, 2021, 23: 531-559. |
11 | Hassan F, Jamil F, Hussain A, et al. Recent advancements in latent heat phase change materials and their applications for thermal energy storage and buildings: a state of the art review[J]. Sustainable Energy Technologies and Assessments, 2022, 49: 101646. |
12 | Mahdi J M, Lohrasbi S, Nsofor E C. Hybrid heat transfer enhancement for latent-heat thermal energy storage systems: a review[J]. International Journal of Heat and Mass Transfer, 2019, 137: 630-649. |
13 | Rashidi S, Kashefi M H, Kim K C, et al. Potentials of porous materials for energy management in heat exchangers—a comprehensive review[J]. Applied Energy, 2019, 243: 206-232. |
14 | Sheikholeslami M, Mahian O. Enhancement of PCM solidification using inorganic nanoparticles and an external magnetic field with application in energy storage systems[J]. Journal of Cleaner Production, 2019, 215: 963-977. |
15 | 张正国, 燕志鹏, 方晓明, 等. 纳米技术在强化传热中应用的研究进展[J]. 化工进展, 2011, 30(1): 34-39. |
Zhang Z G, Yan Z P, Fang X M, et al. Research development of applications of nanotechnology in heat transfer enhancement[J]. Chemical Industry and Engineering Progress, 2011, 30(1): 34-39. | |
16 | Kalapala L, Devanuri J K. Influence of operational and design parameters on the performance of a PCM based heat exchanger for thermal energy storage—a review[J]. Journal of Energy Storage, 2018, 20: 497-519. |
17 | Dinesh B V S, Bhattacharya A. Comparison of energy absorption characteristics of PCM-metal foam systems with different pore size distributions[J]. Journal of Energy Storage, 2020, 28: 101190. |
18 | 梁恒, 刘益才, 汪谦旭, 等. 开孔泡沫金属复合材料有效热导率的研究进展[J]. 化工学报, 2021, 72(S1): 7-20. |
Liang H, Liu Y C, Wang Q X, et al. Research progress of effective thermal conductivity of open-cell foam metal composites[J]. CIESC Journal, 2021, 72(S1): 7-20. | |
19 | 张浩, 王姣, 马挺, 等. 超重条件下泡沫石墨-石蜡相变传热实验研究[J]. 化工学报, 2021, 72(9): 4523-4530. |
Zhang H, Wang J, Ma T, et al. Experimental investigation on phase change heat transfer of paraffin composited with porous graphite under supergravity[J]. CIESC Journal, 2021, 72(9): 4523-4530. | |
20 | Zhou D, Zhao C Y. Experimental investigations on heat transfer in phase change materials (PCMs) embedded in porous materials[J]. Applied Thermal Engineering, 2011, 31(5): 970-977. |
21 | Xiao X, Zhang P, Li M. Preparation and thermal characterization of paraffin/metal foam composite phase change material[J]. Applied Energy, 2013, 112: 1357-1366. |
22 | Tao Y B, You Y, He Y L. Lattice Boltzmann simulation on phase change heat transfer in metal foams/paraffin composite phase change material[J]. Applied Thermal Engineering, 2016, 93: 476-485. |
23 | Zhang P, Xiao X, Meng Z N, et al. Heat transfer characteristics of a molten-salt thermal energy storage unit with and without heat transfer enhancement[J]. Applied Energy, 2015, 137: 758-772. |
24 | Mahdi J M, Nsofor E C. Solidification enhancement in a triplex-tube latent heat energy storage system using nanoparticles-metal foam combination[J]. Energy, 2017, 126: 501-512. |
25 | Hossain R, Mahmud S, Dutta A, et al. Energy storage system based on nanoparticle-enhanced phase change material inside porous medium[J]. International Journal of Thermal Sciences, 2015, 91: 49-58. |
26 | 李丹. 干细胞示踪剂及磁场对神经干细胞调控作用研究[D]. 南京: 东南大学, 2019. |
Li D. The study of tracer and magnetic field on neural stem cells[D]. Nanjing: Southeast University, 2019. | |
27 | Mikhalchan A, Vilatela J J. A perspective on high-performance CNT fibres for structural composites[J]. Carbon, 2019, 150: 191-215. |
28 | Miao T T, Liu Z Y, Chen D S, et al. Regulatable thermal conductivity and excellent mass transport of water-filled carbon nanotube as capillary wicks[J]. International Journal of Heat and Mass Transfer, 2022, 195: 123211. |
29 | Tasis D, Tagmatarchis N, Bianco A, et al. Chemistry of carbon nanotubes[J]. Chemical Reviews, 2006, 106(3): 1105-1136. |
30 | Xing M B, Jing D L, Zhang H F, et al. Improving the solidification performance of deionized water using magnetically oriented CNT by Fe3O4 nanoparticles as magnetic agents[J]. International Journal of Thermal Sciences, 2023, 188: 108215. |
31 | Xing M B, Jing D L, Chen H B, et al. Ice thermal energy storage enhancement using aligned carbon nanotubes under external magnetic field[J]. Journal of Energy Storage, 2022, 56: 105931. |
32 | Zhu M S, Wang Z L, Zhang H, et al. Experimental investigation of the comprehensive heat transfer performance of PCMs filled with CMF in a heat storage device[J]. International Journal of Heat and Mass Transfer, 2022, 188: 122582. |
[1] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[2] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[3] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[4] | 刘明栖, 吴延鹏. 导光管直径和长度对传热影响的模拟分析[J]. 化工学报, 2023, 74(S1): 206-212. |
[5] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[6] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[7] | 吴延鹏, 刘乾隆, 田东民, 陈凤君. 相变材料与热管耦合的电子器件热管理研究进展[J]. 化工学报, 2023, 74(S1): 25-31. |
[8] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[9] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[10] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[11] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[12] | 刘远超, 关斌, 钟建斌, 徐一帆, 蒋旭浩, 李耑. 单层XSe2(X=Zr/Hf)的热电输运特性研究[J]. 化工学报, 2023, 74(9): 3968-3978. |
[13] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[14] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[15] | 陈天华, 刘兆轩, 韩群, 张程宾, 李文明. 喷雾冷却换热强化研究进展及影响因素[J]. 化工学报, 2023, 74(8): 3149-3170. |
阅读次数 | ||||||||||||||||||||||
全文 470
|
|
|||||||||||||||||||||
摘要 |
|
|||||||||||||||||||||