化工学报 ›› 2024, Vol. 75 ›› Issue (3): 823-835.DOI: 10.11949/0438-1157.20231236
陈彦松(), 阮达, 刘渊博, 郑通, 张帅帅, 马学虎(
)
收稿日期:
2023-12-01
修回日期:
2024-01-18
出版日期:
2024-03-25
发布日期:
2024-05-11
通讯作者:
马学虎
作者简介:
陈彦松(1992—),男,博士研究生,18842686719@163.com
基金资助:
Yansong CHEN(), Da RUAN, Yuanbo LIU, Tong ZHENG, Shuaishuai ZHANG, Xuehu MA(
)
Received:
2023-12-01
Revised:
2024-01-18
Online:
2024-03-25
Published:
2024-05-11
Contact:
Xuehu MA
摘要:
换热器结构拓扑优化可将传热强化设计问题转化为数学优化问题进行求解,对于设计新颖高效换热器具有重要价值。然而,拓扑优化数学模型难以直接解释优化结果的几何特征及相应强化机理。以传热量为目标,对微通道换热器进行拓扑优化设计,研究了不同参数对换热器强化结构特征和换热器性能的影响。结果表明,拓扑优化换热器的通道结构呈现多级分叉构型,分叉的数量随着入口Reynolds数、翅片传热效率和流体Prandtl数的增大而增多。在此基础上,采用耗散和边界层理论分析了拓扑优化分叉通道与流体边界层厚度的内在联系,为换热器结构强化设计提供了新的思路。
中图分类号:
陈彦松, 阮达, 刘渊博, 郑通, 张帅帅, 马学虎. 微通道换热器拓扑结构优化与性能研究[J]. 化工学报, 2024, 75(3): 823-835.
Yansong CHEN, Da RUAN, Yuanbo LIU, Tong ZHENG, Shuaishuai ZHANG, Xuehu MA. Topology optimization and performance research of microchannel heat exchangers[J]. CIESC Journal, 2024, 75(3): 823-835.
案例编号 | ||
---|---|---|
组Ⅰ(1~10) | 1~10 | |
组Ⅱ(1~10) | 1~10 | |
组Ⅲ(1~10) | 1~10 | |
组Ⅳ(1~10) | 1~10 |
表1 各案例参数
Table 1 Parameters for different cases
案例编号 | ||
---|---|---|
组Ⅰ(1~10) | 1~10 | |
组Ⅱ(1~10) | 1~10 | |
组Ⅲ(1~10) | 1~10 | |
组Ⅳ(1~10) | 1~10 |
物质名称 | 动力黏度 | 密度 | 热导率 | 比等压热容 | 入口压力/Pa | ||
---|---|---|---|---|---|---|---|
液态金属 | 0.0024 | 6440 | 16.5 | 200 | 0.029 | 996.9 | 9.085 |
水 | 0.0010 | 998 | 0.600 | 4180 | 6.99 | 1000.0 | 10.24 |
FC40 (3M) | 0.0041 | 1855 | 0.065 | 1100 | 69.4 | 997.8 | 92.05 |
乙二醇 | 0.0214 | 1116.5 | 0.2495 | 2383 | 204.6 | 995.8 | 4172 |
表2 不同流体介质的物性参数及边界条件
Table 2 Physical parameters and boundary conditions for different fluid media
物质名称 | 动力黏度 | 密度 | 热导率 | 比等压热容 | 入口压力/Pa | ||
---|---|---|---|---|---|---|---|
液态金属 | 0.0024 | 6440 | 16.5 | 200 | 0.029 | 996.9 | 9.085 |
水 | 0.0010 | 998 | 0.600 | 4180 | 6.99 | 1000.0 | 10.24 |
FC40 (3M) | 0.0041 | 1855 | 0.065 | 1100 | 69.4 | 997.8 | 92.05 |
乙二醇 | 0.0214 | 1116.5 | 0.2495 | 2383 | 204.6 | 995.8 | 4172 |
6.11 | 24.19 | 3.08 | 1.51 | 1.08 | |
5.56 | 23.58 | 2.76 | 1.31 | 0.93 | |
5.20 | 23.10 | 2.58 | 1.20 | 0.85 | |
0 | 4.91 | 22.66 | 2.45 | 1.13 | 0.78 |
20 | 4.46 | 21.88 | 2.26 | 1.03 | 0.72 |
40 | 4.09 | 21.12 | 2.12 | 0.95 | 0.66 |
60 | 3.78 | 20.38 | 1.99 | 0.89 | 0.62 |
80 | 3.50 | 19.63 | 1.88 | 0.84 | 0.58 |
90 | 3.37 | 19.25 | 1.83 | 0.81 | 0.56 |
100 | 3.25 | 18.87 | 1.78 | 0.78 | 0.54 |
120 | 3.01 | 18.10 | 1.68 | 0.73 | 0.51 |
140 | 2.79 | 17.30 | 1.59 | 0.69 | 0.48 |
表3 不同楔形结构开角条件下流动和传热边界层达到充分发展时对应的η临界值
Table 3 Critical values of η of flow and heat transfer boundary layer at fully developed conditions for different wedge angles
6.11 | 24.19 | 3.08 | 1.51 | 1.08 | |
5.56 | 23.58 | 2.76 | 1.31 | 0.93 | |
5.20 | 23.10 | 2.58 | 1.20 | 0.85 | |
0 | 4.91 | 22.66 | 2.45 | 1.13 | 0.78 |
20 | 4.46 | 21.88 | 2.26 | 1.03 | 0.72 |
40 | 4.09 | 21.12 | 2.12 | 0.95 | 0.66 |
60 | 3.78 | 20.38 | 1.99 | 0.89 | 0.62 |
80 | 3.50 | 19.63 | 1.88 | 0.84 | 0.58 |
90 | 3.37 | 19.25 | 1.83 | 0.81 | 0.56 |
100 | 3.25 | 18.87 | 1.78 | 0.78 | 0.54 |
120 | 3.01 | 18.10 | 1.68 | 0.73 | 0.51 |
140 | 2.79 | 17.30 | 1.59 | 0.69 | 0.48 |
1 | van Erp R, Soleimanzadeh R, Nela L, et al. Co-designing electronics with microfluidics for more sustainable cooling[J]. Nature, 2020, 585: 211-216. |
2 | Schlichting H, Gersten K. Thermal boundary layers with coupling of the velocity field to the temperature field[M]// Boundary-Layer Theory. Berlin, Heidelberg: Springer, 2017: 231-290. |
3 | Maghrabie H M, Olabi A G, Sayed E T, et al. Microchannel heat sinks with nanofluids for cooling electronic components: performance enhancement, challenges, and limitations[J]. Thermal Science and Engineering Progress, 2023, 37: 101608. |
4 | Mohammed Adham A, Mohd-Ghazali N, Ahmad R. Thermal and hydrodynamic analysis of microchannel heat sinks: a review[J]. Renewable and Sustainable Energy Reviews, 2013, 21: 614-622. |
5 | Bhandari P, Rawat K S, Prajapati Y K, et al. Design modifications in micro pin fin configuration of microchannel heat sink for single phase liquid flow: a review[J]. Journal of Energy Storage, 2023, 66: 107548. |
6 | Sahel D, Bellahcene L, Yousfi A, et al. Numerical investigation and optimization of a heat sink having hemispherical pin fins[J]. International Communications in Heat and Mass Transfer, 2021, 122: 105133. |
7 | Tan H, Zong K, Du P G. Temperature uniformity in convective leaf vein-shaped fluid microchannels for phased array antenna cooling[J]. International Journal of Thermal Sciences, 2020, 150: 106224. |
8 | Al-Neama A F, Khatir Z, Kapur N, et al. An experimental and numerical investigation of chevron fin structures in serpentine minichannel heat sinks[J]. International Journal of Heat and Mass Transfer, 2018, 120: 1213-1228. |
9 | Wang J, Wang H. Flow-field designs of bipolar plates in PEM fuel cells: theory and applications[J]. Fuel Cells, 2012, 12(6): 989-1003. |
10 | Sharma C S, Tiwari M K, Zimmermann S, et al. Energy efficient hotspot-targeted embedded liquid cooling of electronics[J]. Applied Energy, 2015, 138: 414-422. |
11 | Ditri J, Hahn J, Cadotte R, et al. Embedded cooling of high heat flux electronics utilizing distributed microfluidic impingement jets[C]//Proceedings of ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems Collocated with the ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels. San Francisco, 2015. |
12 | Fawaz A, Hua Y C, Le Corre S, et al. Topology optimization of heat exchangers: a review[J]. Energy, 2022, 252: 124053. |
13 | Bendsϕe M P, Kikuchi N. Generating optimal topologies in structural design using a homogenization method[J]. Computer Methods in Applied Mechanics and Engineering, 1988, 71(2): 197-224. |
14 | Borrvall T, Petersson J. Topology optimization of fluids in Stokes flow[J]. International Journal for Numerical Methods in Fluids, 2003, 41(1): 77-107. |
15 | Gersborg-Hansen A, Sigmund O, Haber R B. Topology optimization of channel flow problems[J]. Structural and Multidisciplinary Optimization, 2005, 30(3): 181-192. |
16 | Dede E M. Optimization and design of a multipass branching microchannel heat sink for electronics cooling[J]. Journal of Electronic Packaging, 2012, 134(4): 041001. |
17 | Lin S, Zhao L Y, Guest J K, et al. Topology optimization of fixed-geometry fluid diodes[J]. Journal of Mechanical Design, 2015, 137(8): 081402. |
18 | Makhija D, Pingen G, Yang R G, et al. Topology optimization of multi-component flows using a multi-relaxation time lattice Boltzmann method[J]. Computers and Fluids, 2012, 67: 104-114. |
19 | Xia Y, Chen L, Luo J W, et al. Numerical investigation of microchannel heat sinks with different inlets and outlets based on topology optimization[J]. Applied Energy, 2023, 330: 120335. |
20 | Matsumori T, Kondoh T, Kawamoto A, et al. Topology optimization for fluid-thermal interaction problems under constant input power[J]. Structural and Multidisciplinary Optimization, 2013, 47(4): 571-581. |
21 | Yaji K, Yamada T, Kubo S, et al. A topology optimization method for a coupled thermal-fluid problem using level set boundary expressions[J]. International Journal of Heat and Mass Transfer, 2015, 81: 878-888. |
22 | Yu M H, Ruan S L, Wang X Y, et al. Topology optimization of thermal-fluid problem using the MMC-based approach[J]. Structural and Multidisciplinary Optimization, 2019, 60(1): 151-165. |
23 | Haertel J H K, Engelbrecht K, Lazarov B S, et al. Topology optimization of a pseudo 3D thermofluid heat sink model[J]. International Journal of Heat and Mass Transfer, 2018, 121: 1073-1088. |
24 | Yan S N, Wang F W, Hong J, et al. Topology optimization of microchannel heat sinks using a two-layer model[J]. International Journal of Heat and Mass Transfer, 2019, 143: 118462. |
25 | Zhao J Q, Zhang M, Zhu Y, et al. Topology optimization of planar cooling channels using a three-layer thermofluid model in fully developed laminar flow problems[J]. Structural and Multidisciplinary Optimization, 2021, 63(6): 2789-2809. |
26 | Haertel J H K, Nellis G F. A fully developed flow thermofluid model for topology optimization of 3D-printed air-cooled heat exchangers[J]. Applied Thermal Engineering, 2017, 119: 10-24. |
27 | Zeng S, Sun Q Z, Lee P S. Thermohydraulic analysis of a new fin pattern derived from topology optimized heat sink structures[J]. International Journal of Heat and Mass Transfer, 2020, 147: 118909. |
28 | Kambampati S, Gray J S, Kim H A. Level set topology optimization of load carrying battery packs[J]. International Journal of Heat and Mass Transfer, 2021, 177: 121570. |
29 | Zou A Q, Chuan R, Qian F, et al. Topology optimization for a water-cooled heat sink in micro-electronics based on Pareto frontier[J]. Applied Thermal Engineering, 2022, 207: 118128. |
30 | Zhou J H, Lu M X, Zhao Q, et al. Thermal design of microchannel heat sinks using a contour extraction based on topology optimization (CEBTO) method[J]. International Journal of Heat and Mass Transfer, 2022, 189: 122703. |
31 | Dilgen S B, Dilgen C B, Fuhrman D R, et al. Density based topology optimization of turbulent flow heat transfer systems[J]. Structural and Multidisciplinary Optimization, 2018, 57(5): 1905-1918. |
32 | Lazarov B S, Sigmund O. Filters in topology optimization based on Helmholtz-type differential equations[J]. International Journal for Numerical Methods in Engineering, 2011, 86(6): 765-781. |
33 | Chen Y S, Zhang S S, Liu Y B, et al. On the reticulate pattern and heat transfer performance of the topologically optimized microchannel heat sink[J]. Applied Thermal Engineering, 2024, 239: 122137. |
34 | Chen Q, Liang X G, Guo Z Y. Entransy theory for the optimization of heat transfer-a review and update[J]. International Journal of Heat and Mass Transfer, 2013, 63: 65-81. |
35 | 刘伟. 基于协同与耗散的能质传输理论 [J]. 中国科学:技术科学, 2023, 53: 1-11. |
Liu W. The theory of macroscopic energy and mass transport based on the synergy and dissipation analysis[J]. Scientia Sinica Technologica, 2023, 53: 1-11. | |
36 | Ghiaasiaan S M. Convective Heat and Mass Transfer[M]. Cambridge: Cambridge University Press, 2011. |
[1] | 陈饶, 赵鑫, 陈戴欣, 姜圣坤, 廉应江, 王金波, 杨梅, 陈光文. 微反应器内甲苯连续二硝化制备二硝基甲苯[J]. 化工学报, 2024, 75(3): 867-876. |
[2] | 宋仕容, 刘宏臣, 米晓天, 许超, 杨梅, 尧超群. 同轴微通道内管结构对液滴生成的影响规律研究[J]. 化工学报, 2024, 75(2): 566-574. |
[3] | 李文俊, 赵中阳, 倪震, 周灿, 郑成航, 高翔. 基于气-液传质强化的湿法烟气脱硫CFD模拟研究[J]. 化工学报, 2024, 75(2): 505-519. |
[4] | 余洋, 罗祎青, 魏荣辉, 张文慧, 袁希钢. 考虑节点中断风险的弹性供应链设计方法[J]. 化工学报, 2024, 75(1): 338-353. |
[5] | 王俊男, 何呈祥, 王忠东, 朱春英, 马友光, 付涛涛. T型微混合器内均相混合的数值模拟[J]. 化工学报, 2024, 75(1): 242-254. |
[6] | 郑雨婷, 方冠东, 张梦波, 张浩淼, 王靖岱, 阳永荣. 微化工精馏分离技术研究进展[J]. 化工学报, 2024, 75(1): 47-59. |
[7] | 赵若晗, 黄蒙蒙, 朱春英, 付涛涛, 高习群, 马友光. 缩口T型微通道内纳米流体吸收CO2的流动与传质研究[J]. 化工学报, 2024, 75(1): 221-230. |
[8] | 李亚婷, 王忠东, 董艳鹏, 朱春英, 马友光, 付涛涛. 微通道中毛细流动及其工程应用的研究进展[J]. 化工学报, 2024, 75(1): 159-170. |
[9] | 温唯谷, 袁志宏, 王凯, 骆广生. 微分散液滴的光纤检测研究[J]. 化工学报, 2024, 75(1): 211-220. |
[10] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[11] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[12] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[13] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[14] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和![]() |
[15] | 文兆伦, 李沛睿, 张忠林, 杜晓, 侯起旺, 刘叶刚, 郝晓刚, 官国清. 基于自热再生的隔壁塔深冷空分工艺设计及优化[J]. 化工学报, 2023, 74(7): 2988-2998. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 445
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 484
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||