化工学报 ›› 2024, Vol. 75 ›› Issue (8): 2800-2811.DOI: 10.11949/0438-1157.20240250
收稿日期:
2024-03-04
修回日期:
2024-04-26
出版日期:
2024-08-25
发布日期:
2024-08-21
通讯作者:
陈伟雄
作者简介:
罗正航(2001—),男,硕士研究生,lzh2426306030@stu.xjtu.edu.cn
基金资助:
Zhenghang LUO(), Jingyu LI, Weixiong CHEN(), Daotong CHONG, Junjie YAN
Received:
2024-03-04
Revised:
2024-04-26
Online:
2024-08-25
Published:
2024-08-21
Contact:
Weixiong CHEN
摘要:
蒸汽直接接触冷凝具有高效的传热传质性能,广泛应用于核能安全等领域。低质量流率蒸汽直接接触冷凝具有低频压力振荡,易引发设备共振。相比陆地稳定工况,海洋条件下摇摆运动可能加剧气液界面振荡,进一步影响设备的安全运行。为此,通过数值模拟对摇摆条件下低流率蒸汽凝结过程进行研究,分析了摇摆条件下压力、换热特性和气泡受力的变化规律,结果表明压力和传热系数剧烈波动主要集中于气泡颈缩和脱离阶段,此时气泡受力也达到最大值,气泡主要受惯性力和凝结力作用。此外,对比静止工况和摇摆工况,发现摇摆条件下由气泡速度变化导致的惯性力部分增大,摇摆运动带来的附加摇摆速度强化了气液界面的换热性能,平均传热系数远高于静止工况。
中图分类号:
罗正航, 李敬宇, 陈伟雄, 种道彤, 严俊杰. 摇摆运动下低流率蒸汽冷凝换热特性和气泡受力数值模拟[J]. 化工学报, 2024, 75(8): 2800-2811.
Zhenghang LUO, Jingyu LI, Weixiong CHEN, Daotong CHONG, Junjie YAN. Numerical simulation of heat transfer characteristic and bubble force analysis of low flow rate vapor condensation under rolling motion[J]. CIESC Journal, 2024, 75(8): 2800-2811.
1 | Popov E L, Stanev I E. Improving safety with a steam injector [J]. Nuclear Engineering International, 1995, 40(491): 36-7. |
2 | Shah A, Chughtai I R, Inayat M H. Numerical simulation of direct-contact condensation from a supersonic steam jet in subcooled water[J]. Chinese Journal of Chemical Engineering, 2010, 18(4): 577-587. |
3 | Li Y Z, Li C, Chen E F, et al. Pressure wave propagation characteristics in a two-phase flow pipeline for liquid-propellant rocket[J]. Aerospace Science and Technology, 2011, 15(6): 453-464. |
4 | Lee K, Lee K H, Lee J I, et al. A new design concept for offshore nuclear power plants with enhanced safety features[J]. Nuclear Engineering and Design, 2013, 254: 129-141. |
5 | Clerx N, van Deurzen L G M, Pecenko A, et al. Temperature fields induced by direct contact condensation of steam in a cross-flow in a channel[J]. Heat and Mass Transfer, 2011, 47(8): 981-990. |
6 | Wei P B, Luo Z H, Song S L, et al. Theoretical study on pressure oscillation dominant frequency of bubbles submerged jet under rolling condition[J]. Progress in Nuclear Energy, 2024, 172: 105206. |
7 | Chen W X, Zhao Q B, Wang Y C, et al. Characteristic of pressure oscillation caused by turbulent vortexes and affected region of pressure oscillation[J]. Experimental Thermal and Fluid Science, 2016, 76: 24-33. |
8 | Xu Q, Liang L, She Y L, et al. Numerical investigation on thermal hydraulic characteristics of steam jet condensation in subcooled water flow in pipes[J]. International Journal of Heat and Mass Transfer, 2022, 184: 122277. |
9 | Wang J, Chen C, Liang D D, et al. Temperature and pressure oscillations induced by steam direct contact condensation in a T-junction with porous inner-structures[J]. International Journal of Heat and Mass Transfer, 2021, 168: 120863. |
10 | 魏鹏博, 唐鑫, 莫岳林, 等. 横荡条件下不稳定射流压力振荡主频实验研究[J]. 工程热物理学报, 2023, 44(5): 1264-1269. |
Wei P B, Tang X, Mo Y L, et al. Experimental study on the dominant frequency of pressure oscillations in unstable jets under sway conditions[J]. Journal of Engineering Thermophysics, 2023, 44(5): 1264-1269. | |
11 | Simpson M E, Chan C K. Hydrodynamics of a subsonic vapor jet in subcooled liquid[J]. Journal of Heat Transfer, 1982, 104(2): 271-278. |
12 | Yuan F, Chong D T, Zhao Q B, et al. Pressure oscillation of submerged steam condensation in condensation oscillation regime[J]. International Journal of Heat and Mass Transfer, 2016, 98: 193-203. |
13 | Wang Z J, Liu H Q, Guo W T, et al. Experimental investigation on the effect of direct contact condensation regime on thermal stratification[J]. Nuclear Engineering and Design, 2024, 421: 113104. |
14 | Clerx N. Experimental study of direct contact condensation of steam in turbulent duct flow[D]. Eindhoven: Technische Universiteit Eindhoven, 2010. |
15 | Song S L, Yue X Y, Zhao Q B, et al. Numerical study on mechanism of condensation oscillation of unstable steam jet[J]. Chemical Engineering Science, 2020, 211: 115303. |
16 | Song S L, Zhao Q B, Chong D T, et al. Numerical investigation on the heat transfer characteristics of unstable steam jet under different operating conditions[J]. International Journal of Heat and Mass Transfer, 2021, 180: 121761. |
17 | Aya I, Nariai H, Kobayashi M. Pressure and fluid oscillations in vent system due to steam condensation(Ⅰ)[J]. Journal of Nuclear Science and Technology, 1980, 17(7): 499-515. |
18 | Aya I, Kobayashi M, Nariai H. Pressure and fluid oscillations in vent system due to steam condensation(Ⅱ)[J]. Journal of Nuclear Science and Technology, 1983, 20(3): 213-227. |
19 | Chong D T, Yue X Y, Wang L T, et al. Experimental investigation on the condensation patterns and pressure oscillation characteristics of steam submerged jet through a horizontal pipe at low steam mass flux[J]. International Journal of Heat and Mass Transfer, 2019, 139: 648-659. |
20 | Hujala E, Tanskanen V, Hyvärinen J. Pattern recognition algorithm for analysis of chugging direct contact condensation[J]. Nuclear Engineering and Design, 2018, 332: 202-212. |
21 | Hujala E, Tanskanen V, Hyvärinen J. Frequency analysis of chugging condensation in pressure suppression pool system with pattern recognition[J]. Nuclear Engineering and Design, 2018, 339: 244-252. |
22 | Li W C, Meng Z M, Sun Z N, et al. Investigation on steam direct contact condensation injected vertically at low mass flux(part Ⅱ): Steam–air mixture experiment[J]. International Journal of Heat and Mass Transfer, 2020, 155: 119807. |
23 | 秦胜杰, 高璞珍. 摇摆运动对过冷沸腾流体中气泡受力的影响[J]. 核动力工程, 2008, 29(2): 20-23. |
Qin S J, Gao P Z. Effect of rolling motion on forces acting on bubbles in sub-cooled boiling flow[J]. Nuclear Power Engineering, 2008, 29(2): 20-23. | |
24 | Wang C, Wang S W, Wang H, et al. Investigation of flow pulsation characteristic in single-phase forced circulation under rolling motion[J]. Annals of Nuclear Energy, 2014, 64: 50-56. |
25 | 谢添舟, 陈炳德, 闫晓, 等. 摇摆条件下矩形窄缝通道内气泡脱离直径实验研究[J]. 原子能科学技术, 2014, 48(4): 637-641. |
Xie T Z, Chen B D, Yan X, et al. Experimental research on bubble departure diameter in narrow rectangular channel under rolling motion[J]. Atomic Energy Science and Technology, 2014, 48(4): 637-641. | |
26 | Murata H, Iyori I, Kobayashi M. Natural circulation characteristics of a marine reactor in rolling motion[J]. Nuclear Engineering and Design, 1990, 118(2): 141-154. |
27 | Murata H, Sawada K I, Kobayashi M. Experimental investigation of natural convection in a core of a marine reactor in rolling motion[J]. Journal of Nuclear Science and Technology, 2000, 37(6): 509-517. |
28 | 黄振, 高璞珍, 谭思超, 等. 摇摆对传热影响的机理分析[J]. 核动力工程, 2010, 31(3): 50-54. |
Huang Z, Gao P Z, Tan S C, et al. Mechanism analysis of effect of rolling motion on heat transfer[J]. Nuclear Power Engineering, 2010, 31(3): 50-54. | |
29 | Chen C, Gao P Z, Tan S C, et al. Boiling heat transfer characteristics of pulsating flow in rectangular channel under rolling motion[J]. Experimental Thermal and Fluid Science, 2016, 70: 246-254. |
30 | Hughmark G A. Mass and heat transfer from rigid spheres[J]. AIChE Journal, 1967, 13(6): 1219-1221. |
31 | Anglart H, Nylund O. CFD application to prediction of void distribution in two-phase bubbly flows in rod bundles[J]. Nuclear Engineering and Design, 1996, 163(1/2): 81-98. |
32 | Song S L, Chong D T, Zhao Q B, et al. Numerical investigation of the condensation oscillation mechanism of submerged steam jet with high mass flux[J]. Chemical Engineering Science, 2023, 270: 118516. |
33 | Li J Y, Luo Z H, Zhou Y, et al. Numerical study on dominant oscillation frequency of unstable steam jet under heaving condition[J]. International Journal of Heat and Mass Transfer, 2024, 221: 125076. |
34 | Zhu C F, Li Y Z, Xie F S, et al. Development of a modified mass transfer model based on height function method to capture the pressure oscillation occurred in direct contact condensation process[J]. International Journal of Heat and Mass Transfer, 2023, 201: 123619. |
35 | Narayanan J K, Roy A, Ghosh P. Numerical studies on unstable oscillatory direct contact condensation (DCC) of oxygen vapor jets in subcooled flowing liquid oxygen[J]. Cryogenics, 2020, 111: 103176. |
36 | Ji Y, Zhang H C, Tong J F, et al. Entropy assessment on direct contact condensation of subsonic steam jets in a water tank through numerical investigation[J]. Entropy, 2016, 18(1): 21. |
37 | van Helden W G J, van der Geld C W M, Boot P G M. Forces on bubbles growing and detaching in flow along a vertical wall[J]. International Journal of Heat and Mass Transfer, 1995, 38(11): 2075-2088. |
38 | Gaddis E S, Vogelpohl A. Bubble formation in quiescent liquids under constant flow conditions[J]. Chemical Engineering Science, 1986, 41(1): 97-105. |
39 | Zhang L, Shoji M. Aperiodic bubble formation from a submerged orifice[J]. Chemical Engineering Science, 2001, 56(18): 5371-5381. |
[1] | 王皓宇, 杨杨, 荆文婕, 杨斌, 唐雨, 刘毅. 不同旋流器作用下气液螺旋环状流动特性研究[J]. 化工学报, 2024, 75(8): 2744-2755. |
[2] | 赵亮, 李雨桥, 张德, 沈胜强. 螺旋喷嘴内外流场特性的实验研究[J]. 化工学报, 2024, 75(8): 2777-2786. |
[3] | 曾港, 陈林, 杨董, 袁海专, 黄彦平. 矩形通道内超临界CO2局部热流场可视化实验[J]. 化工学报, 2024, 75(8): 2831-2839. |
[4] | 曲玖哲, 杨鹏, 杨绪飞, 张伟, 宇波, 孙东亮, 王晓东. 硅基微柱簇阵列微通道流动沸腾实验研究[J]. 化工学报, 2024, 75(8): 2840-2851. |
[5] | 李倩, 张蓉民, 林子杰, 战琪, 蔡伟华. 基于机器学习的印刷电路板式换热器流动换热预测与仿真[J]. 化工学报, 2024, 75(8): 2852-2864. |
[6] | 曹佳蕾, 孙立岩, 曾德望, 尹凡, 高子翔, 肖睿. 双流化床化学链制氢反应器的数值模拟[J]. 化工学报, 2024, 75(8): 2865-2874. |
[7] | 李彦熹, 王晔春, 谢向东, 王进芝, 王江, 周煜, 潘盈秀, 丁文涛, 郭烈锦. 蜗壳式多通道气液旋流分离器结构优化及分离特性研究[J]. 化工学报, 2024, 75(8): 2875-2885. |
[8] | 金虎, 杨帆, 戴梦瑶. 基于格子Boltzmann方法的液滴在圆柱壁面上运动过程研究[J]. 化工学报, 2024, 75(8): 2897-2908. |
[9] | 吕方明, 包志铭, 王博文, 焦魁. 气体扩散层侵入流道对燃料电池水管理影响研究[J]. 化工学报, 2024, 75(8): 2929-2938. |
[10] | 周文轩, 刘珍, 张福建, 张忠强. 高通量-高截留率时间维度膜法水处理机理研究[J]. 化工学报, 2024, 75(7): 2583-2593. |
[11] | 张香港, 常玉龙, 汪华林, 江霞. 废弃秸秆等生物质低能耗非相变秒级干燥[J]. 化工学报, 2024, 75(7): 2433-2445. |
[12] | 王芝安, 兰忠, 马学虎. 喷嘴参数对超临界水热燃烧特性影响的模拟[J]. 化工学报, 2024, 75(6): 2190-2200. |
[13] | 李新泽, 张双星, 杨洪海, 杜文静. 基于电池冷却用新型脉动热管性能的实验研究[J]. 化工学报, 2024, 75(6): 2222-2232. |
[14] | 关朝阳, 黄国庆, 张一喃, 陈宏霞, 杜小泽. 泡沫铜导离气泡强化流动沸腾换热实验研究[J]. 化工学报, 2024, 75(5): 1765-1776. |
[15] | 师毓辉, 邢继远, 姜雪晗, 叶爽, 黄伟光. 基于PBM的离心式叶轮内气泡破碎合并数值模拟[J]. 化工学报, 2024, 75(5): 1816-1829. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 227
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 152
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||