1 |
Li F Q, Li Z Z, Jing K, et al. Thermal cracking of endothermic hydrocarbon fuel in regenerative cooling channels with different geometric structures[J]. Energy & Fuels, 2018, 32(6): 6524-6534.
|
2 |
Fakhroleslam M, Sadrameli S M. Thermal/catalytic cracking of hydrocarbons for the production of olefins: a state-of-the-art review(Ⅲ): Process modeling and simulation[J]. Fuel, 2019, 252: 553-566.
|
3 |
蒋鹏飞, 宿伟毅, 罗灵力,等. 裂解炉长周期运行中的问题及优化措施[J]. 乙烯工业, 2020, 32(3): 22-28.
|
|
Jiang P F, Su W Y, Luo L L, et al. Problems in long-term operation of cracking furnace and the optimization measures [J]. Ethylene Industry, 2020, 32(3): 22-28.
|
4 |
Liu Z H, Bi Q C, Feng J T. Evaluation of heat sink capability and deposition propensity of supercritical endothermic fuels in a minichannel[J]. Fuel, 2015, 158: 388-398.
|
5 |
Sun D A, Du Y M, Zhang J W, et al. Effects of molecular structures on the pyrolysis and anti-coking performance of alkanes for thermal management[J]. Fuel, 2017, 194: 266-273.
|
6 |
Zhou H, Gao X K, Liu P H, et al. An experimental and simulated investigation on pyrolysis of blended cyclohexane and benzene under supercritical pressure[J]. Petroleum Chemistry, 2017, 57(1): 71-78.
|
7 |
Sun D A, Li C Y, Du Y M, et al. Effects of endothermic hydrocarbon fuel composition on the pyrolysis and anti-coking performance under supercritical conditions[J]. Fuel, 2019, 239: 659-666.
|
8 |
Liu Y J, Gong S Y, Wang H Y, et al. Pyrolysis of C8—C16 hydrocarbons with different molecular structures using high-pressure micro-reactor with GC-MS/FID[J]. Journal of Analytical and Applied Pyrolysis, 2020, 149: 104864.
|
9 |
范学军, 俞刚. 大庆RP-3航空煤油热物性分析[J]. 推进技术, 2006, 27(2): 187-192.
|
|
Fan X J, Yu G. Analysis of thermophysical properties of Daqing RP-3 aviation kerosene [J]. Journal of Propulsion Technology, 2006, 27(2): 187-192.
|
10 |
梁嘉麟, 林海, 曾兴业. 石脑油烃组成与主要裂解产物收率的关系[J]. 石化技术, 2021, 28(12): 18-19.
|
|
Liang J L, Lin H, Zeng X Y. Relationship between the composition of naphtha hydrocarbon and the yield of main cracking products[J]. Petrochemical Industry Technology, 2021, 28(12): 18-19.
|
11 |
Pitz W J, Cernansky N P, Dryer F L, et al. Development of an experimental database and chemical kinetic models for surrogate gasoline fuels[C]//SAE Technical Paper Series. Warrendale, PA, United States: SAE International, 2007: 195-216.
|
12 |
McIlroy A, McRae G, Sick V, et al. Basic research needs for clean and efficient combustion of 21st century transportation fuels[R]. DOESC (USDOE Office of Science (SC)), 2006.
|
13 |
Sarathy S M, Farooq A, Kalghatgi G T. Recent progress in gasoline surrogate fuels[J]. Progress in Energy and Combustion Science, 2018, 65: 67-108.
|
14 |
Ranzi E. A wide-range kinetic modeling study of oxidation and combustion of transportation fuels and surrogate mixtures[J]. Energy & Fuels, 2006, 20(3): 1024-1032.
|
15 |
Wang X H, Song Q S, Wu Y, et al. Modelling and numerical simulation of n-heptane pyrolysis coking characteristics in a millimetre-sized tube reactor[J]. Combustion and Flame, 2019, 201: 44-56.
|
16 |
Wu Y, Wang X H, Song Q S, et al. The effect of temperature and pressure on n-heptane thermal cracking in regenerative cooling channel[J]. Combustion and Flame, 2018, 194: 233-244.
|
17 |
Montgomery C, Cannon S, Mawid M, et al. Reduced chemical kinetic mechanisms for JP-8 combustion[C]//Proceedings of the 40th AIAA Aerospace Sciences Meeting & Exhibit. Reston, Virigina: AIAA, 2002: AIAA2002-336.
|
18 |
Wang Z D, Ye L L, Yuan W H, et al. Experimental and kinetic modeling study on methylcyclohexane pyrolysis and combustion[J]. Combustion and Flame, 2014, 161(1): 84-100.
|
19 |
Bissoonauth T, Wang Z D, Mohamed S Y, et al. Methylcyclohexane pyrolysis and oxidation in a jet-stirred reactor[J]. Proceedings of the Combustion Institute, 2019, 37(1): 409-417.
|
20 |
Liu Y X, Richter S, Naumann C, et al. Combustion study of a surrogate jet fuel[J]. Combustion and Flame, 2019, 202: 252-261.
|
21 |
谢文杰. 碳氢燃料裂解与结焦研究[D]. 杭州: 浙江大学, 2009.
|
|
Xie W J. The pyrolysis and coking of hydrocarbon fuels[D]. Hangzhou: Zhejiang University, 2009.
|
22 |
Hou X, Ma Z Z, Chen B C, et al. Role of normal/cyclo-alkane in hydrocarbons pyrolysis process and product distribution[J]. Journal of Analytical and Applied Pyrolysis, 2021, 156: 105130.
|
23 |
Králíková U, Bajus M, Baxa J. Pyrolysis of methylcyclohexane[J]. Collection of Czechoslovak Chemical Communications, 1987, 52(6): 1527-1544.
|
24 |
Zámostný P, Bělohlav Z, Starkbaumová L, et al. Experimental study of hydrocarbon structure effects on the composition of its pyrolysis products[J]. Journal of Analytical and Applied Pyrolysis, 2010, 87(2): 207-216.
|
25 |
Lee T H, Mun S, Kim S H, et al. Effect of the mixing ratio of methylcyclohexane and n-dodecane on the product composition and coke formation in the catalytic decomposition reaction of blended fuels[J]. Journal of Industrial and Engineering Chemistry, 2021, 98: 389-396.
|
26 |
Feng Y, Cao Y, Liu S Y, et al. The influence of coking on heat transfer in turbulent reacting flow of supercritical hydrocarbon fuels[J]. International Journal of Heat and Mass Transfer, 2019, 144: 118623.
|
27 |
Tian K, Yang P, Tang Z C, et al. Effect of pyrolytic reaction of supercritical aviation kerosene RP-3 on heat and mass transfer in the near-wall region[J]. Applied Thermal Engineering, 2021, 197: 117401.
|
28 |
Li X, Zhang Y X, Zhang S L, et al. Effects of pyrolysis on heat transfer enhancement for hydrocarbon fuel flow in unilateral heated channels with dimples[J]. Applied Thermal Engineering, 2023, 218: 119301.
|
29 |
Li X, Ma Z H, Lv E Y, et al. Experimental and kinetic study of hydrocarbon fuel pyrolysis in a shock tube[J]. Fuel, 2021, 304: 121521.
|
30 |
吴勇. 正庚烷高温热解和结焦动力学及影响机制[D]. 北京: 中国科学院大学, 2018.
|
|
Wu Y. Pyrolysis and coking kinetics and the effects mechanism during the pyrolysis process of n-heptane [D]. Beijing: University of Chinese Academy of Sciences, 2018.
|
31 |
Jiang R P, Liu G Z, He X Y, et al. Supercritical thermal decompositions of normal- and iso-dodecane in tubular reactor[J]. Journal of Analytical and Applied Pyrolysis, 2011, 92(2): 292-306.
|
32 |
Yu W L, Zhou W X, Jia Z J, et al. Characteristics of scramjet regenerative cooling with endothermic chemical reactions[J]. Acta Astronautica, 2022, 195: 1-11.
|
33 |
Li H W, Wu Y, Yang Z X, et al. Effect of molecular structure on pyrolysis coking performances of hydrocarbons at different temperatures[J]. Fuel, 2022, 326: 125095.
|
34 |
Dong G L, Hüttinger K J. Consideration of reaction mechanisms leading to pyrolytic carbon of different textures[J]. Carbon, 2002, 40(14): 2515-2528.
|
35 |
Wang Y, Raj A, Chung S H. A PAH growth mechanism and synergistic effect on PAH formation in counterflow diffusion flames[J]. Combustion and Flame, 2013, 160(9): 1667-1676.
|
36 |
Li H W, Wang X H, Song Q S, et al. Experimental investigation of n-heptane unsteady-state pyrolysis coking characteristics in microchannel[J]. Journal of Analytical and Applied Pyrolysis, 2022, 161: 105384.
|