化工学报 ›› 2023, Vol. 74 ›› Issue (11): 4559-4569.DOI: 10.11949/0438-1157.20230997
钟声亮1,2,3(), 张军2,3, 单锐2,3, 孙勇1()
收稿日期:
2023-09-22
修回日期:
2023-10-31
出版日期:
2023-11-25
发布日期:
2024-01-22
通讯作者:
孙勇
作者简介:
钟声亮(1998—),男,硕士研究生,zhongsl@ms.giec.ac.cn
基金资助:
Shengliang ZHONG1,2,3(), Jun ZHANG2,3, Rui SHAN2,3, Yong SUN1()
Received:
2023-09-22
Revised:
2023-10-31
Online:
2023-11-25
Published:
2024-01-22
Contact:
Yong SUN
摘要:
以废弃海绵作为碳材料前体,通过惰性气氛碳化和接枝磺酸基团,合成了系列磺酸功能化碳基固体酸,用于木薯渣快速热解制备左旋葡萄糖酮(LGO)。研究采用多种物理化学表征手段,如X射线衍射、红外光谱、液氮吸脱附、扫描电镜等,系统分析了制备的废弃海绵衍生碳基固体酸物化特性。结果表明,废弃海绵衍生碳基固体酸具有较丰富的孔道结构,其表面接枝了丰富的磺酸基团,因而有利于木薯渣选择性热解转化获得LGO。其中,在碳化温度500℃、碳/酸比1 g∶0.5 ml时,废弃海绵衍生碳基固体酸展现出较优的催化热解性能,产物中LGO质量收率可达12.93%。本文研究将为废弃海绵资源化利用提供新的思路,同时又能够促进固废衍生碳材料在农林废弃物高值转化方面应用。
中图分类号:
钟声亮, 张军, 单锐, 孙勇. 废海绵衍生碳基固体酸催化热解木薯渣制备左旋葡萄糖酮[J]. 化工学报, 2023, 74(11): 4559-4569.
Shengliang ZHONG, Jun ZHANG, Rui SHAN, Yong SUN. Waste sponge derived carbon-based solid acids for levoglucosanone production via cassava residue pyrolysis[J]. CIESC Journal, 2023, 74(11): 4559-4569.
碳化温度/℃ | 比表面积/ (m2/g) | 孔体积/ (cm3/g) | 孔径/nm |
---|---|---|---|
300 | 4.99 | 0.02 | 18.94 |
500 | 13.93 | 0.07 | 16.55 |
700 | 23.13 | 0.10 | 13.67 |
表1 不同碳化温度的碳基固体酸催化剂孔隙结构参数
Table 1 Pore structure parameters of catalysts with different carbonization temperatures
碳化温度/℃ | 比表面积/ (m2/g) | 孔体积/ (cm3/g) | 孔径/nm |
---|---|---|---|
300 | 4.99 | 0.02 | 18.94 |
500 | 13.93 | 0.07 | 16.55 |
700 | 23.13 | 0.10 | 13.67 |
催化剂 | 磺酸基团负载量/(mmol/g) |
---|---|
500WS-S0.1 | 0.24 |
500WS-S0.25 | 2.73 |
500WS-S0.5 | 3.87 |
500WS-S1 | 4.19 |
500WS-S2 | 3.39 |
表2 不同氯磺酸添加量对应的磺酸基团负载量
Table 2 Sulfonic acid group loading for different chlorosulfonic acid additions
催化剂 | 磺酸基团负载量/(mmol/g) |
---|---|
500WS-S0.1 | 0.24 |
500WS-S0.25 | 2.73 |
500WS-S0.5 | 3.87 |
500WS-S1 | 4.19 |
500WS-S2 | 3.39 |
1 | Lazaroiu G C, Putrus G. Renewable energy generation driving positive energy communities[J]. Renewable Energy, 2023, 205: 627-630. |
2 | Velvizhi G, Jacqueline P J, Shetti N P, et al. Emerging trends and advances in valorization of lignocellulosic biomass to biofuels[J]. Journal of Environmental Management, 2023, 345: 118527. |
3 | Kiehbadroudinezhad M, Merabet A, Hosseinzadeh-Bandbafha H, et al. Environmental assessment of optimized renewable energy-based microgrids integrated desalination plant: considering human health, ecosystem quality, climate change, and resources[J]. Environmental Science and Pollution Research, 2023, 30(11):29888-29908. |
4 | Amjith L R, Bavanish B. A review on biomass and wind as renewable energy for sustainable environment[J]. Chemosphere, 2022, 293: 133579. |
5 | Moradian J M, Fang Z, Yong Y C. Recent advances on biomass-fueled microbial fuel cell[J]. Bioresources and Bioprocessing, 2021, 8(1): 14. |
6 | Qi W, Feng Q F, Wang W, et al. Combination of surfactants and enzyme cocktails for enhancing woody biomass saccharification and bioethanol production from lab-scale to pilot-scale[J]. Bioresource Technology, 2023, 384: 129343. |
7 | Faizan M, Song H. Critical review on catalytic biomass gasification: state-of-art progress, technical challenges, and perspectives in future development[J]. Journal of Cleaner Production, 2023, 408: 137224. |
8 | Manikandan S, Subbaiya R, Biruntha M, et al. Recent development patterns, utilization and prospective of biofuel production: emerging nanotechnological intervention for environmental sustainability—a review[J]. Fuel, 2022, 314: 122757. |
9 | Qiu B B, Tao X D, Wang J H, et al. Research progress in the preparation of high-quality liquid fuels and chemicals by catalytic pyrolysis of biomass: a review[J]. Energy Conversion and Management, 2022, 261: 115647. |
10 | Dorleku W P, Bayitse R, Hansen A C H, et al. Response surface optimisation of enzymatic hydrolysis of cassava peels without chemical and hydrothermal pretreatment[J]. Biomass Conversion and Biorefinery, 2022, 1-14. |
11 | Egbune E O, Ezedom T, Orororo O C, et al. Solid-state fermentation of cassava (Manihot esculenta Crantz): a review[J]. World Journal of Microbiology and Biotechnology, 2023, 39(10): 259. |
12 | Aduba C C, Ndukwe J K, Onyejiaka C K, et al. Integrated valorization of cassava wastes for production of bioelectricity, biogas and biofertilizer[J]. Waste and Biomass Valorization, 2023, 14(12): 4003-4019. |
13 | Li Z Y, Lan W, Liu C F. Biomass derived bifunctional catalyst for the conversion of cassava dreg into sorbitol[J]. Industrial Crops and Products,2023, 197: 116493. |
14 | Chen H P, Liu Z H, Chen X, et al. Comparative pyrolysis behaviors of stalk, wood and shell biomass: correlation of cellulose crystallinity and reaction kinetics[J]. Bioresource Technology,2020, 310: 123498. |
15 | Hassan N S, Jalil A A, Hitam C N C, et al. Biofuels and renewable chemicals production by catalytic pyrolysis of cellulose: a review[J]. Environmental Chemistry Letters,2020, 18(5): 1625-1648. |
16 | Sharifzadeh M, Sadeqzadeh M, Guo M, et al. The multi-scale challenges of biomass fast pyrolysis and bio-oil upgrading: review of the state of art and future research directions[J]. Progress in Energy and Combustion Science, 2019, 71: 1-80. |
17 | Rueangsan K, Kraisoda P, Heman A, et al. Bio-oil and char obtained from cassava rhizomes with soil conditioners by fast pyrolysis[J]. Heliyon, 2021, 7(11): e08291. |
18 | Liu J P, Chen X, Chen W, et al. Biomass pyrolysis mechanism for carbon-based high-value products[J]. Proceedings of the Combustion Institute, 2023, 39(3): 3157-3181. |
19 | Alhumade H, Alayed O S, Iqbal M W, et al. Exploration of the bioenergy potential of Dactyloctenium aegyptium through pyrolysis, kinetics, and thermodynamic parameters to produce clean fuels and biochemicals[J]. Fuel, 2023, 341: 127663. |
20 | Li X Q, Liu P, Yang Y T, et al. Pyrolysis behaviors of biomass tar-related model compounds catalyzed by Ni-modified HZSM-5 molecular sieve[J]. Industrial Crops and Products, 2023, 199: 116743. |
21 | Chen W H, Ghodke P K, Sharma A K, et al. Co-pyrolysis of lignocellulosic biomass with other carbonaceous materials: a review on advance technologies, synergistic effect, and future prospectus[J]. Fuel, 2023, 345: 128177. |
22 | Yuan H R, Li C Y, Shan R, et al. Aromatics production from catalytic pyrolysis of waste cassava residue using La and P modified ZSM-5: experimental and kinetic study[J]. Industrial Crops and Products, 2023, 198: 116753. |
23 | Eqbalpour M, Andooz A, Kowsari E, et al. A comprehensive review on how ionic liquids enhance the pyrolysis of cellulose, lignin, and lignocellulose toward a circular economy[J]. Wiley Interdisciplinary Reviews-Energy and Environment, 2023, 12(4): e473. |
24 | Liu Y, Wu S L, Zhang H Y, et al. Fast pyrolysis of holocellulose for the preparation of long-chain ether fuel precursors: effect of holocellulose types[J]. Bioresource Technology, 2021, 338: 125519. |
25 | Li C, Zhang J, Yuan H, et al. Advance on the pyrolytic transformation of cellulose[J]. Journal of Fuel Chemistry and Technology, 2021, 49: 1733-1751. |
26 | Li Y, Hu B, Fu H, et al. Catalytic fast pyrolysis of cellulose for the selective production of levoglucosenone using phosphorus molybdenum tin mixed metal oxides[J]. Energy & Fuels, 2022, 36(17): 10251-10260. |
27 | de Souza P M, de Sousa L A, Noronha F B, et al. Dehydration of levoglucosan to levoglucosenone over solid acid catalysts. Tuning the product distribution by changing the acid properties of the catalysts[J]. Molecular Catalysis, 2022, 529: 112564. |
28 | Allais F. Total syntheses and production pathways of levoglucosenone, a highly valuable chiral chemical platform for the chemical industry[J]. Current Opinion in Green and Sustainable Chemistry, 2023, 40: 100744. |
29 | Kudo S, Huang X, Asano S, et al. Catalytic strategies for levoglucosenone production by pyrolysis of cellulose and lignocellulosic biomass[J]. Energy & Fuels, 2021, 35(12): 9809-9824. |
30 | Wang B, Li K, Nan D H, et al. Enhanced production of levoglucosenone from pretreatment assisted catalytic pyrolysis of waste paper[J]. Journal of Analytical and Applied Pyrolysis, 2022, 165: 105567. |
31 | Huang W R, He X C, Wu J C, et al. The evaluation of deep eutectic solvents and ionic liquids as cosolvents system for improving cellulase properties[J]. Industrial Crops and Products, 2023, 197: 116555. |
32 | 钱乐, 蒋丽群, 岳元茂, 等. 催化热解生物质生成左旋葡聚糖酮的研究进展[J]. 化工学报, 2020, 71(12): 5376-5387. |
Qian L, Jiang L Q, Yue Y M, et al. Research progress of catalytic pyrolysis of biomass to yield levoglucosenone[J]. CIESC Journal, 2020, 71(12): 5376-5387. | |
33 | Yuan H R, Li C Y, Shan R, et al. Municipal sludge derived solid acids for levoglucosenone production via cellulose fast pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2022, 167: 105663. |
34 | Zhurinsh A, Dobele G, Pomilovskis R, et al. Evolution of 1,6-anhydrosugars in the pyrolysis of biomass with phosphoric acid and P-containing activated carbon[J]. Catalysis Today, 2021, 367: 51-57. |
35 | Çalışkan E, Çanak T Ç, Karahasanoğlu M, et al. Synthesis and characterization of phosphorus-based flame retardant containing rigid polyurethane foam[J]. Journal of Thermal Analysis and Calorimetry, 2022, 147(6): 4119-4129. |
36 | Jha A, Shaik K A, Bhardwaj Y K, et al. Electron beam assisted recycling of polyurethane (PU) sponge: turning it into a superabsorbent for wastewater treatment[J]. Journal of Applied Polymer Science, 2023, 140(9): e53545. |
37 | Li J H, Zhu H F, Fang D D, et al. Mechanochemistry recycling of polyurethane foam using urethane exchange reaction[J]. Journal of Environmental Chemical Engineering, 2023, 11(3): 110269. |
38 | Li C Y, Zhang J, Shan R, et al. Kinetic study for thermocatalytic degradation of waste mixed cloth over antibiotic residue derived carbon-based solid acids[J]. Fuel, 2023, 331: 125797. |
39 | Liu J, Xu J, Lin M, et al. Fabrication and modification research of namboo activated carbon[J]. New Chemical Materials, 2017, 45: 184: 1006-3536. |
40 | Hu M, Ma J J, Jiang Z R, et al. New insights into nitrogen control strategies in sewage sludge pyrolysis toward environmental and economic sustainability[J]. Science of the Total Environment, 2023, 882: 163326. |
41 | Mainali K, Mood S H, Pelaez-Samaniego M R, et al. Production and applications of N-doped carbons from bioresources: a review[J]. Catalysis Today, 2023, 423: 114248. |
42 | 徐坤, 方阳, 宫梦, 等. 葡萄糖催化热解制备左旋葡萄糖酮特性研究[J]. 化工学报, 2020, 71(8): 3594-3601. |
Xu K, Fang Y, Gong M, et al. Study on the catalytic pyrolysis of glucose to prepare levoglucosenone[J]. CIESC Journal, 2020, 71(8): 3594-3601. | |
43 | Yang H P, Lei S S, Xu K, et al. Catalytic pyrolysis of cellulose with sulfonated carbon catalyst to produce levoglucosenone[J]. Fuel Processing Technology, 2022, 234: 107323. |
44 | Zhang J, Li C Y, Gu J, et al. Synergistic effects for fast co-pyrolysis of strong-acid cation exchange resin and cellulose using Py-GC/MS[J]. Fuel, 2021, 302: 121232. |
45 | Zhang C T, Chao L, Zhang Z M, et al. Pyrolysis of cellulose: evolution of functionalities and structure of bio-char versus temperature[J]. Renewable and Sustainable Energy Reviews, 2021, 135: 110416. |
46 | Hu B, Lu Q, Wu Y T, et al. Insight into the formation mechanism of levoglucosenone in phosphoric acid-catalyzed fast pyrolysis of cellulose[J]. Journal of Energy Chemistry, 2020, 43: 78-89. |
47 | Wang B, Li K, Zhang C B, et al. Influence of cellulose ultrastructure on the catalytic pyrolysis for selective production of levoglucosenone[J]. Industrial Crops and Products, 2023, 192: 116072. |
48 | González Martínez M, Ohra-aho T, Tamminen T, et al. Detailed structural elucidation of different lignocellulosic biomass types using optimized temperature and time profiles in fractionated Py-GC/MS[J]. Journal of Analytical and Applied Pyrolysis, 2019, 140: 112-124. |
49 | Cao Q, Ye T, Li W H, et al. Dehydration of saccharides to anhydro-sugars in dioxane: effect of reactants, acidic strength and water removal in situ[J]. Cellulose, 2020, 27(17): 9825-9838. |
[1] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[2] | 郑佳丽, 李志会, 赵新强, 王延吉. 离子液体催化合成2-氰基呋喃反应动力学研究[J]. 化工学报, 2023, 74(9): 3708-3715. |
[3] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[4] | 吴雷, 刘姣, 李长聪, 周军, 叶干, 刘田田, 朱瑞玉, 张秋利, 宋永辉. 低阶粉煤催化微波热解制备含碳纳米管的高附加值改性兰炭末[J]. 化工学报, 2023, 74(9): 3956-3967. |
[5] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[6] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[7] | 李凯旋, 谭伟, 张曼玉, 徐志豪, 王旭裕, 纪红兵. 富含零价钴活性位点的钴氮碳/活性炭设计及甲醛催化氧化应用研究[J]. 化工学报, 2023, 74(8): 3342-3352. |
[8] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[9] | 陈佳起, 赵万玉, 姚睿充, 侯道林, 董社英. 开心果壳基碳点的合成及其对Q235碳钢的缓蚀行为研究[J]. 化工学报, 2023, 74(8): 3446-3456. |
[10] | 涂玉明, 邵高燕, 陈健杰, 刘凤, 田世超, 周智勇, 任钟旗. 钙基催化剂的设计合成及应用研究进展[J]. 化工学报, 2023, 74(7): 2717-2734. |
[11] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[12] | 李盼, 马俊洋, 陈志豪, 王丽, 郭耘. Ru/α-MnO2催化剂形貌对NH3-SCO反应性能的影响[J]. 化工学报, 2023, 74(7): 2908-2918. |
[13] | 吴文涛, 褚良永, 张玲洁, 谭伟民, 沈丽明, 暴宁钟. 腰果酚生物基自愈合微胶囊的高效制备工艺研究[J]. 化工学报, 2023, 74(7): 3103-3115. |
[14] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[15] | 董茂林, 陈李栋, 黄六莲, 吴伟兵, 戴红旗, 卞辉洋. 酸性助水溶剂制备木质纳米纤维素及功能应用研究进展[J]. 化工学报, 2023, 74(6): 2281-2295. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||