化工学报 ›› 2022, Vol. 73 ›› Issue (9): 4070-4078.DOI: 10.11949/0438-1157.20220475
郝泽光(), 张乾(), 高增林, 张宏文, 彭泽宇, 杨凯, 梁丽彤, 黄伟
收稿日期:
2022-04-01
修回日期:
2022-06-27
出版日期:
2022-09-05
发布日期:
2022-10-09
通讯作者:
张乾
作者简介:
郝泽光(1995—),男,硕士研究生,2328968760@qq.com
基金资助:
Zeguang HAO(), Qian ZHANG(), Zenglin GAO, Hongwen ZHANG, Zeyu PENG, Kai YANG, Litong LIANG, Wei HUANG
Received:
2022-04-01
Revised:
2022-06-27
Online:
2022-09-05
Published:
2022-10-09
Contact:
Qian ZHANG
摘要:
基于生物质焦油氧含量高、品质差的缺陷,本文提出将生物质与重油共转化利用的方法。以催化裂化油浆(FCC)、稻壳(RH)、木屑(PS)为原料,通过低温固定床热解实验对其共热解产物分布进行了研究。结果表明,在FCC的供氢作用下,共热解有利于焦油中含氧化合物的脱除,随着生物质比例增加,反应过程中脱羧基、脱羰基反应减弱,脱羟基反应增强,产物中CO、CO2产率较计算值增加幅度减小,水的产率较计算值逐渐增大。焦油中烃类物质增加,其中芳香烃以二元环和四元环增加为主,脂肪烃中以C13~C20增加为主。整体上,共热解过程促进了半焦产率的增加,焦油产率虽无明显改变但品质得到了显著提升。
中图分类号:
郝泽光, 张乾, 高增林, 张宏文, 彭泽宇, 杨凯, 梁丽彤, 黄伟. 生物质与催化裂化油浆共热解协同作用研究[J]. 化工学报, 2022, 73(9): 4070-4078.
Zeguang HAO, Qian ZHANG, Zenglin GAO, Hongwen ZHANG, Zeyu PENG, Kai YANG, Litong LIANG, Wei HUANG. Study on synergistic effect of biomass and FCC slurry co-pyrolysis[J]. CIESC Journal, 2022, 73(9): 4070-4078.
原料 | 工业分析/%(mass) | 元素分析/%(mass,daf) | 高位发热量/ (MJ/kg) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mad | Ad | Vdaf | FCd | C | H | O① | N | St | |||
RH | 10.93 | 14.06 | 81.12 | 16.22 | 50.23 | 5.46 | 43.23 | 0.99 | 0.09 | 17.58 | |
PS | 1.54 | 36.49 | 90.95 | 5.75 | 43.31 | 4.61 | 51.09 | 0.98 | 0.01 | 8.72 |
表1 稻壳与木屑工业分析和元素分析
Table 1 Proximate and ultimate analysis of the rice husk and pine sawdust
原料 | 工业分析/%(mass) | 元素分析/%(mass,daf) | 高位发热量/ (MJ/kg) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mad | Ad | Vdaf | FCd | C | H | O① | N | St | |||
RH | 10.93 | 14.06 | 81.12 | 16.22 | 50.23 | 5.46 | 43.23 | 0.99 | 0.09 | 17.58 | |
PS | 1.54 | 36.49 | 90.95 | 5.75 | 43.31 | 4.61 | 51.09 | 0.98 | 0.01 | 8.72 |
样品 | 灰成分分析/%(mass) | ||||||||
---|---|---|---|---|---|---|---|---|---|
SiO2 | Fe2O3 | Al2O3 | CaO | MgO | K2O | Na2O | SO3 | P2O5 | |
稻壳灰 | 78.29 | 0.54 | 1.18 | 1.42 | 1.72 | 6.92 | 0.26 | 0.85 | 1.21 |
木屑灰 | 16.00 | 0.71 | 1.56 | 27.36 | 19.49 | 0.43 | 0.23 | 0.09 | 0.08 |
表2 稻壳与木屑灰成分分析
Table 2 Ash composition analyses of the rice husk and pine sawdust
样品 | 灰成分分析/%(mass) | ||||||||
---|---|---|---|---|---|---|---|---|---|
SiO2 | Fe2O3 | Al2O3 | CaO | MgO | K2O | Na2O | SO3 | P2O5 | |
稻壳灰 | 78.29 | 0.54 | 1.18 | 1.42 | 1.72 | 6.92 | 0.26 | 0.85 | 1.21 |
木屑灰 | 16.00 | 0.71 | 1.56 | 27.36 | 19.49 | 0.43 | 0.23 | 0.09 | 0.08 |
四组分分析/%(mass) | 元素分析/%(mass) | ||||||||
---|---|---|---|---|---|---|---|---|---|
饱和分 | 芳香分 | 胶质 | 沥青质 | C | H | N | O | S | |
26.52 | 44.89 | 23.03 | 5.56 | 90.02 | 9.04 | 0.30 | 1.11 | 0.32 |
表3 FCC的四组分分析和元素分析
Table 3 Four-component analysis and ultimate analysis of the FCC
四组分分析/%(mass) | 元素分析/%(mass) | ||||||||
---|---|---|---|---|---|---|---|---|---|
饱和分 | 芳香分 | 胶质 | 沥青质 | C | H | N | O | S | |
26.52 | 44.89 | 23.03 | 5.56 | 90.02 | 9.04 | 0.30 | 1.11 | 0.32 |
样品 | 起始 温度/℃ | 峰值 温度/℃ | 结束 温度/℃ | 最大峰值 速率/(%/min) | 残焦 剩余量/% |
---|---|---|---|---|---|
FCC | 283 | 354 | 490 | 6.70 | 5.84 |
RH | 233 | 329 | 380 | 7.48 | 35.82 |
PS | 258 | 340 | 385 | 4.60 | 63.72 |
表4 生物质与FCC单独热解特征温度
Table 4 Characteristic temperatures of single pyrolysis of biomass and FCC
样品 | 起始 温度/℃ | 峰值 温度/℃ | 结束 温度/℃ | 最大峰值 速率/(%/min) | 残焦 剩余量/% |
---|---|---|---|---|---|
FCC | 283 | 354 | 490 | 6.70 | 5.84 |
RH | 233 | 329 | 380 | 7.48 | 35.82 |
PS | 258 | 340 | 385 | 4.60 | 63.72 |
图5 不同生物质与FCC共热解油中不同种类物质实验值与计算值对比
Fig.5 Comparison of experimental and calculated values of different kinds of substances in different biomass and FCC co-pyrolysis tar
1 | Long H L, Li X B, Wang H, et al. Biomass resources and their bioenergy potential estimation: a review[J]. Renewable & Sustainable Energy Reviews, 2013, 26: 344-352. |
2 | Qiu H G, Sun L X, Xu X L, et al. Potentials of crop residues for commercial energy production in China: a geographic and economic analysis[J]. Biomass and Bioenergy, 2014, 64: 110-123. |
3 | Slade R, Bauen A, Gross R. Global bioenergy resources[J]. Nature Climate Change, 2014, 4(2): 99-105. |
4 | 张溪, 张立龙, 李瑞,等. 基于能量集成的秸秆生物质快速热解生命周期评价[J]. 化工学报, 2021, 72(5): 2792-2800. |
Zhang X, Zhang L L, Li R, et al. Life cycle assessment of straw fast pyrolysis based on energy integration[J]. CIESC Journal, 2021, 72(5): 2792-2800. | |
5 | Ma K, Yu M X, Dai Y, et al. Control of an energy-saving side-stream extractive distillation process with different disturbance conditions[J]. Separation and Purification Technology, 2019, 210: 195-208. |
6 | Khalid A, Aslam M, Qyyum M A, et al. Membrane separation processes for dehydration of bioethanol from fermentation broths: recent developments, challenges, and prospects[J]. Renewable and Sustainable Energy Reviews, 2019, 105: 427-443. |
7 | Ang M B M Y, Marquez J A D, Huang S H, et al. A recent review of developmental trends in fabricating pervaporation membranes through interfacial polymerization and future prospects[J]. Journal of Industrial and Engineering Chemistry, 2021, 97: 129-141. |
8 | 吴乐, 王竞, 王玉琪,等. 生物质油与蜡油在FCC装置共炼的多目标优化[J]. 化工学报, 2020, 71(5): 2182-2189. |
Wu L, Wang J, Wang Y Q, et al. Multi-objective optimization of co-processing of bio-oil and vacuum gas oil in FCC[J]. CIESC Journal, 2020, 71(5): 2182-2189. | |
9 | 陆强, 郭浩强, 叶小宁,等. 供氢剂作用下生物质快速热解的研究进展[J]. 林产化学与工业, 2017, 37(6): 1-9. |
Lu Q, Guo H Q, Ye X N, et al. Research progress of hydrogen donor assisted fast pyrolysis of biomass[J]. Chemistry and Industry of Forest Products, 2017, 37(6): 1-9. | |
10 | 王学云, 张晓静, 陈亚飞, 等. 催化裂化油浆用作煤油共炼溶剂的流变性研究[J]. 洁净煤技术, 2016, 22(2): 64-68, 107. |
Wang X Y, Zhang X J, Chen Y F, et al. Rheological properties of FCC slurry using as coal-oil co-processing solvent[J]. Clean Coal Technology, 2016, 22(2): 64-68, 107. | |
11 | Vilcáez J, Watanabe M, Watanabe N, et al. Hydrothermal extractive upgrading of bitumen without coke formation[J]. Fuel, 2012, 102(1): 379-385. |
12 | Yang J X, Rizkiana J, Widayatno W B, et al. Fast co-pyrolysis of low density polyethylene and biomass residue for oil production[J]. Energy Conversion and Management, 2016, 120: 422-429. |
13 | Uçar S, Karagöz S. Co-pyrolysis of pine nut shells with scrap tires[J]. Fuel, 2014, 137(1): 85-93. |
14 | Lin B C, Huang Q X, Chi Y. Co-pyrolysis of oily sludge and rice husk for improving pyrolysis oil quality[J]. Fuel Processing Technology, 2018, 177: 275-282. |
15 | Hu G J, Li J B, Zhang X Y, et al. Investigation of waste biomass co-pyrolysis with petroleum sludge using a response surface methodology[J]. Journal of Environmental Management, 2017, 192: 234-242. |
16 | Liu Z, Li Y, Yu F H, et al. Co-pyrolysis of oil sand bitumen with lignocellulosic biomass under hydrothermal conditions[J]. Chemical Engineering Science, 2019, 199: 417-425. |
17 | Liu J W, Ahmad F, Zhang Q, et al. Interactive tools to assist convenient group-type identification and comparison of low-temperature coal tar using GC × GC-MS[J]. Fuel, 2020, 278:118314. |
18 | Ynlgın M, Duranay N D, Pehlivan D. Co-pyrolysis of lignite and sugar beet pulp[J]. Energy Conversion and Management, 2010, 51(5): 1060-1064. |
19 | 周翔, 赵毅, 田辉平, 等. 催化裂化油浆中较多链烷烃未裂化原因分析[J]. 石油炼制与化工, 2015, 46(12): 20-24. |
Zhou X, Zhao Y, Tian H P, et al. Key reasons for uncracked alkane in FCC slurry[J]. Petroleum Processing and Petrochemicals, 2015, 46(12): 20-24. | |
20 | Shen D K, Jin W, Hu J, et al. An overview on fast pyrolysis of the main constituents in lignocellulosic biomass to valued-added chemicals: structures, pathways and interactions[J]. Renewable and Sustainable Energy Reviews, 2015, 51: 761-774. |
21 | Li J J, Wang X, Tang X D, et al. Upgrading of heavy oil by thermal treatment in the presence of alkali-treated Fe/ZSM-5, glycerol, and biomass[J]. Fuel Processing Technology, 2019, 188: 137-145. |
22 | Wang H, Wu Y, He L, et al. Supporting tungsten oxide on zirconia by hydrothermal and impregnation methods and its use as a catalyst to reduce the viscosity of heavy crude oil[J]. Energy & Fuels, 2012, 26(11): 6518-6527. |
23 | Niu M M, Sun R Y, Ding K, et al. Synergistic effect on thermal behavior and product characteristics during co-pyrolysis of biomass and waste tire: influence of biomass species and waste blending ratios[J]. Energy, 2022, 240: 122808. |
24 | Qin Q W, Zhou J S, Zhou L T, et al. Investigation on effect of coal fly ash on properties of corn straw pyrolysis products[J]. Journal of the Energy Institute, 2022,100: 213-224. |
25 | 杨继涛, 陈进荣. 我国四种减压渣油族组分的热反应行为[J]. 石油学报(石油加工), 1994, 10(2): 11. |
Yang J T, Chen J R, Sun Z C, et al. Behavior of thermolysis of subfractions in four chinese vacuum residues[J]. Acta Petrolei Sinica (Petroleum Processing Section), 1994, 10(2): 11. | |
26 | Singh M, Salaudeen S A, Gilroyed B H, et al. A review on co-pyrolysis of biomass with plastics and tires: recent progress, catalyst development, and scaling up potential[J]. Biomass Conversion and Biorefinery, 2021: 1-25. |
27 | 李中亚, 申海平, 范启明. 分子水平重油生焦规律研究进展[J]. 化工进展, 2016(S1): 93-100. |
Li Z Y, Shen H P, Fan Q M. Advances in coke formation rule of heavy oil at the molecular level[J]. Chemical Industry and Engineering Progress, 2016(S1): 93-100. | |
28 | Zhang X, Lei H, Chen S, et al. Catalytic co-pyrolysis of lignocellulosic biomass with polymers: a critical review[J]. Green Chemistry, 2016, 18(15): 4145-4169. |
29 | Alam M, Bhavanam A, Jana A, et al. Co-pyrolysis of bamboo sawdust and plastic: synergistic effects and kinetics[J]. Renewable Energy, 2020, 149: 1133-1145. |
30 | Li X Y, Zhang H F, Li J, et al. Improving the aromatic production in catalytic fast pyrolysis of cellulose by co-feeding low-density polyethylene[J]. Applied Catalysis A General, 2013, 455: 114-121. |
31 | Zhang H Y, Nie J L, Xiao R, et al. Catalytic co-pyrolysis of biomass and different plastics (polyethylene, polypropylene, and polystyrene) to improve hydrocarbon yield in a fluidized-bed reactor[J]. Energy & Fuels, 2014, 28(3): 1940-1947. |
32 | 林晓娜, 雷寒武, 易维明,等. 活性炭催化生物质与低密度聚乙烯共热解[J]. 农业工程学报, 2021, 37(15): 189-196. |
Lin X N, Lei H W, Yi W M, et al. Catalytic co-pyrolysis of biomass and low-density polyethylene over activated carbon catalyst[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(15): 189-196. | |
33 | 惠贺龙, 李松庚, 宋文立. 生物质与废塑料催化热解制芳烃(Ⅰ):协同作用的强化[J]. 化工学报, 2017, 68(10): 3832-3840. |
Hui H L, Li S G, Song W L. Aromatic hydrocarbon from catalytic pyrolysis of biomass and plastic wastes(Ⅰ): Enhancing synergistic effect[J]. CIESC Journal, 2017, 68(10): 3832-3840. |
[1] | 郑佳丽, 李志会, 赵新强, 王延吉. 离子液体催化合成2-氰基呋喃反应动力学研究[J]. 化工学报, 2023, 74(9): 3708-3715. |
[2] | 陈佳起, 赵万玉, 姚睿充, 侯道林, 董社英. 开心果壳基碳点的合成及其对Q235碳钢的缓蚀行为研究[J]. 化工学报, 2023, 74(8): 3446-3456. |
[3] | 吴文涛, 褚良永, 张玲洁, 谭伟民, 沈丽明, 暴宁钟. 腰果酚生物基自愈合微胶囊的高效制备工艺研究[J]. 化工学报, 2023, 74(7): 3103-3115. |
[4] | 董茂林, 陈李栋, 黄六莲, 吴伟兵, 戴红旗, 卞辉洋. 酸性助水溶剂制备木质纳米纤维素及功能应用研究进展[J]. 化工学报, 2023, 74(6): 2281-2295. |
[5] | 杨峥豪, 何臻, 常玉龙, 靳紫恒, 江霞. 生物质快速热解下行式流化床反应器研究进展[J]. 化工学报, 2023, 74(6): 2249-2263. |
[6] | 葛泽峰, 吴雨青, 曾名迅, 查振婷, 马宇娜, 侯增辉, 张会岩. 灰化学成分对生物质气化特性的影响规律[J]. 化工学报, 2023, 74(5): 2136-2146. |
[7] | 祖凌鑫, 胡荣庭, 李鑫, 陈余道, 陈广林. 木质生物质化学组分的碳释放产物特征和反硝化利用程度[J]. 化工学报, 2023, 74(3): 1332-1342. |
[8] | 刘海芹, 李博文, 凌喆, 刘亮, 俞娟, 范一民, 勇强. 羟基-炔点击化学改性半乳甘露聚糖薄膜的制备及性能研究[J]. 化工学报, 2023, 74(3): 1370-1378. |
[9] | 郑杰元, 张先伟, 万金涛, 范宏. 丁香酚环氧有机硅树脂的制备及其固化动力学研究[J]. 化工学报, 2023, 74(2): 924-932. |
[10] | 程伟江, 汪何琦, 高翔, 李娜, 马赛男. 锂离子电池硅基负极电解液成膜添加剂的研究进展[J]. 化工学报, 2023, 74(2): 571-584. |
[11] | 陈健鑫, 朱瑞杰, 盛楠, 朱春宇, 饶中浩. 纤维素基生物质多孔炭的制备及其超级电容器性能研究[J]. 化工学报, 2022, 73(9): 4194-4206. |
[12] | 张东旺, 杨海瑞, 周托, 黄中, 李诗媛, 张缦. 生物质锅炉对流受热面积灰冷态模拟实验研究[J]. 化工学报, 2022, 73(8): 3731-3738. |
[13] | 刘新华, 韩振南, 韩健, 梁斌, 张楠, 胡善伟, 白丁荣, 许光文. 基于热解与燃烧反应重构的低NO x 解耦燃烧原理与技术[J]. 化工学报, 2022, 73(8): 3355-3368. |
[14] | 张军, 胡升, 顾菁, 袁浩然, 陈勇. 甲醇体系电镀污泥衍生磁性多金属材料催化糠醛加氢转化[J]. 化工学报, 2022, 73(7): 2996-3006. |
[15] | 黄丽菁, 黄继娇, 李鹏辉, 刘芷诺, 蒋康杰, 吴文娟. 木质素羟丙基磺甲基化改性及其对纤维素酶水解的影响[J]. 化工学报, 2022, 73(7): 3232-3239. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||