化工学报 ›› 2023, Vol. 74 ›› Issue (S1): 223-234.DOI: 10.11949/0438-1157.20221552
王志国(), 薛孟(), 董芋双, 张田震, 秦晓凯, 韩强
收稿日期:
2022-11-03
修回日期:
2022-12-05
出版日期:
2023-06-05
发布日期:
2023-09-27
通讯作者:
薛孟
作者简介:
王志国(1966—),男,博士,教授,dqwangzhiguo@126.com
基金资助:
Zhiguo WANG(), Meng XUE(), Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN
Received:
2022-11-03
Revised:
2022-12-05
Online:
2023-06-05
Published:
2023-09-27
Contact:
Meng XUE
摘要:
随着能源结构转型,干热岩等地热岩体得到了快速发展。地热岩体内部结构组成复杂,渗流与传热过程多变,如何针对岩体裂隙分布特征,建立更加精准的描述表征模型并进行多物理场耦合分析,有待深入探讨。基于裂隙粗糙性表征(joint roughness coefficient,JRC)描述方法,将表征单元体(representative elementary volume,REV)引入到JRC尺寸选取中,并将其应用于地热岩体物理模型中,采用数值模拟方法,对地热岩体温度场与渗流场进行了耦合分析。研究发现,裂隙附近温度场分布与裂隙的形态基本一致,表现出一种基岩温度场随着裂隙形态变化的波动性规律;流体注入速度和温度对系统运行达到稳态的时间影响呈负相关性;较低的注入速度和较高的注入温度都可以有效延长系统生产寿命,此外,通过对出口法向热通量的分析得出最佳注入流速。
中图分类号:
王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234.
Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method[J]. CIESC Journal, 2023, 74(S1): 223-234.
图4 REV尺度下基于JRC表征法的干热岩物理模型及二维概念模型
Fig.4 Physical model and two-dimensional conceptual model of hot and dry rock based on JRC characterization at REV scale
介质 | 密度ρ/(kg/m3) | 热导率λ/ (W/(m·K)) | 比热容C/ (J/(kg·K)) | 动力黏度 μ/(Pa·s) | 渗透率/m2 |
---|---|---|---|---|---|
花岗岩 | 2620 | 2.784 | 757 | — | 1.0×10-18 |
水 | 1000 | 0.600 | 4200 | 0.001 | 1.0×10-11 |
表1 裂隙岩体物性参数
Table 1 Physical parameters of fractured rock mass
介质 | 密度ρ/(kg/m3) | 热导率λ/ (W/(m·K)) | 比热容C/ (J/(kg·K)) | 动力黏度 μ/(Pa·s) | 渗透率/m2 |
---|---|---|---|---|---|
花岗岩 | 2620 | 2.784 | 757 | — | 1.0×10-18 |
水 | 1000 | 0.600 | 4200 | 0.001 | 1.0×10-11 |
1 | 黄璜, 刘然, 李茜, 等. 地热能多级利用技术综述[J]. 热力发电, 2021, 50(9): 1-10. |
Huang H, Liu R, Li Q, et al. Overview on multi-level utilization techniques of geothermal energy[J]. Thermal Power Generation, 2021, 50(9): 1-10. | |
2 | 黄文博, 曹文炅, 李庭樑, 等. 干热岩热能重力热管采热系统数值模拟研究与经济性分析[J]. 化工学报, 2021, 72(3): 1302-1313. |
Huang W B, Cao W J, Li T L, et al. Numerical study and economic analysis of gravity heat pipe hot dry rock geothermal system[J]. CIESC Journal, 2021, 72(3): 1302-1313. | |
3 | 王贵玲, 刘彦广, 朱喜, 等. 中国地热资源现状及发展趋势[J]. 地学前缘, 2020, 27(1): 1-9. |
Wang G L, Liu Y G, Zhu X, et al. The status and development trend of geothermal resources in China[J]. Earth Science Frontiers, 2020, 27(1): 1-9. | |
4 | 刘润川, 任战利, 叶汉青, 等. 地热资源潜力评价: 以鄂尔多斯盆地部分地级市和重点层位为例[J]. 地质通报, 2021, 40(4): 565-576. |
Liu R C, Ren Z L, Ye H Q, et al. Potential evaluation of geothermal resources: exemplifying some municipalities and key strata in Ordos Basin as a study case[J]. Geological Bulletin of China, 2021, 40(4): 565-576. | |
5 | 何淼, 龚武镇, 许明标, 等. 干热岩开发技术研究现状与展望分析[J]. 可再生能源, 2021, 39(11): 1447-1454. |
He M, Gong W Z, Xu M B, et al. Research status and prospect analysis of hot dry rock development technology[J]. Renewable Energy Resources, 2021, 39(11): 1447-1454. | |
6 | 陆川, 王贵玲. 干热岩研究现状与展望[J]. 科技导报, 2015, 33(19): 13-21. |
Lu C, Wang G L. Current status and prospect of hot dry rock research[J]. Science & Technology Review, 2015, 33(19): 13-21. | |
7 | 肖鹏, 窦斌, 田红, 等. 开采海洋区域干热岩的可行性探讨[J]. 海洋地质前沿, 2018, 34(8): 55-60. |
Xiao P, Dou B, Tian H, et al. Feasibility of exploitation of submarine hot dry rock in offshore area[J]. Marine Geology Frontiers, 2018, 34(8): 55-60. | |
8 | 杨冶, 姜志海, 岳建华, 等. 干热岩勘探过程中地球物理方法技术应用探讨[J]. 地球物理学进展, 2019, 34(4): 1556-1567. |
Yang Y, Jiang Z H, Yue J H, et al. Discussion on application of geophysical methods in hot dry rock (HDR) exploration[J]. Progress in Geophysics, 2019, 34(4): 1556-1567. | |
9 | Grant M A, Bixley P F. Geothermal Reservoir Engineering[M]. 2nd ed. Burlington, MA: Academic Press, 2011. |
10 | 蔺文静, 刘志明, 马峰, 等. 我国陆区干热岩资源潜力估算[J]. 地球学报, 2012, 33(5): 807-811. |
Lin W J, Liu Z M, Ma F, et al. An estimation of HDR resources in China's mainland[J]. Acta Geoscientica Sinica, 2012, 33(5): 807-811. | |
11 | Xu T, Hu Z, Li S, et al. Enhanced geothermal system: international progresses and research status of China[J]. Acta Geologica Sinica, 2018, 92(9): 1936-1947. |
12 | 肖鹏, 闫飞飞, 窦斌, 等. 增强型地热系统水平井平行多裂隙换热过程数值模拟[J]. 可再生能源, 2019, 37(7): 1091-1099. |
Xiao P, Yan F F, Dou B, et al. Numerical simulation on the heat transfer process of parallel multi-fractures in enhanced geothermal system horizontal well[J]. Renewable Energy Resources, 2019, 37(7): 1091-1099. | |
13 | 甘浩男, 王贵玲, 蔺文静, 等. 增强型地热系统环境地质影响现状研究与对策建议[J]. 地质力学学报, 2020, 26(2): 211-220. |
Gan H N, Wang G L, Lin W J, et al. Research on the status quo of environmental geology impact of enhanced geothermal system and countermeasures[J]. Journal of Geomechanics, 2020, 26(2): 211-220. | |
14 | 翟海珍, 苏正, 凌璐璐, 等. 平行多裂隙模型中换热单元体对EGS釆热的影响[J]. 地球物理学进展, 2016, 31(3): 1399-1405. |
Zhai H Z, Su Z, Ling L L, et al. Impact of heat transfer unit on EGS heat extraction in the multi-parallel fracture model[J]. Progress in Geophysics, 2016, 31(3): 1399-1405. | |
15 | 张万鹏. 用近接型相似微小地震对判明干热岩热储层主要裂隙方位的研究[D]. 焦作: 河南理工大学, 2012. |
Zhang W P. The azimuth determination research of the main fractures in hot dry rock reservoir by proximity similar microseismic doublets[D]. Jiaozuo: Henan Polytechnic University, 2012. | |
16 | Glassley W E. Geothermal Energy: Renewable Energy and the Environment[M]. 2nd ed. Boca Raton: CRC Press, 2014. |
17 | Barton N. Review of a new shear-strength criterion for rock joints[J]. Engineering Geology, 1973, 7(4): 287-332. |
18 | Barton N, Choubey V. The shear strength of rock joints in theory and practice[J]. Rock Mechanics, 1977, 10(1): 1-54. |
19 | Cruden D M. International society for rock mechanics commission on standardization of laboratory and field tests[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1978, 15(6): 319-368. |
20 | Tse R, Cruden D M. Estimating joint roughness coefficients[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1979, 16(5): 303-307. |
21 | Yang Z Y, Lo S C, Di C C. Reassessing the joint roughness coefficient (JRC) estimation using Z2 [J]. Rock Mechanics and Rock Engineering, 2001, 34(3): 243-251. |
22 | Zhang G C, Karakus M, Tang H M, et al. A new method estimating the 2D joint roughness cofficient for discontinuity surfaces in rock masses[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 72: 191-198. |
23 | 王如宾, 柴军瑞. 单裂隙水流作用下岩体稳定温度场理论模型与有限元数值模拟[J]. 水利水电技术, 2006, 37(9): 17-19. |
Wang R B, Chai J R. Theoretical model of rock mass steady temperature field under single fissure flow and numerical simulation with finite element method[J]. Water Resources and Hydropower Engineering, 2006, 37(9): 17-19. | |
24 | 孙致学, 徐轶, 吕抒桓, 等. 增强型地热系统热流固耦合模型及数值模拟[J]. 中国石油大学学报(自然科学版), 2016, 40(6): 109-117. |
Sun Z X, Xu Y, Lv S H, et al. A thermo-hydro-mechanical coupling model for numerical simulation of enhanced geothermal systems[J]. Journal of China University of Petroleum (Edition of Natural Science), 2016, 40(6): 109-117. | |
25 | 张驰. 干热岩单裂隙渗流—传热实验与数值模拟研究[D]. 长春: 吉林大学, 2017. |
Zhang C. Experiment and numerical study of seepage heat transfer in a single fracture of hot dry rock[D]. Changchun: Jilin University, 2017. | |
26 | Ma Y Q, Zhang Y J, Hu Z J, et al. Numerical investigation of heat transfer performance of water flowing through a reservoir with two intersecting fractures[J]. Renewable Energy, 2020, 153: 93-107. |
27 | Lu W Y, He C C. Numerical simulation on the simultaneous stress interference of parallel multiple hydraulic fractures[J]. Energy Exploration & Exploitation, 2021, 39(4): 1143-1161. |
28 | Huang Y B, Zhang Y J, Yu Z W, et al. Experimental investigation of seepage and heat transfer in rough fractures for enhanced geothermal systems[J]. Renewable Energy, 2019, 135: 846-855. |
29 | Auradou H. Influence of wall roughness on the geometrical, mechanical and transport properties of single fractures[J]. Journal of Physics D: Applied Physics, 2009, 42(21): 214015. |
30 | 高雪峰, 张延军, 黄奕斌, 等. 花岗岩粗糙单裂隙对流换热特性的数值模拟[J]. 岩土力学, 2020, 41(5): 1761-1769. |
Gao X F, Zhang Y J, Huang Y B, et al. Numerical simulation of the convective heat transfer characteristics of a rough single fracture in granite[J]. Rock and Soil Mechanics, 2020, 41(5): 1761-1769. | |
31 | 甘磊, 马洪影, 沈振中. 下凹形态裂隙面粗糙程度表征及立方定律修正系数拟合[J]. 水利学报, 2021, 52(4): 420-431. |
Gan L, MAH Y, Shen Z Z. Roughness characterization of concave fracture surface and coefficient fitting of modified cubic law[J]. Journal of Hydraulic Engineering, 2021, 52(4): 420-431. | |
32 | 杜时贵, 郭霄. 岩体结构面粗糙度系数JRC的研究现状[J]. 水文地质工程地质, 2003, 30(S1): 30-33. |
Du S G, Guo X. Recent development of the joint roughness coefficient (JRC)[J]. Hydrogeology and Engineering Geology, 2003, 30(S1): 30-33. | |
33 | 李锐, 肖维民. 基于Barton标准剖面线精细数字化处理的岩石节理JRC计算新公式研究[J]. 岩石力学与工程学报, 2018, 37(S1): 3515-3522. |
Li R, Xiao W M. Study on a new equation for calculating JRC based on fine digitization of standard profiles proposed by Barton[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(S1): 3515-3522. | |
34 | 杨凯, 林木景, 王晨龙, 等. 岩石节理轮廓线的数字表征方法影响研究[J]. 太原理工大学学报, 2021, 52(5): 797-802. |
Yang K, Lin M J, Wang C L, et al. Research on the influence of digital characterization of rock joint contour[J]. Journal of Taiyuan University of Technology, 2021, 52(5): 797-802. | |
35 | 王志国, 冯艳, 杨文哲, 等. 基于REV的孔隙型多孔介质导热分析模型[J]. 化工学报, 2020, 71(S2): 118-126. |
Wang Z G, Feng Y, Yang W Z, et al. Thermal conductivity analysis model of porous media based on REV[J]. CIESC Journal, 2020, 71(S2): 118-126. | |
36 | 康健, 赵明鹏, 赵阳升, 等. 随机介质固热耦合模型与高温岩体地热开发人工储留层二次破裂数值模拟[J]. 岩石力学与工程学报, 2005, 24(6): 969-974. |
Kang J, Zhao M P, Zhao Y S, et al. Random non-homogeneous solid-heat coupled model and numerical simulations ofsecond fracturing for man-made-reserve stratum in hdr[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(6): 969-974. | |
37 | 曾玉超, 苏正, 吴能友, 等. 增强型地热系统储层试验与性能特征研究进展[J]. 矿业研究与开发, 2012, 32(3): 22-27, 63. |
Zeng Y C, Su Z, Wu N Y, et al. Advances in reservoir test and performance characteristics of enhanced geothermal system[J]. Mining Research and Development, 2012, 32(3): 22-27, 63. |
[1] | 陈巨辉, 苏潼, 李丹, 陈立伟, 吕文生, 孟凡奇. 翅形扰流片作用下的微通道换热特性[J]. 化工学报, 2024, 75(9): 3122-3132. |
[2] | 李舒月, 王欢, 周少强, 毛志宏, 张永民, 王军武, 吴秀花. 基于CPFD方法的U3O8氢还原流化床反应器数值模拟[J]. 化工学报, 2024, 75(9): 3133-3151. |
[3] | 陈超伟, 柳洋, 杜文静, 李金波, 史大阔, 辛公明. 局部热点下微肋通道流动传热特性[J]. 化工学报, 2024, 75(9): 3113-3121. |
[4] | 钱啸宇, 阮璇, 李水清. 外加电场下电介质颗粒层结构重构与悬浮[J]. 化工学报, 2024, 75(8): 2756-2762. |
[5] | 朱子良, 王爽, 姜宇昂, 林梅, 王秋旺. 欧拉-拉格朗日迭代固-液相变算法[J]. 化工学报, 2024, 75(8): 2763-2776. |
[6] | 邓爱明, 何玉荣, 唐天琪, 胡彦伟. 导流板对喷雾流化床内颗粒生长过程影响的模拟[J]. 化工学报, 2024, 75(8): 2787-2799. |
[7] | 罗正航, 李敬宇, 陈伟雄, 种道彤, 严俊杰. 摇摆运动下低流率蒸汽冷凝换热特性和气泡受力数值模拟[J]. 化工学报, 2024, 75(8): 2800-2811. |
[8] | 王倩倩, 李冰, 郑伟波, 崔国民, 赵兵涛, 明平文. 氢燃料电池局部动态特征三维模型[J]. 化工学报, 2024, 75(8): 2812-2820. |
[9] | 毛宇飞, 曹飞, 上官燕琴. 超临界压力流体管内湍流对流传热的计算方法[J]. 化工学报, 2024, 75(8): 2821-2830. |
[10] | 曾港, 陈林, 杨董, 袁海专, 黄彦平. 矩形通道内超临界CO2局部热流场可视化实验[J]. 化工学报, 2024, 75(8): 2831-2839. |
[11] | 李倩, 张蓉民, 林子杰, 战琪, 蔡伟华. 基于机器学习的印刷电路板式换热器流动换热预测与仿真[J]. 化工学报, 2024, 75(8): 2852-2864. |
[12] | 金虎, 杨帆, 戴梦瑶. 基于格子Boltzmann方法的液滴在圆柱壁面上运动过程研究[J]. 化工学报, 2024, 75(8): 2897-2908. |
[13] | 豆少军, 郝亮. PEMFC催化层耦合气体电荷传输过程的介观模拟[J]. 化工学报, 2024, 75(8): 3002-3010. |
[14] | 韩志敏, 李江, 陈则齐, 刘威, 徐志明. 脉动流通道内不同纵向涡发生器的颗粒污垢特性[J]. 化工学报, 2024, 75(7): 2486-2496. |
[15] | 罗小平, 侯云天, 范一杰. 逆流相分离结构微细通道流动沸腾传热与均温性[J]. 化工学报, 2024, 75(7): 2474-2485. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 570
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 141
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||