化工学报 ›› 2024, Vol. 75 ›› Issue (1): 312-321.DOI: 10.11949/0438-1157.20230677
收稿日期:
2023-07-03
修回日期:
2023-09-26
出版日期:
2024-01-25
发布日期:
2024-03-11
通讯作者:
李新刚
作者简介:
张家琳(1999—),女,硕士研究生,zjl_3010@tju.edu.cn
基金资助:
Jialin ZHANG(), Dawei XU, Yue GAO, Xingang LI(
)
Received:
2023-07-03
Revised:
2023-09-26
Online:
2024-01-25
Published:
2024-03-11
Contact:
Xingang LI
摘要:
通过在泡沫镍基底上预沉积CeO2晶核,采用水热法成功合成出泡沫镍负载CeO2改性CuO催化剂(xCeO2-CuO/NF),同未加入CeO2的催化剂(CuO/NF)相比,其碳烟氧化活性显著提高。随着催化剂中CeO2含量的增加,Ce/Cu质量比不断增大直至趋于平稳,催化剂的催化活性随之提高直至基本不变。其中,6.5CeO2-CuO/NF的催化活性最好,T50(383℃)最低,比CuO/NF催化剂低32℃。研究结果表明,预沉积CeO2晶核一方面可促进CuO微纳结构的生长,提高碳烟颗粒与催化剂活性位点的接触效率;另一方面,xCeO2-CuO/NF中形成的Cu x Ce1-x O固溶体增强了铜铈之间的相互作用,通过Ce3+/Ce4+和Cu2+/Cu+之间氧化还原耦合循环促使活性氧物种的生成,并提升了其本征活性,从而极大地提高了其催化碳烟氧化的能力。
中图分类号:
张家琳, 徐大为, 高越, 李新刚. 泡沫镍负载CeO2改性CuO催化剂的碳烟燃烧性能研究[J]. 化工学报, 2024, 75(1): 312-321.
Jialin ZHANG, Dawei XU, Yue GAO, Xingang LI. Performance of soot combustion over CeO2 modified CuO catalysts supported on nickel foams[J]. CIESC Journal, 2024, 75(1): 312-321.
催化剂 | T10/℃ | T50/℃ | T90/℃ | S | ||||
---|---|---|---|---|---|---|---|---|
O2 | NO+O2 | O2 | NO+O2 | O2 | NO+O2 | O2 | NO+O2 | |
blank | 471 | 466 | 545 | 541 | 588 | 583 | 51 | 56 |
NF | 460 | 418 | 527 | 464 | 494 | 573 | 约100 | 约100 |
CuO/NF | 423 | 380 | 482 | 416 | 447 | 519 | 约100 | 约100 |
3.5CeO2-CuO/NF | 389 | 361 | 453 | 404 | 433 | 485 | 约100 | 约100 |
6.3CeO2-CuO/NF | 370 | 343 | 429 | 387 | 418 | 470 | 约100 | 约100 |
6.5CeO2-CuO/NF | 362 | 335 | 423 | 383 | 416 | 469 | 约100 | 约100 |
表1 催化剂在10%(体积分数) O2/N2和600 μl·L-1 NO/10%(体积分数)O2/N2反应气氛下碳烟燃烧反应中的T10、T50、T90和CO2选择性
Table 1 T10, T50, T90 and CO2 selectivity of the as-prepared catalysts during soot combustion in 10% (vol) O2/N2 and 600 μl·L-1 NO/10% (vol) O2/N2
催化剂 | T10/℃ | T50/℃ | T90/℃ | S | ||||
---|---|---|---|---|---|---|---|---|
O2 | NO+O2 | O2 | NO+O2 | O2 | NO+O2 | O2 | NO+O2 | |
blank | 471 | 466 | 545 | 541 | 588 | 583 | 51 | 56 |
NF | 460 | 418 | 527 | 464 | 494 | 573 | 约100 | 约100 |
CuO/NF | 423 | 380 | 482 | 416 | 447 | 519 | 约100 | 约100 |
3.5CeO2-CuO/NF | 389 | 361 | 453 | 404 | 433 | 485 | 约100 | 约100 |
6.3CeO2-CuO/NF | 370 | 343 | 429 | 387 | 418 | 470 | 约100 | 约100 |
6.5CeO2-CuO/NF | 362 | 335 | 423 | 383 | 416 | 469 | 约100 | 约100 |
图10 催化剂的O 1s (a)和Cu 2p (b)的XPS谱图、Cu LMM谱图(c)及Ce 3d的XPS谱图(d)
Fig.10 XPS O 1s (a) and Cu 2p (b) spectra, XPS Cu LMM spectra (c) and XPS Ce 3d spectra (d) of catalysts
催化剂 | Oads/(Olat+Oads)① | Cu2+/(Cu2++Cu+)① | Ce3+/(Ce3++Ce4+)① | Ce/Cu① | Ce/Cu② |
---|---|---|---|---|---|
CuO/NF | 0.32 | >99.5% | — | — | — |
3.5CeO2-CuO/NF | 0.39 | 0.93 | 0.34 | 5.3 | 3.5 |
6.3CeO2-CuO/NF | 0.42 | 0.85 | 0.42 | 10.1 | 5.9 |
6.5CeO2-CuO/NF | 0.43 | 0.84 | 0.43 | 10.2 | 6.2 |
表2 XPS和ICP测定的O、Cu和Ce元素的表面化学价态和含量
Table 2 Surface chemical state and content of the O, Cu and Ce elements determined by XPS and ICP
催化剂 | Oads/(Olat+Oads)① | Cu2+/(Cu2++Cu+)① | Ce3+/(Ce3++Ce4+)① | Ce/Cu① | Ce/Cu② |
---|---|---|---|---|---|
CuO/NF | 0.32 | >99.5% | — | — | — |
3.5CeO2-CuO/NF | 0.39 | 0.93 | 0.34 | 5.3 | 3.5 |
6.3CeO2-CuO/NF | 0.42 | 0.85 | 0.42 | 10.1 | 5.9 |
6.5CeO2-CuO/NF | 0.43 | 0.84 | 0.43 | 10.2 | 6.2 |
催化剂 | r/ (10-7 mol·s-1·g-1) | N/ (10-4 mol·g-1) | TOF/ (10-3 s-1) |
---|---|---|---|
CuO/NF | 5.2 | 3.6 | 1.4 |
3.5CeO2-CuO/NF | 6.0 | 3.8 | 1.7 |
6.3CeO2-CuO/NF | 8.6 | 4.9 | 1.8 |
6.5CeO2-CuO/NF | 8.8 | 5.0 | 1.8 |
表3 催化剂的反应速率(r)、活性氧数量(N)数量和TOF值
Table 3 Reaction rate (r), active oxygen amount(N), and TOF of the catalysts
催化剂 | r/ (10-7 mol·s-1·g-1) | N/ (10-4 mol·g-1) | TOF/ (10-3 s-1) |
---|---|---|---|
CuO/NF | 5.2 | 3.6 | 1.4 |
3.5CeO2-CuO/NF | 6.0 | 3.8 | 1.7 |
6.3CeO2-CuO/NF | 8.6 | 4.9 | 1.8 |
6.5CeO2-CuO/NF | 8.8 | 5.0 | 1.8 |
1 | Lin X T, Li S J, He H, et al. Evolution of oxygen vacancies in MnO x -CeO2 mixed oxides for soot oxidation[J]. Applied Catalysis B: Environmental, 2018, 223: 91-102. |
2 | Soltani S, Andersson R, Andersson B. The effect of exhaust gas composition on the kinetics of soot oxidation and diesel particulate filter regeneration[J]. Fuel, 2018, 220: 453-463. |
3 | Wang M, Zhang Y, Yu Y B, et al. Cesium as a dual function promoter in Co/Ce-Sn catalyst for soot oxidation[J]. Applied Catalysis B: Environmental, 2021, 285: 119850. |
4 | 邓湘玲, 叶松寿, 曹志凯, 等. Ag/Ce0.75Zr0.25O2催化剂中Ag的负载量对碳烟燃烧活性的影响[J]. 化工学报, 2017, 68(8): 3064-3070. |
Deng X L, Ye S S, Cao Z K, et al. Effect of Ag loading on soot oxidation for Ag/ Ce0.75Zr0.25O2 catalysts[J]. CIESC Journal, 2017, 68(8): 3064-3070. | |
5 | Andana T, Piumetti M, Bensaid S, et al. CuO nanoparticles supported by ceria for NO x -assisted soot oxidation: insight into catalytic activity and sintering[J]. Applied Catalysis B: Environmental, 2017, 216: 41-58. |
6 | 刘晓刚, 魏波, 史芸菲, 等. La1- x Li x MnO3钙钛矿催化剂同时消除NO和碳烟催化性能[J]. 化工学报, 2020, 71(3): 1053-1059. |
Liu X G, Wei B, Shi Y F, et al. Simultaneous removal of NO and soot over La1- x Li x MnO3 perovskite catalysts[J]. CIESC Journal, 2020, 71(3): 1053-1059. | |
7 | 梁红, 叶代启, 林维明, 等. Sn催化剂对柴油车排气颗粒去除效果[J]. 化工学报, 2004, 55(11): 1869-1873. |
Liang H, Ye D Q, Lin W M, et al. Sn containing catalyst for particulate removal from diesel exhaust gases[J]. Journal of Chemical Industry and Engineering (China), 2004, 55(11): 1869-1873. | |
8 | 李艳, 曹进辉, 刘原一, 等. 生物质固定床热解碳烟结构特征及反应活性[J]. 化工学报, 2022, 73(12): 5564-5571. |
Li Y, Cao J H, Liu Y Y, et al. Characterization and reactivity of soot from biomass pyrolysis in a fixed bed reactor[J]. CIESC Journal, 2022, 73(12): 5564-5571. | |
9 | Cao C M, Li X G, Zha Y Q, et al. Crossed ferric oxide nanosheets supported cobalt oxide on 3-dimensional macroporous Ni foam substrate used for diesel soot elimination under self-capture contact mode[J]. Nanoscale, 2016, 8(11): 5857-5864. |
10 | Raj S, Hattori M, Ozawa M. Ag-doped ZrO2 nanoparticles prepared by hydrothermal method for efficient diesel soot oxidation[J]. Materials Letters, 2019, 234: 205-207. |
11 | Xia Y, Lao J Z, Ye J R, et al. Role of two-electron defects on the CeO2 surface in CO preferential oxidation over CuO/CeO2 catalysts[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(22): 18421-18433. |
12 | Xiong J, Wei Y C, Zhang Y L, et al. Facile synthesis of 3D ordered macro-mesoporous Ce1- x Zr x O2 catalysts with enhanced catalytic activity for soot oxidation[J]. Catalysis Today, 2020, 355: 587-595. |
13 | Cui B, Li Y, Li S R, et al. Bi-doped ceria as a highly efficient catalyst for soot combustion: improved mobility of lattice oxygen in Ce x Bi1- x O y catalysts[J]. Energy & Fuels, 2020, 34(8): 9932-9939. |
14 | Haneda M, Towata A. Catalytic performance of supported Ag nano-particles prepared by liquid phase chemical reduction for soot oxidation[J]. Catalysis Today, 2015, 242: 351-356. |
15 | Mane R, Kim H, Han K, et al. Pivotal role of MnO x physicochemical structure in soot oxidation activity[J]. Fuel, 2023, 346: 128287. |
16 | Hinot K, Burtscher H, Weber A P, et al. The effect of the contact between platinum and soot particles on the catalytic oxidation of soot deposits on a diesel particle filter[J]. Applied Catalysis B: Environmental, 2007, 71(3/4): 271-278. |
17 | Lee K, Kosaka H, Sato S, et al. Effects of Cu loading and zeolite topology on the selective catalytic reduction with C3H6 over Cu/zeolite catalysts[J]. Journal of Industrial and Engineering Chemistry, 2019, 72: 73-86. |
18 | Zhang J Y, Liang J, Peng H G, et al. Cost-effective fast-synthesis of chabazite zeolites for the reduction of NO x [J]. Applied Catalysis B: Environmental, 2021, 292: 120163. |
19 | Smeets P J, Groothaert M H, van Teeffelen R M, et al. Direct NO and N2O decomposition and NO-assisted N2O decomposition over Cu-zeolites: elucidating the influence of the Cu-Cu distance on oxygen migration[J]. Journal of Catalysis, 2007, 245(2): 358-368. |
20 | Shin K, Zhang L, An H, et al. Interface engineering for a rational design of poison-free bimetallic CO oxidation catalysts[J]. Nanoscale, 2017, 9(16): 5244-5253. |
21 | Qi C X, Zheng Y H, Lin H, et al. CO oxidation over gold catalysts supported on CuO/Cu2O both in O2-rich and H2-rich streams: necessity of copper oxide[J]. Applied Catalysis B: Environmental, 2019, 253: 160-169. |
22 | Zhang Z H, Fan L P, Liao W Q, et al. Structure sensitivity of CuO in CO oxidation over CeO2-CuO/Cu2O catalysts [J]. Journal of Catalysis, 2022, 405: 333-345. |
23 | Venkataswamy P, Jampaiah D, Mukherjee D, et al. CuO/Zn-CeO2 nanocomposite as an efficient catalyst for enhanced diesel soot oxidation[J]. Emission Control Science and Technology, 2019, 5(4): 328-341. |
24 | Shen J T, Rao C, Fu Z Y, et al. The influence on the structural and redox property of CuO by using different precursors and precipitants for catalytic soot combustion[J]. Applied Surface Science, 2018, 453: 204-213. |
25 | Yu Y F, Meng M, Dai F F. The monolithic lawn-like CuO-based nanorods array used for diesel soot combustion under gravitational contact mode[J]. Nanoscale, 2013, 5(3): 904-909. |
26 | Deng C S, Huang Q Q, Zhu X Y, et al. The influence of Mn-doped CeO2 on the activity of CuO/CeO2 in CO oxidation and NO+CO model reaction[J]. Applied Surface Science, 2016, 389: 1033-1049. |
27 | Zhang R B, Lu K, Zong L J, et al. Control synthesis of CeO2 nanomaterials supported gold for catalytic oxidation of carbon monoxide[J]. Molecular Catalysis, 2017, 442: 173-180. |
28 | Yang J X, Ding H H, Zhu Z, et al. Surface modification of CeO2 nanoflakes by low temperature plasma treatment to enhance imine yield: influences of different plasma atmospheres[J]. Applied Surface Science, 2018, 454: 173-180. |
29 | Huang C Q, Li H X, Yang J M, et al. Ce0.6Zr0.3Y0.1O2 solid solutions-supported NiCo bimetal nanocatalysts for NH3 decomposition[J]. Applied Surface Science, 2019, 478: 708-716. |
30 | Rao K N, Venkataswamy P, Reddy B M. Structural characterization and catalytic evaluation of supported copper-ceria catalysts for soot oxidation[J]. Industrial & Engineering Chemistry Research, 2011, 50(21): 11960-11969. |
31 | Sudarsanam P, Hillary B, Mallesham B, et al. Designing CuO x nanoparticle-decorated CeO2 nanocubes for catalytic soot oxidation: role of the nanointerface in the catalytic performance of heterostructured nanomaterials[J]. Langmuir, 2016, 32(9): 2208-2215. |
32 | Sudarsanam P, Hillary B, Amin M H, et al. Heterostructured copper-ceria and iron-ceria nanorods: role of morphology, redox, and acid properties in catalytic diesel soot combustion[J]. Langmuir, 2018, 34(8): 2663-2673. |
33 | Aneggi E, Wiater D, de Leitenburg C, et al. Shape-dependent activity of ceria in soot combustion[J]. ACS Catalysis, 2014, 4(1): 172-181. |
34 | Goldstein H F, Kim D S, Yu P Y, et al. Raman study of CuO single crystals[J]. Physical Review B, 1990, 41(10): 7192-7194. |
35 | Khan M A, Nayan N, Shadiullah, et al. Surface study of CuO nanopetals by advanced nanocharacterization techniques with enhanced optical and catalytic properties[J]. Nanomaterials, 2020, 10(7): 1298. |
36 | Syrrokostas G, Govatsi K, Yannopoulos S N. High-quality, reproducible ZnO nanowire arrays obtained by a multiparameter optimization of chemical bath deposition growth[J]. Crystal Growth & Design, 2016, 16(4): 2140-2150. |
37 | Sun H C, Wang H, Qu Z P. Construction of CuO/CeO2 catalysts via the ceria shape effect for selective catalytic oxidation of ammonia[J]. ACS Catalysis, 2023, 13(2): 1077-1088. |
38 | Guo X, Meng M, Dai F, et al. NO x -assisted soot combustion over dually substituted perovskite catalysts La1- x K x Co1- y Pd y O3- δ [J]. Applied Catalysis B: Environmental, 2013, 142/143: 278-289. |
39 | Ren J L, Yu Y F, Dai F F, et al. Domain-confined catalytic soot combustion over Co3O4 anchored on a TiO2 nanotube array catalyst prepared by mercaptoacetic acid induced surface-grafting[J]. Nanoscale, 2013, 5(24): 12144-12149. |
40 | Cao C M, Xing L L, Yang Y X, et al. Diesel soot elimination over potassium-promoted Co3O4 nanowires monolithic catalysts under gravitation contact mode[J]. Applied Catalysis B: Environmental, 2017, 218: 32-45. |
41 | Xiong J, Wu Q Q, Mei X L, et al. Fabrication of spinel-type Pd x Co3- x O4 binary active sites on 3D ordered meso-macroporous Ce-Zr-O2 with enhanced activity for catalytic soot oxidation[J]. ACS Catalysis, 2018, 8(9): 7915-7930. |
42 | Zheng Y F, Su Y, Pang C H, et al. Interface-enhanced oxygen vacancies of CoCuO x catalysts in situ grown on monolithic Cu foam for VOC catalytic oxidation[J]. Environmental Science & Technology, 2022, 56(3): 1905-1916. |
[1] | 王雪杰, 崔国庆, 王文涵, 杨扬, 王淙恺, 姜桂元, 徐春明. 电内加热Pt/NPC催化剂高效催化甲基环己烷脱氢反应研究[J]. 化工学报, 2024, 75(1): 292-301. |
[2] | 张强, 王宪飞, 王凯, 骆广生, 路忠凯. 非金属催化剂在环氧化物和环状酸酐共聚中的研究进展[J]. 化工学报, 2024, 75(1): 60-73. |
[3] | 王欣雨, 王永涛, 姚加, 李浩然. 电子顺磁共振技术在化工基础研究中的应用进展[J]. 化工学报, 2024, 75(1): 74-82. |
[4] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[5] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[6] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[7] | 胡兴枝, 张皓焱, 庄境坤, 范雨晴, 张开银, 向军. 嵌有超小CeO2纳米粒子的碳纳米纤维的制备及其吸波性能[J]. 化工学报, 2023, 74(8): 3584-3596. |
[8] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[9] | 李凯旋, 谭伟, 张曼玉, 徐志豪, 王旭裕, 纪红兵. 富含零价钴活性位点的钴氮碳/活性炭设计及甲醛催化氧化应用研究[J]. 化工学报, 2023, 74(8): 3342-3352. |
[10] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[11] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[12] | 涂玉明, 邵高燕, 陈健杰, 刘凤, 田世超, 周智勇, 任钟旗. 钙基催化剂的设计合成及应用研究进展[J]. 化工学报, 2023, 74(7): 2717-2734. |
[13] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[14] | 李盼, 马俊洋, 陈志豪, 王丽, 郭耘. Ru/α-MnO2催化剂形貌对NH3-SCO反应性能的影响[J]. 化工学报, 2023, 74(7): 2908-2918. |
[15] | 张谭, 刘光, 李晋平, 孙予罕. Ru基氮还原电催化剂性能调控策略[J]. 化工学报, 2023, 74(6): 2264-2280. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 759
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 319
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||