化工学报 ›› 2024, Vol. 75 ›› Issue (1): 1-19.DOI: 10.11949/0438-1157.20230655
余留洋1(), 刘书博1, 贾晟哲1, 马航2, 万邦隆2, 苏琦雯2, 王静康1, 汤伟伟1(
), 贺豫娟2(
), 龚俊波1(
)
收稿日期:
2023-06-30
修回日期:
2023-08-03
出版日期:
2024-01-25
发布日期:
2024-03-11
通讯作者:
汤伟伟,贺豫娟,龚俊波
作者简介:
余留洋(2001—),女,硕士研究生,lyyu@tju.edu.cn
基金资助:
Liuyang YU1(), Shubo LIU1, Shengzhe JIA1, Hang MA2, Banglong WAN2, Qiwen SU2, Jingkang WANG1, Weiwei TANG1(
), Yujuan HE2(
), Junbo GONG1(
)
Received:
2023-06-30
Revised:
2023-08-03
Online:
2024-01-25
Published:
2024-03-11
Contact:
Weiwei TANG, Yujuan HE, Junbo GONG
摘要:
电子级磷酸作为一种超高纯化学试剂,主要用于微电子行业中芯片的清洗与蚀刻,其纯度会显著影响电子元器件的成品率、电性能以及可靠性。然而,极低杂质(10-9水平)的高端电子级磷酸,对于化工分离纯化技术的要求极高。从电子级磷酸在芯片清洗与蚀刻方面的应用出发,梳理了电子级磷酸产品的主要国内外标准,概述了杂质离子的主要分析监测方法。重点综述了电子磷酸的制备和纯化精制方法,特别是结晶法在磷酸深度净化方面的显著优势,最后,对电子级磷酸的净化技术发展做出了前景展望。
中图分类号:
余留洋, 刘书博, 贾晟哲, 马航, 万邦隆, 苏琦雯, 王静康, 汤伟伟, 贺豫娟, 龚俊波. 电子级磷酸的纯化精制技术发展现状与研究进展[J]. 化工学报, 2024, 75(1): 1-19.
Liuyang YU, Shubo LIU, Shengzhe JIA, Hang MA, Banglong WAN, Qiwen SU, Jingkang WANG, Weiwei TANG, Yujuan HE, Junbo GONG. Current status and research progress of purification technology of electronic grade phosphoric acid[J]. CIESC Journal, 2024, 75(1): 1-19.
级别 | 单项金属杂质 | 控制微粒粒径 | 颗粒数 | IC集成度 |
---|---|---|---|---|
SEMI-C1、C2 | ≤100 ppb | ≥1 μm | ≤25个/ml | 64 K |
SEMI-C7 | ≤10 ppb | ≥0.5 μm | ≤25个/ml | 4 M |
SEMI-C8 | ≤1 ppb | ≥0.5 μm | ≤5个/ml | 256 M |
SEMI-C12 | ≤0.1 ppb | ≥0.2 μm | 协定 | 16 G |
表1 国际半导体设备与材料组织标准(SEMI)对于湿电子化学品的纯度要求[10]
Table 1 The purity of wet electronic chemicals in Semiconductor Equipment Materials International(SEMI)[10]
级别 | 单项金属杂质 | 控制微粒粒径 | 颗粒数 | IC集成度 |
---|---|---|---|---|
SEMI-C1、C2 | ≤100 ppb | ≥1 μm | ≤25个/ml | 64 K |
SEMI-C7 | ≤10 ppb | ≥0.5 μm | ≤25个/ml | 4 M |
SEMI-C8 | ≤1 ppb | ≥0.5 μm | ≤5个/ml | 256 M |
SEMI-C12 | ≤0.1 ppb | ≥0.2 μm | 协定 | 16 G |
指标 | SEMI指标 | ||
---|---|---|---|
Grade 1(G1) | Grade 2(G2) | Grade 3(G3) | |
chloride(Cl-)/ppm | 1 | 1 | 1 |
nitrate(NO | 5 | 5 | 5 |
sulfate(SO | — | 12 | 12 |
aluminum(Al)/ppb | 500 | 300 | 50 |
antimony(Sb)/ppb | 10000 | 3500 | 1000 |
arsenic(As)/ppb | 50 | 50 | 50 |
barium(Ba)/ppb | — | — | 50 |
cadmium(Cd)/ppb | — | 450 | 50 |
calcium(Ca)/ppb | 1500 | 1100 | 150 |
chromium(Cr)/ppb | 200 | 200 | 50 |
cobalt(Co)/ppb | 50 | 50 | 50 |
copper(Cu)/ppb | 50 | 50 | 50 |
gold(Au)/ppb | 300 | 150 | 50 |
iron(Fe)/ppb | 2000 | 700 | 100 |
lead(Pb)/ppb | 300 | 300 | 50 |
lithium(Li)/ppb | 100 | 100 | 10 |
magnesium(Mg)/ppb | 200 | 200 | 50 |
manganese(Mn)/ppb | 100 | 100 | 50 |
nickel(Ni)/ppb | 200 | 200 | 50 |
potassium(K)/ppb | 1500 | 450 | 150 |
sodium(Na)/ppb | 2500 | 500 | 250 |
strontium(Sr)/ppb | 100 | 100 | 10 |
zinc(Zn)/ppb | 2000 | 400 | 50 |
titanium (Ti)/ppb | 300 | 300 | 50 |
表2 国际半导体设备与材料组织标准(SEMI)对于电子级磷酸的标准[11-12]
Table 2 Standard for electronic grade phosphoric acid in Semiconductor Equipment Materials International(SEMI)[11-12]
指标 | SEMI指标 | ||
---|---|---|---|
Grade 1(G1) | Grade 2(G2) | Grade 3(G3) | |
chloride(Cl-)/ppm | 1 | 1 | 1 |
nitrate(NO | 5 | 5 | 5 |
sulfate(SO | — | 12 | 12 |
aluminum(Al)/ppb | 500 | 300 | 50 |
antimony(Sb)/ppb | 10000 | 3500 | 1000 |
arsenic(As)/ppb | 50 | 50 | 50 |
barium(Ba)/ppb | — | — | 50 |
cadmium(Cd)/ppb | — | 450 | 50 |
calcium(Ca)/ppb | 1500 | 1100 | 150 |
chromium(Cr)/ppb | 200 | 200 | 50 |
cobalt(Co)/ppb | 50 | 50 | 50 |
copper(Cu)/ppb | 50 | 50 | 50 |
gold(Au)/ppb | 300 | 150 | 50 |
iron(Fe)/ppb | 2000 | 700 | 100 |
lead(Pb)/ppb | 300 | 300 | 50 |
lithium(Li)/ppb | 100 | 100 | 10 |
magnesium(Mg)/ppb | 200 | 200 | 50 |
manganese(Mn)/ppb | 100 | 100 | 50 |
nickel(Ni)/ppb | 200 | 200 | 50 |
potassium(K)/ppb | 1500 | 450 | 150 |
sodium(Na)/ppb | 2500 | 500 | 250 |
strontium(Sr)/ppb | 100 | 100 | 10 |
zinc(Zn)/ppb | 2000 | 400 | 50 |
titanium (Ti)/ppb | 300 | 300 | 50 |
项目 | 指标 | |
---|---|---|
E1 | E2 | |
易氧化物(以H3PO4计)/%(质量分数) | ≤0.005 | ≤0.001 |
硝酸盐(NO | ≤5 | ≤0.5 |
硫酸盐(SO | ≤10 | ≤5 |
氯化物(Cl-)/ppm | ≤1 | ≤0.5 |
铝(Al)/ppb | ≤200 | ≤50 |
硼(B)/ppb | — | ≤50 |
锑(Sb)/ppb | ≤3000 | ≤300 |
砷(As)/ppb | ≤100 | ≤20 |
钡(Ba)/ppb | ≤100 | ≤20 |
镉(Cd)/ppb | ≤100 | ≤20 |
钙(Ca)/ppb | ≤1000 | ≤50 |
铬(Cr)/ppb | ≤100 | ≤20 |
钴(Co)/ppb | ≤100 | ≤20 |
铜(Cu)/ppb | ≤50 | ≤20 |
镓(Ga)/ppb | ≤100 | ≤10 |
金(Au)/ppb | ≤100 | ≤10 |
铁(Fe)/ppb | ≤300 | ≤50 |
铅(Pb)/ppb | ≤100 | ≤20 |
锂(Li)/ppb | ≤100 | ≤10 |
镁(Mg)/ppb | ≤100 | ≤20 |
锰(Mn)/ppb | ≤100 | ≤20 |
镍(Ni)/ppb | ≤100 | ≤20 |
钾(K)/ppb | ≤100 | ≤20 |
银(Ag)/ppb | ≤100 | ≤20 |
钠(Na)/ppb | ≤500 | ≤50 |
锡(Sn)/ppb | — | ≤10 |
锶(Sr)/ppb | ≤100 | ≤20 |
钛(Ti)/ppb | ≤100 | ≤50 |
锌(Zn)/ppb | ≤100 | ≤50 |
表3 GB/T 28159—2011《电子级磷酸》质量标准
Table 3 Quality standard for Electronic Grade Phosphoric Acid in GB/T 28159—2011
项目 | 指标 | |
---|---|---|
E1 | E2 | |
易氧化物(以H3PO4计)/%(质量分数) | ≤0.005 | ≤0.001 |
硝酸盐(NO | ≤5 | ≤0.5 |
硫酸盐(SO | ≤10 | ≤5 |
氯化物(Cl-)/ppm | ≤1 | ≤0.5 |
铝(Al)/ppb | ≤200 | ≤50 |
硼(B)/ppb | — | ≤50 |
锑(Sb)/ppb | ≤3000 | ≤300 |
砷(As)/ppb | ≤100 | ≤20 |
钡(Ba)/ppb | ≤100 | ≤20 |
镉(Cd)/ppb | ≤100 | ≤20 |
钙(Ca)/ppb | ≤1000 | ≤50 |
铬(Cr)/ppb | ≤100 | ≤20 |
钴(Co)/ppb | ≤100 | ≤20 |
铜(Cu)/ppb | ≤50 | ≤20 |
镓(Ga)/ppb | ≤100 | ≤10 |
金(Au)/ppb | ≤100 | ≤10 |
铁(Fe)/ppb | ≤300 | ≤50 |
铅(Pb)/ppb | ≤100 | ≤20 |
锂(Li)/ppb | ≤100 | ≤10 |
镁(Mg)/ppb | ≤100 | ≤20 |
锰(Mn)/ppb | ≤100 | ≤20 |
镍(Ni)/ppb | ≤100 | ≤20 |
钾(K)/ppb | ≤100 | ≤20 |
银(Ag)/ppb | ≤100 | ≤20 |
钠(Na)/ppb | ≤500 | ≤50 |
锡(Sn)/ppb | — | ≤10 |
锶(Sr)/ppb | ≤100 | ≤20 |
钛(Ti)/ppb | ≤100 | ≤50 |
锌(Zn)/ppb | ≤100 | ≤50 |
项目 | ICP-OES | ICP-MS | GFAAS |
---|---|---|---|
检出限 | 绝大部分元素很好 | 绝大部分元素非常杰出 | 部分元素非常杰出 |
样品分析能力 | 5~30个元素/(样品·min) | 2~6 min/样品中所有元素 | 4 min/(样品·元素) |
线性动态范围 | 约105 | 约108 | 约102 |
固体溶解量(最大可容忍量) | 2%~25% | 0.1%~0.4% | >20% |
可测元素数 | >73 | >75 | >50 |
样品用量 | 多 | 少 | 很少 |
半定量分析 | 能 | 能 | 不能 |
同位素分析 | 不能 | 能 | 不能 |
日常操作 | 容易 | 容易 | 容易 |
方法实验开发 | 需专业技术 | 需专业技术 | 需专业技术 |
无人控制操作 | 能 | 能 | 能 |
易燃气体 | 无 | 无 | 无 |
操作费用 | 高 | 高 | 中等 |
基本费用 | 高 | 很高 | 中等/高 |
表4 ICP-MS、ICP-OES和GFAAS的详细比较[13]
Table 4 The detailed comparison of ICP-MS, ICP-OES and GFAAS[13]
项目 | ICP-OES | ICP-MS | GFAAS |
---|---|---|---|
检出限 | 绝大部分元素很好 | 绝大部分元素非常杰出 | 部分元素非常杰出 |
样品分析能力 | 5~30个元素/(样品·min) | 2~6 min/样品中所有元素 | 4 min/(样品·元素) |
线性动态范围 | 约105 | 约108 | 约102 |
固体溶解量(最大可容忍量) | 2%~25% | 0.1%~0.4% | >20% |
可测元素数 | >73 | >75 | >50 |
样品用量 | 多 | 少 | 很少 |
半定量分析 | 能 | 能 | 不能 |
同位素分析 | 不能 | 能 | 不能 |
日常操作 | 容易 | 容易 | 容易 |
方法实验开发 | 需专业技术 | 需专业技术 | 需专业技术 |
无人控制操作 | 能 | 能 | 能 |
易燃气体 | 无 | 无 | 无 |
操作费用 | 高 | 高 | 中等 |
基本费用 | 高 | 很高 | 中等/高 |
工艺路线 | 原料及动力 | 消耗量 |
---|---|---|
热法磷酸工艺 | 磷矿 | 3.0~3.4 t |
黏土 | 0.2~0.3 t | |
焦炭 | 0.5~0.6 t | |
工艺用水 | 40 m3 | |
冷却用水 | 120 m3 | |
电力 | 5700~6000 kW·h | |
湿法磷酸工艺 | 磷矿 | 2.6~3.5 t |
硫酸 | 2.4~2.9 t | |
工艺用水 | 3.6~52 m3 | |
冷却用水 | 100~150 m3 | |
电力 | 120~180 kW·h | |
蒸汽 | 0.2~2.4 t |
表5 热法和湿法路线生产1吨工业磷酸所需原料量及动力消耗量对比[3]
Table 5 Comparison of raw materials and power required to produce one ton of industrial phosphoric acid in thermal and wet routes[3]
工艺路线 | 原料及动力 | 消耗量 |
---|---|---|
热法磷酸工艺 | 磷矿 | 3.0~3.4 t |
黏土 | 0.2~0.3 t | |
焦炭 | 0.5~0.6 t | |
工艺用水 | 40 m3 | |
冷却用水 | 120 m3 | |
电力 | 5700~6000 kW·h | |
湿法磷酸工艺 | 磷矿 | 2.6~3.5 t |
硫酸 | 2.4~2.9 t | |
工艺用水 | 3.6~52 m3 | |
冷却用水 | 100~150 m3 | |
电力 | 120~180 kW·h | |
蒸汽 | 0.2~2.4 t |
图6 Marathon C树脂对U(Ⅳ)、Mn(Ⅱ)、Cu(Ⅱ)、Zn(Ⅱ)和Cd(Ⅱ)吸附效率和吸附容量的影响[30]
Fig.6 Effects of Marathon C resin on adsorption efficiency and capacity of U(Ⅳ), Mn(Ⅱ), Cu(Ⅱ), Zn(Ⅱ) and Cd(Ⅱ)[30]
表6 溶剂萃取法去除磷酸中杂质离子的对比
Table 6 Comparison of removal of impurity ions from phosphoric acid by solvent extraction
特征 | 悬浮熔融结晶 | 层熔融结晶 |
---|---|---|
结晶温度 | 根据相图确定 | 根据相图确定 |
生长速率 | 10-8~10-7 m/s | 10-7~10-5 m/s |
结晶过程热传递 | 通过熔体 | 通过晶体层 |
晶体生长模式 | 晶体以颗粒状的形式生长 | 晶体以晶体层的形式粘贴在结晶器内壁 |
固液分离 | 难 | 易 |
转动装置 | 有 | 无 |
表7 悬浮熔融与层熔融结晶过程的差异[75]
Table 7 Difference between suspension melt crystallization and layer melt crystallization[75]
特征 | 悬浮熔融结晶 | 层熔融结晶 |
---|---|---|
结晶温度 | 根据相图确定 | 根据相图确定 |
生长速率 | 10-8~10-7 m/s | 10-7~10-5 m/s |
结晶过程热传递 | 通过熔体 | 通过晶体层 |
晶体生长模式 | 晶体以颗粒状的形式生长 | 晶体以晶体层的形式粘贴在结晶器内壁 |
固液分离 | 难 | 易 |
转动装置 | 有 | 无 |
表8 磷酸的主要纯化精制方法对比
Table 8 Comparison of phosphoric acid purification techniques
1 | Tang H. Purification of phosphoric acid by melt crystallization[D]. Saxony-Anhalt: Martin Luther University, 2016. |
2 | Wang B, Luo K B. Preparation and research advance of electronic grade phosphoric acid[J]. Advanced Materials Research, 2014, 881/882/883: 70-73. |
3 | Bahsaine K, El Mehdi Mekhzoum M, Benzeid H, et al. Recent progress in heavy metals extraction from phosphoric acid: a short review[J]. Journal of Industrial and Engineering Chemistry, 2022, 115: 120-134. |
4 | Qin K D, Li Y C. Mechanisms of particle removal from silicon wafer surface in wet chemical cleaning process[J]. Journal of Colloid and Interface Science, 2003, 261(2): 569-574. |
5 | Mouche L, Tardif F, Derrien J. Particle deposition on silicon wafers during wet cleaning processes[J]. Journal of the Electrochemical Society, 1994, 141(6): 1684-1691. |
6 | Kranz C, Wyczanowski S, Baumann U, et al. Industrial cleaning sequences for Al2O3-passivated PERC solar cells[J]. Energy Procedia, 2014, 55: 211-218. |
7 | Sreejith K P, Sharma A K, Basu P K, et al. Etching methods for texturing industrial multi-crystalline silicon wafers: a comprehensive review[J]. Solar Energy Materials and Solar Cells, 2022, 238: 111531. |
8 | Seo D, Bae J S, Oh E, et al. Selective wet etching of Si3N4/SiO2 in phosphoric acid with the addition of fluoride and silicic compounds[J]. Microelectronic Engineering, 2014, 118: 66-71. |
9 | Benrabah S, Legallais M, Besson P, et al. H3PO4-based wet chemical etching for recovery of dry-etched GaN surfaces[J]. Applied Surface Science, 2022, 582: 152309. |
10 | 张大洲, 龙辉, 卢文新, 等. 电子级磷酸研究现状及发展趋势分析[J]. 化肥设计, 2022, 60(4): 1-4, 20. |
Zhang D Z, Long H, Lu W X, et al. Analysis of existing researches and development trends of electronic-grade phosphoric acid[J]. Chemical Fertilizer Design, 2022, 60(4): 1-4, 20. | |
11 | 范相虎, 周聪, 袁军, 等. 电子级磷酸研发现状及芯片级磷酸展望[J]. 粘接, 2019, 40(5): 61-64. |
Fan X H, Zhou C, Yuan J, et al. Research progress on electronic-grade phosphoric acid and prospects of microchip-grade phosphoric acid[J]. Adhesion, 2019, 40(5): 61-64. | |
12 | Kawabata K, Kishi Y, Thomas R. The benefits of dynamic reaction cell ICP-MS technology to determine ultratrace metal contamination levels in high-purity phosphoric and sulfuric acid[J]. Spectroscopy, 2003, 18(1): 16-31. |
13 | Balaram V. Current and emerging analytical techniques for geochemical and geochronological studies[J]. Geological Journal, 2021, 56(5): 2300-2359. |
14 | European Fertilizer Manufacturers Association. Booklet No. 4 of 8: production of phosphoric acid[Z]. Best Available Techniques for Pollution Prevention and Control in the European Fertilizer Industry, 2000. |
15 | Azaroual M, Kervevan C, Lassin A, et al. Thermo-kinetic and physico-chemical modeling of processes generating scaling problems in phosphoric acid and fertilizers production industries[J]. Procedia Engineering, 2012, 46: 68-75. |
16 | Zan C, Shi L, Song Y Z, et al. Evaluation method for thermal processing of phosphoric acid with waste heat recovery[J]. Energy, 2006, 31(14): 2791-2804. |
17 | Zheng G Y, Xia J P, Chen Z J. Overview of current phosphoric acid production processes and a new idea of kiln method[J]. Mini-Reviews in Organic Chemistry, 2021, 18(3): 328-338. |
18 | Williams T A, Thomson A. Manufacture of phosphoric acid: US3984525[P]. 1976-10-05. |
19 | Liu Q, Liu W Z, Lv L, et al. Study on reactions of gaseous P2O5 with Ca3(PO4)2 and SiO2 during a rotary kiln process for phosphoric acid production[J]. Chinese Journal of Chemical Engineering, 2018, 26(4): 795-805. |
20 | Wu P, Lv L, Tang S Y, et al. The fouling properties of SiO2-CaO-P2O5 system in high-temperature rotary kiln phosphoric acid process[J]. Chinese Journal of Chemical Engineering, 2020, 28(7): 1824-1831. |
21 | Halmemies S, Gröndahl S, Arffman M, et al. Vacuum extraction based response equipment for recovery of fresh fuel spills from soil[J]. Journal of Hazardous Materials, 2003, 97(1/2/3): 127-143. |
22 | Osada I, Imamura K, Iso A. High purity phosphorus prodn. useful as semi-conductor material-by heat decomposition of crude phosphine: JP87-022924[P]. 1987. |
23 | Tang X J, Xue J J, Xing C. Catalytic decomposition of toxic phosphine gas on the developed nickel ferrite nanocrystals supported by Halloysite nanotubes[J]. Applied Surface Science, 2020, 530: 147264. |
24 | Ye C W, Li J. Wet process phosphoric acid purification by solvent extraction using n-octanol and tributylphosphate mixtures[J]. Journal of Chemical Technology & Biotechnology, 2013, 88(9): 1715-1720. |
25 | Al-Fariss T F, Özbelge H Ö, El-Shall H S H. On the modelling of phosphate rock acidulation process[J]. Journal of King Saud University - Engineering Sciences, 1993, 5(2): 243-255. |
26 | El-Shall H, Abadel-All E A, Moudgil B M. Effect of surfactants on phosphogypsum crystallization and filtration during wet-process phosphoric acid production[J]. Separation Science and Technology, 2000, 35(3): 395-410. |
27 | Bouchkira I, Latifi A M, Khamar L, et al. Modeling and multi-objective optimization of the digestion tank of an industrial process for manufacturing phosphoric acid by wet process[J]. Computers & Chemical Engineering, 2022, 156: 107536. |
28 | Peng B X, Ma Z, Zhu Y B, et al. Release and recovery of fluorine and iodine in the production and concentration of wet-process phosphoric acid from phosphate rock[J]. Minerals Engineering, 2022, 188: 107843. |
29 | Bolívar J P, Pérez-Moreno J P, Mas J L, et al. External radiation assessment in a wet phosphoric acid production plant[J]. Applied Radiation and Isotopes, 2009, 67(10): 1930-1938. |
30 | Taha M H. Sorption of U (Ⅵ), Mn (Ⅱ), Cu (Ⅱ), Zn (Ⅱ), and Cd (Ⅱ) from multi-component phosphoric acid solutions using Marathon C resin[J]. Environmental Science and Pollution Research, 2021, 28(10): 12475-12489. |
31 | He B B, Zhu Y Z, Xie D L, et al. Removal of Al3+ and Mg2+ ions in wet-process phosphoric acid via the formation of aluminofluoride complexes[J]. Environmental Technology, 2023, 44(7): 936-947. |
32 | Zhang B Y, Yang L, Wang H L, et al. Experiment and modeling of static layer melt crystallization in a crystallizer with an inner cooling tube[J]. Journal of Crystal Growth, 2022, 593: 126739. |
33 | Azimi A, Azari A, Rezakazemi M, et al. Removal of heavy metals from industrial wastewaters: a review[J]. ChemBioEng Reviews, 2017, 4(1): 37-59. |
34 | Taha M H. Solid-liquid extraction of uranium from industrial phosphoric acid using macroporous cation exchange resins: MTC1600H, MTS9500, and MTS9570[J]. Separation Science and Technology, 2021, 56(9): 1562-1578. |
35 | El Didamony A M, Youssef W M, Abdou A A. Modification of Amberlite XAD-2 resin for U(Ⅵ) adsorption from Egyptian crude phosphoric acid[J]. Egyptian Journal of Petroleum, 2019, 28(1): 71-76. |
36 | Reyes L H, Saucedo Medina I, Navarro Mendoza R, et al. Extraction of cadmium from phosphoric acid using resins impregnated with organophosphorus extractants[J]. Industrial & Engineering Chemistry Research, 2001, 40(5): 1422-1433. |
37 | Lloyd Philip J D. Principles of industrial solvent extraction[M]//Solvent Extraction Principles and Practice, Revised and Expanded. Boca Raton: CRC Press, 2004: 350-377. |
38 | Awwad N S, El-Nadi Y A, Hamed M M. Successive processes for purification and extraction of phosphoric acid produced by wet process[J]. Chemical Engineering and Processing: Process Intensification, 2013, 74: 69-74. |
39 | Hannachi A, Habaili D, Chtara C, et al. Purification of wet process phosphoric acid by solvent extraction with TBP and MIBK mixtures[J]. Separation and Purification Technology, 2007, 55(2): 212-216. |
40 | Radhika S, Kumar B N, Kantam M L, et al. Liquid-liquid extraction and separation possibilities of heavy and light rare-earths from phosphoric acid solutions with acidic organophosphorus reagents[J]. Separation and Purification Technology, 2010, 75(3): 295-302. |
41 | Xu Y, Meng D P, Li H Y, et al. Mechanism analysis for separation of cyclohexane and tert-butanol system via ionic liquids as extractants and process optimization[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(24): 19984-19992. |
42 | Yang X C, Li H X, Cao C M, et al. Experimental and correlated liquid-liquid equilibrium data for water+1, 6-hexanediol+1-pentanol/3-methyl-1-butanol/2-methyl-2-butanol at different temperatures[J]. The Journal of Chemical Thermodynamics, 2021, 154: 106341. |
43 | Hu Z J, Zhang T, Lv L, et al. Extraction performance and mechanism of TBP in the separation of Fe3+ from wet-processing phosphoric acid[J]. Separation and Purification Technology, 2021, 272: 118822. |
44 | Wang B Q, Zhou Q L, Chen C, et al. Separation of phosphoric acid and magnesium from wet process phosphoric acid by solvent extraction[J]. Canadian Metallurgical Quarterly, 2023, 62(4): 791-802. |
45 | Benali K, Benhida R, Khaless K. A novel and complete process for iodine extraction and recovery from industrial wet-process phosphoric acid based on chemical oxidation and solvent extraction[J]. Process Safety and Environmental Protection, 2023, 176: 332-345. |
46 | He S Q, Chen Q L, Ao X Q, et al. A method for the removal of trace iodine from wet-process phosphoric acid[J]. Hydrometallurgy, 2020, 191: 105208. |
47 | Zuo Y H, Chen Q L, Li C Q, et al. Removal of fluorine from wet-process phosphoric acid using a solvent extraction technique with tributyl phosphate and silicon oil[J]. ACS Omega, 2019, 4(7): 11593-11601. |
48 | Xia Q, Zhang J P, Hong X F, et al. Ultrasound-assisted micro-channel extraction of magnesium from wet-process phosphoric acid[J]. Solvent Extraction Research and Development, Japan, 2022, 29(1): 9-19. |
49 | Orabi Ahmed H, Mohamed Basma T, Elyan Salah S. Simultaneous separation of rare earths and valuable actinoid element from wet process phosphoric acid using N-propylpropan-1-amine extractant[J]. Hydrometallurgy, 2021, 205: 105749. |
50 | Pavón S, Haneklaus N, Meerbach K, et al. Iron (Ⅲ) removal and rare earth element recovery from a synthetic wet phosphoric acid solution using solvent extraction[J]. Minerals Engineering, 2022, 182: 107569. |
51 | Berkalou K, Nounah A, Khamar M, et al. Removal of cadmium from phosphoric acid by the liquid-liquid extraction process using synthetic agent C11H18N2O[J]. International Journal of Advanced Research in Engineering and Technology, 2020, 11(6): 28-35. |
52 | Touati M, Benna-Zayani M, Kbir-Ariguib N, et al. Extraction of cadmium (Ⅱ) from phosphoric acid media using the di(2-ethylhexyl)dithiophosphoric acid (D2EHDTPA): feasibility of a continuous extraction-stripping process[J]. Hydrometallurgy, 2009, 95(1/2): 135-140. |
53 | Pohl A. Removal of heavy metal ions from water and wastewaters by sulfur-containing precipitation agents[J]. Water, Air, & Soil Pollution, 2020, 231(10): 503. |
54 | Sreekumar N, Udayan A, Srinivasan S. Algal bioremediation of heavy metals[M]//Removal of Toxic Pollutants Through Microbiological and Tertiary Treatment. Amsterdam: Elsevier, 2020: 279-307. |
55 | Kouzbour S, Gourich B, Gros F, et al. Purification of industrial wet phosphoric acid solution by sulfide precipitation in batch and continuous modes: performance analysis, kinetic modeling, and precipitate characterization[J]. Journal of Cleaner Production, 2022, 380: 135072. |
56 | Abdel-Ghafar H M, Abdel-Aal E A, Ibrahim M A M, et al. Purification of high iron wet-process phosphoric acid via oxalate precipitation method[J]. Hydrometallurgy, 2019, 184: 1-8. |
57 | Forouzesh M, Fatehifar E, Khoshbouy R, et al. Experimental investigation of iron removal from wet phosphoric acid through chemical precipitation process[J]. Chemical Engineering Research and Design, 2023, 189: 308-318. |
58 | Obotey Ezugbe E, Rathilal S. Membrane technologies in wastewater treatment: a review[J]. Membranes, 2020, 10(5): 89. |
59 | Sandu T, Chiriac A L, Tsyntsarski B, et al. Advanced hybrid membranes for efficient nickel retention from simulated wastewater[J]. Polymer International, 2021, 70(6): 866-876. |
60 | Duan X L, Wang C W, Wang T L, et al. Comb-shaped anion exchange membrane to enhance phosphoric acid purification by electro-electrodialysis[J]. Journal of Membrane Science, 2019, 573: 64-72. |
61 | Khaless K, Chanouri H, Amal S, et al. Wet process phosphoric acid purification using functionalized organic nanofiltration membrane[J]. Separations, 2022, 9(4): 100. |
62 | Xu S S, He R R, Dong C J, et al. Acid stable layer-by-layer nanofiltration membranes for phosphoric acid purification[J]. Journal of Membrane Science, 2022, 644: 120090. |
63 | 肖立华. 冷却结晶法制电子级磷酸的研究[D]. 昆明: 昆明理工大学, 2008. |
Xiao L H. Study on preparation of electronic grade phosphoric acid by cooling crystallization[D]. Kunming: Kunming University of Science and Technology, 2008. | |
64 | 李天祥, 解田, 刘飞, 等. 一种电子级磷酸的生产方法: 1850590A[P]. 2006-10-25. |
Li T X, Xie T, Liu F, et al. Method for producing electron-level phosphoric acid: 1850590A[P]. 2006-10-25. | |
65 | Jia S Z, Jing B, Hong W, et al. Purification of 2, 4-dinitrochlorobenzene using layer melt crystallization: model and experiment[J]. Separation and Purification Technology, 2021, 270: 118806. |
66 | Jiang X B, Wang J K, Hou B H, et al. Progress in the application of fractal porous media theory to property analysis and process simulation in melt crystallization[J]. Industrial & Engineering Chemistry Research, 2013, 52(45): 15685-15701. |
67 | Xiao W L, Huang B G, Li Y L, et al. Experimental investigation of continuous multistage countercurrent crystallizer for separation p-nitrochlorobenzene and o-nitrochlorobenzene[J]. Separation and Purification Technology, 2021, 267: 118648. |
68 | Chen L A, Li J, Matsuoka M. Experimental and theoretical investigation of the purification process of organic materials in a continuous inclined column crystallizer[J]. Industrial & Engineering Chemistry Research, 2006, 45(8): 2818-2823. |
69 | Mostefa M, Muhr H, Biget A, et al. Intensification of falling film melt crystallization process through micro and milli-structured surfaces[J]. Chemical Engineering and Processing: Process Intensification, 2015, 90: 16-23. |
70 | Shen L X, Dang M Y. Recent advances in melt crystallization, towards process intensification and technique development[J]. CrystEngComm, 2022, 24(10): 1823-1839. |
71 | Kim K J, Ulrich J. Theoretical and experimental studies on the behaviour of liquid impurity in solid layer melt crystallizations[J]. Journal of Physics D: Applied Physics, 2001, 34(9): 1308-1317. |
72 | Lu D P, Liu Y, He G H, et al. Fractal analysis for crystal layer structure and impurity distribution research of melt crystallization[J]. Fractals, 2015, 23(1): 1540002. |
73 | Ding S P, Huang X, Yin Q X, et al. Static layer melt crystallization: effects of impurities on the growth behaviors of crystal layers[J]. Separation and Purification Technology, 2021, 279: 119764. |
74 | Jia S Z, Yu L Y, Gao Z G, et al. Performance and analysis of key factors on the design of melt crystallization-based separation process[J]. AIChE Journal, 2023, 69(8): e18117. |
75 | 姜晓滨. 熔融结晶法制备高纯磷酸过程研究[D]. 天津: 天津大学, 2012. |
Jiang X B. Study on the process of preparing high purity phosphoric acid by melt crystallization[D]. Tianjin: Tianjin University, 2012. | |
76 | Jiang X B, Xiao W, He G H. Falling film melt crystallization (Ⅲ): Model development, separation effect compared to static melt crystallization and process optimization[J]. Chemical Engineering Science, 2014, 117: 198-209. |
77 | 王静康, 姜晓滨, 侯宝红, 等. 液膜结晶制备电子级磷酸的方法: 101774555A[P]. 2010-07-14. |
Wang J K, Jiang X B, Hou B H, et al. Method for preparing electronic grade phosphoric acid through liquid membrane crystallization: 101774555A[P]. 2010-07-14. | |
78 | 林军, 吴小海, 苏杰文, 等. 一种U型管结晶生产电子级磷酸的方法: 103754847A[P]. 2014-04-30. |
Lin J, Wu X H, Su J W, et al. Method for producing electronic grade phosphoric acid by U tube crystallization: 103754847A[P]. 2014-04-30. | |
79 | 林军, 吴小海, 苏杰文, 等. U型管静态多级熔融结晶法制备电子级磷酸: 103754848A[P]. 2014-04-30. |
Lin J, Wu X H, Su J W, et al. Method for preparing electronic-grade phosphoric acid by U-shaped pipe static multistage melt crystallization: 103754848A[P]. 2014-04-30. | |
80 | 林军, 吴小海, 苏杰文, 等. 一种电子级磷酸热风加热结晶装置: 103771373B[P]. 2015-10-28. |
Lin J, Wu X H, Su J W, et al. Electronic-grade phosphoric acid hot air heating crystallizing device: 103771373B[P]. 2015-10-28. | |
81 | 林军, 吴小海, 苏杰文. 一种列管结晶生产电子级磷酸的装置: 203781851U[P]. 2016-03-02. |
Lin J, Wu X H, Su J W. Device for producing electronic grade phosphoric acid through tube crystallization: 203781851U[P]. 2016-03-02. | |
82 | 程景才, 张碧玉, 杨超, 等. 一种制备电子级磷酸的熔融结晶器: 216571627U[P]. 2022-05-24. |
Cheng J C, Zhang B Y, Yang C, et al. Melt crystallizer for preparing electronic grade phosphoric acid: 216571627U[P]. 2022-05-24. | |
83 | Chen A M, Zhu J W, Chen K, et al. Melt suspension crystallization for purification of phosphoric acid[J]. Asia-Pacific Journal of Chemical Engineering, 2013, 8(3): 354-361. |
84 | Wang B M, Li J, Qi Y B, et al. Phosphoric acid purification by suspension melt crystallization: parametric study of the crystallization and sweating steps[J]. Crystal Research and Technology, 2012, 47(10): 1113-1120. |
85 | 林军, 吴小海, 苏杰文, 等. 一种高纯度电子级磷酸的生产方法: 104030261A[P]. 2014-09-10. |
Lin J, Wu X H, Su J W, et al. A production method of high-purity electronic grade phosphoric acid: 104030261A[P]. 2014-09-10. | |
86 | 陈爱梅. 熔融悬浮结晶法提纯湿法磷酸[D]. 上海: 华东理工大学, 2012. |
Chen A M. Purification of wet-process phosphoric acid by melt suspension crystallization[D]. Shanghai: East China University of Science and Technology, 2012. | |
87 | 钟剑锋. 熔融结晶法净化磷酸过程研究[D]. 上海: 华东理工大学, 2015. |
Zhong J F. Study on purification process of phosphoric acid by melt crystallization[D]. Shanghai: East China University of Science and Technology, 2015. | |
88 | Shinwari K J. Emerging technologies for the recovery of bioactive compounds from saffron species[M]//Saffron. Amsterdam: Elsevier, 2021: 143-182. |
89 | Crini G, Lichtfouse E. Advantages and disadvantages of techniques used for wastewater treatment[J]. Environmental Chemistry Letters, 2019, 17(1): 145-155. |
90 | Ma Y, Hu Z P, Wang M, et al. A simple method to study hemihydrate phosphoric acid crystals growth process[J]. Crystal Research and Technology, 2016, 51(5): 337-343. |
91 | Tsushima I, Maeda K, Yamamoto T, et al. Continuous crystallization of phosphoric acid using suspension crystallizer: effect of operating conditions on purity of crystals[J]. Crystal Research and Technology, 2022, 57(1): 2100102. |
[1] | 孟祥军, 花莹曦, 张长金, 张弛, 杨林睿, 杨若昔, 刘鉴漪, 许春建. 6N电子级氘气的制备与纯化技术研究[J]. 化工学报, 2024, 75(1): 377-390. |
[2] | 于宏鑫, 邵双全. 水结晶过程的分子动力学模拟分析[J]. 化工学报, 2023, 74(S1): 250-258. |
[3] | 傅予, 刘兴翀, 王瀚雨, 李海敏, 倪亚飞, 邹文静, 雷月, 彭永姗. F3EACl修饰层对钙钛矿太阳能电池性能提升的研究[J]. 化工学报, 2023, 74(8): 3554-3563. |
[4] | 张澳, 罗英武. 低模量、高弹性、高剥离强度丙烯酸酯压敏胶[J]. 化工学报, 2023, 74(7): 3079-3092. |
[5] | 蔡斌, 张效林, 罗倩, 党江涛, 左栗源, 刘欣梅. 导电薄膜材料的研究进展[J]. 化工学报, 2023, 74(6): 2308-2321. |
[6] | 苏晓丹, 朱干宇, 李会泉, 郑光明, 孟子衡, 李防, 杨云瑞, 习本军, 崔玉. 湿法磷酸半水工艺考察与石膏结晶过程研究[J]. 化工学报, 2023, 74(4): 1805-1817. |
[7] | 苏伟怡, 丁佳慧, 李春利, 王洪海, 姜艳军. 酶促反应结晶研究进展[J]. 化工学报, 2023, 74(2): 617-629. |
[8] | 陈毓明, 历伟, 严翔, 王靖岱, 阳永荣. 初生态聚乙烯聚集态结构调控研究进展[J]. 化工学报, 2023, 74(2): 487-499. |
[9] | 周璇, 李孟亚, 孙杰, 岑振凯, 吕强三, 周立山, 王海涛, 韩丹丹, 龚俊波. 添加剂对氨基酸晶体生长的影响[J]. 化工学报, 2023, 74(2): 500-510. |
[10] | 张博, 李壮壮, 赵丹, 钱翠珠, 王宝, 潘鹏举. 聚丙烯流延膜的制备与拉伸过程中的结构演变[J]. 化工学报, 2023, 74(12): 4997-5005. |
[11] | 周光正, 王学重, 周浩宇. 溶酶菌蛋白质结晶的多目标优化与模拟[J]. 化工学报, 2023, 74(10): 4191-4200. |
[12] | 蔡楚玥, 方晓明, 张正国, 凌子夜. CNTs阵列增强石蜡/硅橡胶复合相变垫片的散热性能研究[J]. 化工学报, 2022, 73(7): 2874-2884. |
[13] | 孙国鑫, 苟萌萱, 周诚, 常佩, 贺高红, 姜晓滨. 高浓度Na+//NO |
[14] | 乃学瑛, 吴鹏, 程远, 肖剑飞, 刘鑫, 董亚萍. 水热生长碱式硫酸镁纳米线结晶动力学研究[J]. 化工学报, 2022, 73(7): 3038-3044. |
[15] | 王江丽, 薛敏, 赵承科, 岳凤霞. 木质素分级对其应用性能的影响[J]. 化工学报, 2022, 73(5): 1894-1907. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||