化工学报 ›› 2023, Vol. 74 ›› Issue (10): 4229-4240.DOI: 10.11949/0438-1157.20230716
党青梅1(), 李强2(), 丁晖殿2, 贾胜坤3, 钱行1(), 苑杨1, 黄克谨1, 陈海胜1
收稿日期:
2023-07-10
修回日期:
2023-09-10
出版日期:
2023-10-25
发布日期:
2023-12-22
通讯作者:
李强,钱行
作者简介:
党青梅(1999—),女,硕士研究生,2021210499@buct.edu.cn基金资助:
Qingmei DANG1(), Qiang LI2(), Huidian DING2, Shengkun JIA3, Xing QIAN1(), Yang YUAN1, Kejin HUANG1, Haisheng CHEN1
Received:
2023-07-10
Revised:
2023-09-10
Online:
2023-10-25
Published:
2023-12-22
Contact:
Qiang LI, Xing QIAN
摘要:
精馏和吸收作为典型的非线性过程,其操作过程中存在大量描述系统特征的状态变量。为了对这些状态变量进行重构和预测,实现精馏吸收过程的实时数字孪生,通过动态模式分解算法(DMD)获取非线性系统的近似线性化模型,用于快速获取精馏吸收过程中各级浓度、流量、温度和持料量等状态变量。在此基础上,应用Kalman滤波器对DMD生成的线性模型进行实时校正,使得在非设计和有限测量条件下,也可以有效地预测吸收或精馏的状态变量,而无须重新训练模型。
中图分类号:
党青梅, 李强, 丁晖殿, 贾胜坤, 钱行, 苑杨, 黄克谨, 陈海胜. 基于动态模式分解的精馏吸收状态变量非设计条件下的重构与预测[J]. 化工学报, 2023, 74(10): 4229-4240.
Qingmei DANG, Qiang LI, Huidian DING, Shengkun JIA, Xing QIAN, Yang YUAN, Kejin HUANG, Haisheng CHEN. Reconstruction and prediction of distillation or absorption state variables under off-design conditions based on dynamic mode decomposition[J]. CIESC Journal, 2023, 74(10): 4229-4240.
状态变量 | 平均相对误差 | ||||
---|---|---|---|---|---|
振幅减小10% | 偏差减小10 | 振幅随机变化 | 添加噪声 | 输入随机变化 | |
X(7) |
表1 不同情况下近似线性化模型预测的平均相对误差值
Table 1 Average relative error values of approximate linearized model predictions for different cases
状态变量 | 平均相对误差 | ||||
---|---|---|---|---|---|
振幅减小10% | 偏差减小10 | 振幅随机变化 | 添加噪声 | 输入随机变化 | |
X(7) |
控制器 | 被控变量 | 操纵变量 | 增益 | 积分时间/min |
---|---|---|---|---|
TC1 | T15 | L | 12.720 | 5.190 |
TC2 | T29 | S1 | 6.280 | 10.920 |
表2 二元精馏塔温度控制器的调谐参数
Table 2 Controller tuning parameters of PI for the binary distillation column
控制器 | 被控变量 | 操纵变量 | 增益 | 积分时间/min |
---|---|---|---|---|
TC1 | T15 | L | 12.720 | 5.190 |
TC2 | T29 | S1 | 6.280 | 10.920 |
状态变量 | 浓度校正相对误差平均值 | 温度校正相对误差平均值 |
---|---|---|
X(109) | ||
X(137) |
表3 近似线性化模型重构和预测的相对误差平均值
Table 3 Average relative errors of reconstruction and prediction of the approximate linearized model
状态变量 | 浓度校正相对误差平均值 | 温度校正相对误差平均值 |
---|---|---|
X(109) | ||
X(137) |
状态 变量 | 平均相对误差 | |||
---|---|---|---|---|
振幅减小10% | 偏差减小1% | 振幅随机 变化 | 输入随机 变化 | |
X(109) | ||||
X(137) |
表4 不同情况下近似线性化模型预测的平均相对误差值
Table 4 Average relative error values of approximate linearized model predictions for different cases
状态 变量 | 平均相对误差 | |||
---|---|---|---|---|
振幅减小10% | 偏差减小1% | 振幅随机 变化 | 输入随机 变化 | |
X(109) | ||||
X(137) |
1 | Sangal V K, Kumar V, Mishra I M. Optimization of structural and operational variables for the energy efficiency of a divided wall distillation column[J]. Computers & Chemical Engineering, 2012, 40: 33-40. |
2 | 张莘, 高伟, 齐鸣, 等. 基于多目标优化精馏系统综述[J]. 化工进展, 2019, 38(S1): 1-9. |
Zhang S, Gao W, Qi M, et al. A review of optimization rectification systems based on multi-objective[J]. Chemical Industry and Engineering Progress, 2019, 38(S1): 1-9. | |
3 | Skogestad S. The dos and don'ts of distillation column control[J]. Chemical Engineering Research and Design, 2007, 85(1): 13-23. |
4 | Taqvi S A, Tufa L D, Zabiri H, et al. Fault detection in distillation column using NARX neural network[J]. Neural Computing and Applications, 2020, 32(8): 3503-3519. |
5 | Feng Z M, Shen W F, Rangaiah G P, et al. Design and control of vapor recompression assisted extractive distillation for separating n-hexane and ethyl acetate[J]. Separation and Purification Technology, 2020, 240: 116655. |
6 | Yan W W, Tang D, Lin Y J. A data-driven soft sensor modeling method based on deep learning and its application[J]. IEEE Transactions on Industrial Electronics, 2017, 64(5): 4237-4245. |
7 | Sato C, Ohtani T, Nishitani H. Modeling, simulation and nonlinear control of a gas-phase polymerization process[J]. Computers & Chemical Engineering, 2000, 24(2/3/4/5/6/7): 945-951. |
8 | 李德新, 姜波, 任奕丞, 等. 基于集合算法的高纯度精馏塔分段建模方法[J]. 化工学报, 2012, 63(9): 2710-2715. |
Li D X, Jiang B, Ren Y C, et al. Aggregated model high purity distillation column based on group methods[J]. CIESC Journal, 2012, 63(9): 2710-2715. | |
9 | 刘星伟, 贾胜坤, 罗祎青, 等. 基于信赖域算法的精馏塔优化[J]. 化工学报, 2022, 73(5): 2031-2038. |
Liu X W, Jia S K, Luo Y Q, et al. Optimization of distillation column based on trust region algorithm[J]. CIESC Journal, 2022, 73(5): 2031-2038. | |
10 | 柳旭, 许松林, 王燕飞. 原甲酸三甲酯-醋酸萃取精馏全局多目标优化[J]. 化工学报, 2022, 73(10): 4518-4526. |
Liu X, Xu S L, Wang Y F. Global multi-objective optimization of trimethyl orthoformate-acetic acid extractive distillation[J]. CIESC Journal, 2022, 73(10): 4518-4526. | |
11 | Su Y, Jin S M, Zhang X P, et al. Stakeholder-oriented multi-objective process optimization based on an improved genetic algorithm[J]. Computers & Chemical Engineering, 2020, 132: 106618. |
12 | Yuan X F, Li L, Shardt Y A W, et al. Deep learning with spatiotemporal attention-based LSTM for industrial soft sensor model development[J]. IEEE Transactions on Industrial Electronics, 2021, 68(5): 4404-4414. |
13 | Herceg S, Ujević Andrijić Ž, Bolf N. Development of soft sensors for isomerization process based on support vector machine regression and dynamic polynomial models[J]. Chemical Engineering Research and Design, 2019, 149: 95-103. |
14 | Shahana P K, Jaleel A, Priya N. Neural network for identification of heat integrated distillation column[C]//2020 International Conference on Futuristic Technologies in Control Systems & Renewable Energy (ICFCR). Malappuram, India: IEEE, 2020: 1-6. |
15 | Li Y, Hu L J, Li N, et al. A light attention-mixed-base deep learning architecture toward process multivariable modeling and knowledge discovery[J]. Computers & Chemical Engineering, 2023, 174: 108259. |
16 | Abdul Jaleel E, Aparna K. Identification of ethane-ethylene distillation column using neural network and ANFIS[C]//2015 Fifth International Conference on Advances in Computing and Communications (ICACC). Kochi, India: IEEE, 2016: 358-361. |
17 | Ping X J, Zhao S Y, Luan X L, et al. Multi-task learning for energy consumption forecasting of methyl chlorosilanes fractional distillation process[J]. Chemometrics and Intelligent Laboratory Systems, 2022, 226: 104596. |
18 | Qian X, Jia S K, Yuan Y, et al. Reconstruction and prediction of state variables in distillation/absorption processes under off-design and limited measurement conditions[J]. Chemical Engineering Science, 2022, 258: 117780. |
19 | Taira K, Brunton S L, Dawson S T M, et al. Modal analysis of fluid flows: an overview[J]. AIAA Journal, 2017, 55(12): 4013-4041. |
20 | Koopman B O. Hamiltonian systems and transformation in Hilbert space[J]. Proceedings of the National Academy of Sciences of the United States of America, 1931, 17(5): 315-318. |
21 | Rowley C W, Mezić I, Bagheri S, et al. Spectral analysis of nonlinear flows[J]. Journal of Fluid Mechanics, 2009, 641: 115-127. |
22 | Zhang Y M, Jiang L J. A novel data-driven analysis method for nonlinear electromagnetic radiations based on dynamic mode decomposition[C]//2019 IEEE International Symposium on Electromagnetic Compatibility, Signal & Power Integrity (EMC+SIPI). New Orleans, LA, USA: IEEE, 2019: 527-531. |
23 | Schmid P J, Li L, Juniper M P, et al. Applications of the dynamic mode decomposition[J]. Theoretical and Computational Fluid Dynamics, 2011, 25(1): 249-259. |
24 | Narasingam A, Kwon J S I. Koopman Lyapunov-based model predictive control of nonlinear chemical process systems[J]. AIChE Journal, 2019, 65(11): e16743. |
25 | 寇家庆, 张伟伟. 动力学模态分解及其在流体力学中的应用[J]. 空气动力学学报, 2018, 36(2): 163-179. |
Kou J Q, Zhang W W. Dynamic mode decomposition and its applications in fluid dynamics[J]. Acta Aerodynamica Sinica, 2018, 36(2): 163-179. | |
26 | Tissot G, Cordier L, Benard N, et al. Model reduction using dynamic mode decomposition[J]. Comptes Rendus Mécanique, 2014, 342(6/7): 410-416. |
27 | Mao S Y, Ching P C, Lee T. EigenEmo: spectral utterance representation using dynamic mode decomposition for speech emotion classification[EB/OL]. . |
28 | Proctor J L, Eckhoff P A. Discovering dynamic patterns from infectious disease data using dynamic mode decomposition[J]. International Health, 2015, 7(2): 139-145. |
29 | Nayak I, Teixeira F L. Dynamic mode decomposition for prediction of kinetic plasma behavior[C]//2020 International Applied Computational Electromagnetics Society Symposium (ACES). Monterey, CA, USA: IEEE, 2020: 1-2. |
30 | Yuan Y A, Zhou K W, Zhou W W, et al. Flow prediction using dynamic mode decomposition with time-delay embedding based on local measurement[J]. Physics of Fluids, 2021, 33(9): 095109. |
31 | Sunny K, Sheikh A, Wagh S. Dynamic mode decomposition for prediction and enhancement of rotor angle stability[C]//2020 7th International Conference on Control, Decision and Information Technologies (CoDIT). Prague, Czech Republic: IEEE, 2020: 160-165. |
32 | Jiang Y C, Yin S, Li K, et al. Industrial applications of digital twins[J]. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379(2207): 20200360. |
33 | Kender R, Rößler F, Wunderlich B, et al. Development of control strategies for an air separation unit with a divided wall column using a pressure-driven digital twin[J]. Chemical Engineering and Processing - Process Intensification, 2022, 176: 108893. |
34 | Kutz J N, Brunton S L, Brunton B W, et al. Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems[M]. Philadelphia, PA: SIAM, 2016. |
35 | Schmid P J. Dynamic mode decomposition of numerical and experimental data[J]. Journal of Fluid Mechanics, 2010, 656: 5-28. |
36 | Nonomura T, Shibata H, Takaki R. Dynamic mode decomposition using a Kalman filter for parameter estimation[J]. AIP Advances, 2018, 8(10): 105106. |
37 | Qian X, Jia S K, Skogestad S, et al. Control structure selection for four-product Kaibel column[J]. Computers & Chemical Engineering, 2016, 93: 372-381. |
38 | Wang S J, Wong D S H. Controllability and energy efficiency of a high-purity divided wall column[J]. Chemical Engineering Science, 2007, 62(4): 1010-1025. |
39 | Wang J X, Yu N, Chen M Q, et al. Composition control and temperature inferential control of dividing wall column based on model predictive control and PI strategies[J]. Chinese Journal of Chemical Engineering, 2018, 26(5): 1087-1101. |
40 | Luyben W L. Distillation Design and Control Using Aspen Simulation[M]. 2nd ed. Hoboken, NJ: Wiley, 2013. |
[1] | 黄琮琪, 吴一梅, 陈建业, 邵双全. 碱性电解水制氢装置热管理系统仿真研究[J]. 化工学报, 2023, 74(S1): 320-328. |
[2] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及分析[J]. 化工学报, 2023, 74(S1): 53-63. |
[3] | 米泽豪, 花儿. 基于DFT和COSMO-RS理论研究多元胺型离子液体吸收SO2气体[J]. 化工学报, 2023, 74(9): 3681-3696. |
[4] | 王俐智, 杭钱程, 郑叶玲, 丁延, 陈家继, 叶青, 李进龙. 离子液体萃取剂萃取精馏分离丙酸甲酯+甲醇共沸物[J]. 化工学报, 2023, 74(9): 3731-3741. |
[5] | 尹刚, 李伊惠, 何飞, 曹文琦, 王民, 颜非亚, 向禹, 卢剑, 罗斌, 卢润廷. 基于KPCA和SVM的铝电解槽漏槽事故预警方法[J]. 化工学报, 2023, 74(8): 3419-3428. |
[6] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[7] | 胡兴枝, 张皓焱, 庄境坤, 范雨晴, 张开银, 向军. 嵌有超小CeO2纳米粒子的碳纳米纤维的制备及其吸波性能[J]. 化工学报, 2023, 74(8): 3584-3596. |
[8] | 闫琳琦, 王振雷. 基于STA-BiLSTM-LightGBM组合模型的多步预测软测量建模[J]. 化工学报, 2023, 74(8): 3407-3418. |
[9] | 郭雨莹, 敬加强, 黄婉妮, 张平, 孙杰, 朱宇, 冯君炫, 陆洪江. 稠油管道水润滑减阻及压降预测模型修正[J]. 化工学报, 2023, 74(7): 2898-2907. |
[10] | 于源, 陈薇薇, 付俊杰, 刘家祥, 焦志伟. 几何相似涡流空气分级机环形区流场变化规律研究及预测[J]. 化工学报, 2023, 74(6): 2363-2373. |
[11] | 李艳辉, 丁邵明, 白周央, 张一楠, 于智红, 邢利梅, 高鹏飞, 王永贞. 非常规服役超临界锅炉的微纳尺度腐蚀动力学模型建立及应用[J]. 化工学报, 2023, 74(6): 2436-2446. |
[12] | 刘尚豪, 贾胜坤, 罗祎青, 袁希钢. 基于梯度提升决策树的三组元精馏流程结构最优化[J]. 化工学报, 2023, 74(5): 2075-2087. |
[13] | 李木金, 胡松, 施德磐, 赵鹏, 高瑞, 李进龙. 环氧丁烷尾气溶剂吸收及精制工艺[J]. 化工学报, 2023, 74(4): 1607-1618. |
[14] | 杨灿, 孙雪琦, 尚明华, 张建, 张香平, 曾少娟. 相变离子液体体系吸收分离CO2的研究现状及展望[J]. 化工学报, 2023, 74(4): 1419-1432. |
[15] | 张中秋, 李宏光, 石逸林. 基于人工预测调控策略的复杂化工过程多任务学习方法[J]. 化工学报, 2023, 74(3): 1195-1204. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||