化工学报 ›› 2024, Vol. 75 ›› Issue (8): 2821-2830.DOI: 10.11949/0438-1157.20240140
收稿日期:
2024-01-30
修回日期:
2024-04-22
出版日期:
2024-08-25
发布日期:
2024-08-21
通讯作者:
毛宇飞
作者简介:
毛宇飞(1979—),男,博士,副教授,yfmao@hhu.edu.cn
基金资助:
Yufei MAO(), Fei CAO, Yanqin SHANGGUAN
Received:
2024-01-30
Revised:
2024-04-22
Online:
2024-08-25
Published:
2024-08-21
Contact:
Yufei MAO
摘要:
将边界层积分方法应用于管内变物性湍流流动导出了剪切应力的分布方程,基于该方程可以对超临界压力流体的对流传热行为做出合理的定性解释。对于加热条件下的传热工况,结合“热可压缩”状态流体密度的变化,引入浮力阻力系数表征热流方向上的“浮力效应”,引入加速阻力系数表征流动方向上的“加速效应”。根据边界层理论和动量-热量传递比拟法导出了新型传热关联式,该关联式将不可压缩流体和热可压缩流体的管内湍流对流传热计算统一起来。应用关联式预测不同超临界流体的管内湍流对流传热系数,计算结果与实验数据的比较表明:关联式能较为准确合理地预测出大部分传热工况下的传热强化和传热恶化行为,其预测精度与摩擦阻力系数的计算有关。
中图分类号:
毛宇飞, 曹飞, 上官燕琴. 超临界压力流体管内湍流对流传热的计算方法[J]. 化工学报, 2024, 75(8): 2821-2830.
Yufei MAO, Fei CAO, Yanqin SHANGGUAN. Computing method for convection heat transfer of supercritical pressure fluid in turbulent pipe flow[J]. CIESC Journal, 2024, 75(8): 2821-2830.
1 | Brun K, Friedman P, Dennis R. Fundamentals and Applications of Supercritical Carbon Dioxide (sCO₂) Based Power Cycles[M]. Beijing: National Defense Industry Press, 2023: 1-27. |
2 | 石德智, 张金露, 胡春艳, 等. 超临界水氧化技术处理污泥的研究与应用进展[J]. 化工学报, 2017, 68(1): 37-49. |
Shi D Z, Zhang J L, Hu C Y, et al. Research and application progress of supercritical water oxidation technology on waste sludge treatment[J]. CIESC Journal, 2017, 68(1): 37-49. | |
3 | Pioro I L. Current status of research on heat transfer in forced convection of fluids at supercritical pressures[J]. Nuclear Engineering and Design, 2019, 354: 110207. |
4 | Mao S, Zhou T, Wei D, et al. Heat transfer characteristics of supercritical water in channels: a systematic literature review of 20 years of research[J]. Applied Thermal Engineering, 2021, 197: 117403. |
5 | Pioro I L, Khartabil H F, Duffey R B. Heat transfer to supercritical fluids flowing in channels—empirical correlations (survey)[J]. Nuclear Engineering and Design, 2004, 230(1/2/3): 69-91. |
6 | Jäger W, Sánchez Espinoza V H, Hurtado A. Review and proposal for heat transfer predictions at supercritical water conditions using existing correlations and experiments[J]. Nuclear Engineering and Design, 2011, 241(6): 2184-2203. |
7 | Xie J Z, Liu D C, Yan H B, et al. A review of heat transfer deterioration of supercritical carbon dioxide flowing in vertical tubes: heat transfer behaviors, identification methods, critical heat fluxes, and heat transfer correlations[J]. International Journal of Heat and Mass Transfer, 2020, 149: 119233. |
8 | Ye Z L, Zendehboudi A, Hafner A, et al. General heat transfer correlations for supercritical carbon dioxide heated in vertical tubes for upward and downward flows[J]. International Journal of Refrigeration, 2022, 140: 57-69. |
9 | 周强泰. 浮力对立式管中超临界压力水的传热的影响[J]. 工程热物理学报, 1983, 4(2): 165-172. |
Zhou Q T. Influences of buoyancy on heat transfer to supercritical pressure water in vertical tubes[J]. Journal of Engineering Thermophysics, 1983, 4(2): 165-172. | |
10 | Cheng X, Yang Y H, Huang S F. A simplified method for heat transfer prediction of supercritical fluids in circular tubes[J]. Annals of Nuclear Energy, 2009, 36(8): 1120-1128. |
11 | Kim D E, Kim M H. Experimental study of the effects of flow acceleration and buoyancy on heat transfer in a supercritical fluid flow in a circular tube[J]. Nuclear Engineering and Design, 2010, 240(10): 3336-3349. |
12 | Bae Y Y. Mixed convection heat transfer to carbon dioxide flowing upward and downward in a vertical tube and an annular channel[J]. Nuclear Engineering and Design, 2011, 241(8): 3164-3177. |
13 | Jiang P X, Zhao C R, Liu B. Flow and heat transfer characteristics of R22 and ethanol at supercritical pressures[J]. The Journal of Supercritical Fluids, 2012, 70: 75-89. |
14 | 张思宇, 陈佳跃, 赵萌, 等. 超临界压力下竖直圆管内不同流体的传热特性[J]. 原子能科学技术, 2016, 50(8): 1395-1401. |
Zhang S Y, Chen J Y, Zhao M, et al. Heat transfer characteristics of different fluids in vertical tube under supercritical pressure[J]. Atomic Energy Science and Technology, 2016, 50(8): 1395-1401. | |
15 | Liu S H, Huang Y P, Liu G X, et al. Improvement of buoyancy and acceleration parameters for forced and mixed convective heat transfer to supercritical fluids flowing in vertical tubes[J]. International Journal of Heat and Mass Transfer, 2017, 106: 1144-1156. |
16 | 刘光旭, 黄彦平, 王俊峰, 等. 浮升力效应和流动加速效应对超临界二氧化碳传热影响理论分析[J]. 核动力工程, 2018, 39(6): 34-38. |
Liu G X, Huang Y P, Wang J F, et al. Theoretical analysis of effect of buoyancy and flow acceleration on heat transfer of supercritical carbon dioxide[J]. Nuclear Power Engineering, 2018, 39(6): 34-38. | |
17 | 王彦红, 李素芬, 赵星海. 超临界压力下航空煤油传热恶化的分析与预测[J]. 化工学报, 2018, 69(12): 5056-5064. |
Wang Y H, Li S F, Zhao X H. Analysis and prediction of heat transfer deterioration of aviation kerosene under supercritical pressures[J]. CIESC Journal, 2018, 69(12): 5056-5064. | |
18 | Cui Y L, Wang H X. Experimental study on convection heat transfer of R134a at supercritical pressures in a vertical tube for upward and downward flows[J]. Applied Thermal Engineering, 2018, 129: 1414-1425. |
19 | 朱兵国, 吴新明, 张良, 等. 垂直上升管内超临界CO2流动传热特性研究[J]. 化工学报, 2019, 70(4): 1282-1290, 1661. |
Zhu B G, Wu X M, Zhang L, et al. Flow and heat transfer characteristics of supercritical CO2 in vertical tube[J]. CIESC Journal, 2019, 70(4): 1282-1290, 1661. | |
20 | 颜建国, 朱凤岭, 郭鹏程, 等. 高热流低流速条件下超临界CO2在小圆管内的对流传热特性[J]. 化工学报, 2019, 70(5): 1779-1787. |
Yan J G, Zhu F L, Guo P C, et al. Convective heat transfer of supercritical CO2 flowing a mini circular tube under high heat flux and low mass flux conditions[J]. CIESC Journal, 2019, 70(5): 1779-1787. | |
21 | Li F B, Bai B F. A model of heat transfer coefficient for supercritical water considering the effect of heat transfer deterioration[J]. International Journal of Heat and Mass Transfer, 2019, 133: 316-329. |
22 | Zhu B G, Xu J L, Yan C S, et al. The general supercritical heat transfer correlation for vertical up-flow tubes: K number correlation[J]. International Journal of Heat and Mass Transfer, 2020, 148: 119080. |
23 | 张海松, 朱鑫杰, 朱兵国, 等. 浮升力和流动加速对超临界CO2管内流动传热影响[J]. 物理学报, 2020, 69(6): 126-135. |
Zhang H S, Zhu X J, Zhu B G, et al. Effects of buoyancy and acceleration on heat transfer of supercritical CO2 flowing in tubes[J]. Acta Physica Sinica, 2020, 69(6): 126-135. | |
24 | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
Hong R, Yuan B Q, Du W J. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube[J]. CIESC Journal, 2023, 74(8): 3309-3319. | |
25 | 过增元, 李志信. 热可压缩流体的流动和传热[J]. 工程热物理学报, 1995, 16(4): 456-460. |
Guo Z Y, Li Z X. Flow and heat transfer of thermally compressible fluids[J]. Journal of Engineering Thermophysics, 1995, 16(4): 456-460. | |
26 | Hiroaki T, Ayao T, Masaru H, et al. Effects of buoyancy and of acceleration owing to thermal expansion on forced turbulent convection in vertical circular tubes—criteria of the effects, velocity and temperature profiles, and reverse transition from turbulent to laminar flow[J]. International Journal of Heat and Mass Transfer, 1973, 16(6): 1267-1288. |
27 | Holman J P. Heat Transfer [M]. 10th ed. Boston: McGraw-Hill Higher Education Press, 2002: 282-283. |
28 | Pioro I L, Duffey R B, Dumouchel T J. Hydraulic resistance of fluids flowing in channels at supercritical pressures (survey)[J]. Nuclear Engineering and Design, 2004, 231(2): 187-197. |
29 | Zhu K, Xu G Q, Tao Z, et al. Flow frictional resistance characteristics of kerosene RP-3 in horizontal circular tube at supercritical pressure[J]. Experimental Thermal and Fluid Science, 2013, 44: 245-252. |
30 | Zhang H S, Xu J L, Zhu X J, et al. The K number, a new analogy criterion number to connect pressure drop and heat transfer of sCO2 in vertical tubes[J]. Applied Thermal Engineering, 2021, 182: 116078. |
31 | Yamagata K, Nishikawa K, Hasegawa S, et al. Forced convective heat transfer to supercritical water flowing in tubes[J]. International Journal of Heat and Mass Transfer, 1972, 15(12): 2575-2593. |
32 | Peng R F, Lei X L, Guo Z M, et al. Forced convective heat transfer of supercritical carbon dioxide in mini-channel under low mass fluxes[J]. International Journal of Heat and Mass Transfer, 2022, 182: 121919. |
33 | Zhang G, Zhang H, Gu H Y, et al. Experimental and numerical investigation of turbulent convective heat transfer deterioration of supercritical water in vertical tube[J]. Nuclear Engineering and Design, 2012, 248: 226-237. |
[1] | 朱子良, 王爽, 姜宇昂, 林梅, 王秋旺. 欧拉-拉格朗日迭代固-液相变算法[J]. 化工学报, 2024, 75(8): 2763-2776. |
[2] | 赵亮, 李雨桥, 张德, 沈胜强. 螺旋喷嘴内外流场特性的实验研究[J]. 化工学报, 2024, 75(8): 2777-2786. |
[3] | 王倩倩, 李冰, 郑伟波, 崔国民, 赵兵涛, 明平文. 氢燃料电池局部动态特征三维模型[J]. 化工学报, 2024, 75(8): 2812-2820. |
[4] | 曾港, 陈林, 杨董, 袁海专, 黄彦平. 矩形通道内超临界CO2局部热流场可视化实验[J]. 化工学报, 2024, 75(8): 2831-2839. |
[5] | 李倩, 张蓉民, 林子杰, 战琪, 蔡伟华. 基于机器学习的印刷电路板式换热器流动换热预测与仿真[J]. 化工学报, 2024, 75(8): 2852-2864. |
[6] | 罗小平, 侯云天, 范一杰. 逆流相分离结构微细通道流动沸腾传热与均温性[J]. 化工学报, 2024, 75(7): 2474-2485. |
[7] | 杨锦蕊, 郑宏飞, 马兴龙, 金日辉, 梁深. 两级叠置式加湿除湿海水淡化装置性能研究[J]. 化工学报, 2024, 75(7): 2446-2454. |
[8] | 余清杰, 杨洪海, 刘玉浩, 方海洲, 何伟琪, 王军, 卢心诚. 脉动热管温度信号的小波分析及流型识别[J]. 化工学报, 2024, 75(7): 2497-2504. |
[9] | 李新泽, 张双星, 杨洪海, 杜文静. 基于电池冷却用新型脉动热管性能的实验研究[J]. 化工学报, 2024, 75(6): 2222-2232. |
[10] | 李娟, 曹耀文, 朱章钰, 石雷, 李佳. 仿生正形尾鳍结构微通道流动与传热特性数值研究及结构优化[J]. 化工学报, 2024, 75(5): 1802-1815. |
[11] | 关朝阳, 黄国庆, 张一喃, 陈宏霞, 杜小泽. 泡沫铜导离气泡强化流动沸腾换热实验研究[J]. 化工学报, 2024, 75(5): 1765-1776. |
[12] | 王金山, 王世学, 朱禹. 冷却表面温差对高温质子交换膜燃料电池性能的影响[J]. 化工学报, 2024, 75(5): 2026-2035. |
[13] | 李怡菲, 董新宇, 王为术, 刘璐, 赵一璠. 微肋板表面干冰升华喷雾冷却传热数值模拟[J]. 化工学报, 2024, 75(5): 1830-1842. |
[14] | 刘帆, 张芫通, 陶成, 胡成玉, 杨小平, 魏进家. 歧管式射流微通道液冷散热性能[J]. 化工学报, 2024, 75(5): 1777-1786. |
[15] | 赵金鹏, 张永民, 兰斌, 罗节文, 赵碧丹, 王军武. 气固鼓泡床结构双流体传热模型及其模拟验证[J]. 化工学报, 2024, 75(4): 1497-1507. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 107
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 136
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||