化工学报 ›› 2024, Vol. 75 ›› Issue (11): 4082-4094.DOI: 10.11949/0438-1157.20240444
收稿日期:
2024-04-23
修回日期:
2024-05-29
出版日期:
2024-11-25
发布日期:
2024-12-26
通讯作者:
徐兆超
作者简介:
许宁(1992—),男,博士,ningxu@dicp.ac.cn
基金资助:
Ning XU(), Qinglong QIAO, Zhaochao XU()
Received:
2024-04-23
Revised:
2024-05-29
Online:
2024-11-25
Published:
2024-12-26
Contact:
Zhaochao XU
摘要:
生物荧光标记及成像技术的发展,密切依赖于荧光染料的亮度、光稳定性以及生物相容性等关键发光和化学特性,发展新型荧光团和提升发光性能也将推动生物荧光技术的进步。荧光染料的新颖发光特性又紧密关联于它们的分子结构,而染料结构创新的主要策略包括发现全新的荧光团和对传统荧光团母体进行结构改造。本综述从荧光染料的发光-构效关系切入,详细概述了一系列通过分子结构创新而在发光性能上获得显著提升的荧光染料,并讨论了这些染料在先进生物荧光成像等前沿应用中展现出的卓越表现。最后讨论了生物成像领域中荧光染料的发展所面临的挑战。
中图分类号:
许宁, 乔庆龙, 徐兆超. 应用于先进生物成像的荧光染料进展[J]. 化工学报, 2024, 75(11): 4082-4094.
Ning XU, Qinglong QIAO, Zhaochao XU. Advancements of fluorescent dyes for advanced biological imaging applications[J]. CIESC Journal, 2024, 75(11): 4082-4094.
图4 Seoul-Fluor染料、CS系列染料以及苯并吡喃𬭩-香豆素的探针的化学结构[36, 38-39]
Fig.4 Chemical structure of Seoul-Fluor dyes, CS dyes and benzopyranium-coumarin probe[36, 38-39]
图10 具有自发闪烁性质或光活化性质的代表性荧光团的化学结构[62-63, 65-68]
Fig.10 Chemical structures of representative fluorophores with spontaneous blinking and photoactivated properties[62-63, 65-68]
图11 YL-578、不同N-芳基助色团取代的氟化罗丹明染料和基于N-Ph罗丹明染料的标签蛋白荧光探针的化学结构[69-71]
Fig.11 Chemical structures of YL-578, fluorinated rhodamine dyes substituted with different N-aryl auxochrome and fluorogenic probes based on N-Ph rhodamine dyes[69-71]
图12 三氟乙胺取代的溶致变色荧光团和RNA探针Nu-AN的化学结构[72-74]
Fig.12 Chemical structure of trifluoroethylamine-substituted solvatochromic fluorophores and RNA probe Nu-AN[72-74]
1 | Huang B, Babcock H, Zhuang X W. Breaking the diffraction barrier: super-resolution imaging of cells[J]. Cell, 2010, 143(7): 1047-1058. |
2 | Valli J, Garcia-Burgos A, Rooney L M, et al. Seeing beyond the limit: a guide to choosing the right super-resolution microscopy technique[J]. Journal of Biological Chemistry, 2021, 297(1): 100791. |
3 | Möckl L, Moerner W E. Super-resolution microscopy with single molecules in biology and beyond-essentials, current trends, and future challenges[J]. Journal of the American Chemical Society, 2020, 142(42): 17828-17844. |
4 | Turkowyd B, Virant D, Endesfelder U. From single molecules to life: microscopy at the nanoscale[J]. Analytical and Bioanalytical Chemistry, 2016, 408(25): 6885-6911. |
5 | Evanko D. Focus on fluorescence imaging[J]. Nature Methods, 2005, 2(12): 901. |
6 | Chen X Q, Pradhan T, Wang F, et al. Fluorescent chemosensors based on spiroring-opening of xanthenes and related derivatives[J]. Chemical Reviews, 2012, 112(3): 1910-1956. |
7 | Terai T, Nagano T. Small-molecule fluorophores and fluorescent probes for bioimaging[J]. Pflügers Archiv: European Journal of Physiology, 2013, 465(3): 347-359. |
8 | Yin J L, Huang L, Wu L L, et al. Small molecule based fluorescent chemosensors for imaging the microenvironment within specific cellular regions[J]. Chemical Society Reviews, 2021, 50(21): 12098-12150. |
9 | Kozma E, Kele P. Fluorogenic probes for super-resolution microscopy[J]. Organic & Biomolecular Chemistry, 2019, 17(2): 215-233. |
10 | Wang L, Frei M S, Salim A, et al. Small-molecule fluorescent probes for live-cell super-resolution microscopy[J]. Journal of the American Chemical Society, 2019, 141(7): 2770-2781. |
11 | Lavis L D, Raines R T. Bright building blocks for chemical biology[J]. ACS Chemical Biology, 2014, 9(4): 855-866. |
12 | Wang L L, Du W, Hu Z J, et al. Hybrid rhodamine fluorophores in the visible/NIR region for biological imaging[J]. Angewandte Chemie (International Ed. in English), 2019, 58(40): 14026-14043. |
13 | Ueno T, Nagano T. Fluorescent probes for sensing and imaging[J]. Nature Methods, 2011, 8(8): 642-645. |
14 | Maeda K, Finnie C, Svensson B. Cy5 maleimide labelling for sensitive detection of free thiols in native protein extracts: identification of seed proteins targeted by barley thioredoxin h isoforms[J]. The Biochemical Journal, 2004, 378(Pt 2): 497-507. |
15 | Jeong M H, Kim K, Kim E M, et al. In vivo and in vitro evaluation of Cy5.5 conjugated epidermal growth factor receptor binding peptide[J]. Nuclear Medicine and Biology, 2012, 39(6): 805-812. |
16 | Chaganti L K, Venkatakrishnan N, Bose K. An efficient method for FITC labelling of proteins using tandem affinity purification[J]. Bioscience Reports, 2018, 38(6): BSR20181764. |
17 | Scinto S L, Bilodeau D A, Hincapie R, et al. Bioorthogonal chemistry[J]. Nature Reviews Methods Primers, 2021, 1: 30. |
18 | Seela F, Pujari S S. Azide-alkyne “click” conjugation of 8-aza-7-deazaadenine-DNA: synthesis, duplex stability, and fluorogenic dye labeling[J]. Bioconjugate Chemistry, 2010, 21(9): 1629-1641. |
19 | Yao J Z, Uttamapinant C, Poloukhtine A, et al. Fluorophore targeting to cellular proteins via enzyme-mediated azide ligation and strain-promoted cycloaddition[J]. Journal of the American Chemical Society, 2012, 134(8): 3720-3728. |
20 | Hinner M J, Johnsson K. How to obtain labeled proteins and what to do with them[J]. Current Opinion in Biotechnology, 2010, 21(6): 766-776. |
21 | Dreyer R, Pfukwa R, Barth S, et al. The evolution of SNAP-tag labels[J]. Biomacromolecules, 2023, 24(2): 517-530. |
22 | Los G V, Encell L P, McDougall M G, et al. HaloTag: a novel protein labeling technology for cell imaging and protein analysis[J]. ACS Chemical Biology, 2008, 3(6): 373-382. |
23 | Erdmann R S, Baguley S W, Richens J H, et al. Labeling strategies matter for super-resolution microscopy: a comparison between HaloTags and SNAP-tags[J]. Cell Chemical Biology, 2019, 26(4): 584-592.e6. |
24 | Zhu H, Fan J L, Du J J, et al. Fluorescent probes for sensing and imaging within specific cellular organelles[J]. Accounts of Chemical Research, 2016, 49(10): 2115-2126. |
25 | Butkevich A N, Lukinavičius G, D’Este E, et al. Cell-permeant large stokes shift dyes for transfection-free multicolor nanoscopy[J]. Journal of the American Chemical Society, 2017, 139(36): 12378-12381. |
26 | Zhou W, Qiao Q L, Tao Y, et al. Cellular membrane imaging of the dynamic binding-dissociation of rhodamine-benzenesulfonamide bioconjugate with carbonic anhydrase Ⅸ for inhibitor screening[J]. Sensors and Actuators B: Chemical, 2023, 376: 132980. |
27 | Zielonka J, Joseph J, Sikora A, et al. Mitochondria-targeted triphenylphosphonium-based compounds: syntheses, mechanisms of action, and therapeutic and diagnostic applications[J]. Chemical Reviews, 2017, 117(15): 10043-10120. |
28 | Schneider A F L, Benz L S, Lehmann M, et al. Cell-permeable nanobodies allow dual-color super-resolution microscopy in untransfected living cells[J]. Angewandte Chemie (International Ed. in English), 2021, 60(40): 22075-22080. |
29 | Wirth R, Gao P, Nienhaus G U, et al. SiRA: a silicon rhodamine-binding aptamer for live-cell super-resolution RNA imaging[J]. Journal of the American Chemical Society, 2019, 141(18): 7562-7571. |
30 | Cawte A D, Unrau P J, Rueda D S. Live cell imaging of single RNA molecules with fluorogenic Mango Ⅱ arrays[J]. Nature Communications, 2020, 11: 1283. |
31 | Schermelleh L, Ferrand A, Huser T, et al. Super-resolution microscopy demystified[J]. Nature Cell Biology, 2019, 21(1): 72-84. |
32 | Sousa M M, Melo M J, Parola A J, et al. A study in mauve: unveiling Perkin’s dye in historic samples[J]. Chemistry, 2008, 14(28): 8507-8513. |
33 | Zheng Q S, Lavis L D. Development of photostable fluorophores for molecular imaging[J]. Current Opinion in Chemical Biology, 2017, 39: 32-38. |
34 | Panchuk-Voloshina N, Haugland R P, Bishop-Stewart J, et al. Alexa dyes, a series of new fluorescent dyes that yield exceptionally bright, photostable conjugates[J]. Journal of Histochemistry & Cytochemistry, 1999, 47(9): 1179-1188. |
35 | Munan S, Chang Y T, Samanta A. Chronological development of functional fluorophores for bio-imaging[J]. Chemical Communications, 2024, 60(5): 501-521. |
36 | Kim E, Koh M, Lim B J, et al. Emission wavelength prediction of a full-color-tunable fluorescent core skeleton, 9-aryl-1,2-dihydropyrrolo[3,4-b]indolizin-3-one[J]. Journal of the American Chemical Society, 2011, 133(17): 6642-6649. |
37 | Choi E J, Kim E, Lee Y, et al. Rational perturbation of the fluorescence quantum yield in emission-tunable and predictable fluorophores (Seoul-fluors) by a facile synthetic method involving C-H activation[J]. Angewandte Chemie International Edition, 2014, 53(5): 1346-1350. |
38 | Yuan L, Lin W Y, Yang Y T, et al. A unique class of near-infrared functional fluorescent dyes with carboxylic-acid-modulated fluorescence ON/OFF switching: rational design, synthesis, optical properties, theoretical calculations, and applications for fluorescence imaging in living animals[J]. Journal of the American Chemical Society 2012, 134(2): 1200-1211. |
39 | Dong B L, Song X Z, Kong X Q, et al. Simultaneous near-infrared and two-photon in vivo imaging of H2O2 using a ratiometric fluorescent probe based on the unique oxidative rearrangement of oxonium[J]. Advanced Materials, 2016, 28(39): 8755-8759. |
40 | Li G F, Zhao M, Xie J Q, et al. Efficient synthesis of cyclic amidine-based fluorophores via 6π-electrocyclic ring closure[J]. Chemical Science, 2020, 11(14): 3586-3591. |
41 | Munan S, Kottarathil S, Joseph M M, et al. IndiFluors: a new full-visible color-tunable donor-acceptor-donor (D1-A-D2) fluorophore family for ratiometric pH imaging during mitophagy[J]. ACS Sensors, 2022. DOI:10.1021/acssensors.1c02381 . |
42 | Munan S, Ali M, Yadav R, et al. PET- and ICT-based ratiometric probe: an unusual phenomenon of morpholine-conjugated fluorophore for mitochondrial pH mapping during mitophagy[J]. Analytical Chemistry, 2022, 94(33): 11633-11642. |
43 | Caldwell D R, Usama S M, Schnermann M J. Coumarins to cyanines: synthesis of hemicyanines[J]. Organic Letters, 2021, 23(22): 8857-8861. |
44 | Yao S K, Chen Y C, Ding W Z, et al. Single-atom engineering of hemicyanine and its amphiphilic derivative for optimized near infrared phototheranostics[J]. Chemical Science, 2022, 14(5): 1234-1243. |
45 | Wang L, Hiblot J, Popp C, et al. Environmentally sensitive color-shifting fluorophores for bioimaging[J]. Angewandte Chemie (International Ed. in English), 2020, 59(49): 21880-21884. |
46 | van de Linde S, Löschberger A, Klein T, et al. Direct stochastic optical reconstruction microscopy with standard fluorescent probes[J]. Nature Protocols, 2011, 6(7): 991-1009. |
47 | Heilemann M, van de Linde S, Mukherjee A, et al. Super-resolution imaging with small organic fluorophores[J]. Angewandte Chemie (International Ed. in English), 2009, 48(37): 6903-6908. |
48 | Dempsey G T, Vaughan J C, Chen K H, et al. Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging[J]. Nature Methods, 2011, 8(12): 1027-1036. |
49 | Michie M S, Götz R, Franke C, et al. Cyanine conformational restraint in the far-red range[J]. Journal of the American Chemical Society, 2017, 139(36): 12406-12409. |
50 | Eiring P, McLaughlin R, Matikonda S S, et al. Targetable conformationally restricted cyanines enable photon-count-limited applications[J]. Angewandte Chemie (International Ed. in English), 2021, 60(51): 26685-26693. |
51 | Bandi V G, Luciano M P, Saccomano M, et al. Targeted multicolor in vivo imaging over 1, 000 nm enabled by nonamethine cyanines[J]. Nature Methods, 2022, 19(3): 353-358. |
52 | Benson S, Fernandez A, Barth N D, et al. SCOTfluors: small, conjugatable, orthogonal, and tunable fluorophores for in vivo imaging of cell metabolism[J]. Angewandte Chemie (International Ed. in English), 2019, 58(21): 6911-6915. |
53 | Zhang H X, Liu J, Sun Y Q, et al. Carbon-dipyrromethenes: bright cationic fluorescent dyes and potential application in revealing cellular trafficking of mitochondrial glutathione conjugates[J]. Journal of the American Chemical Society, 2020, 142(40): 17069-17078. |
54 | Li J, Dong Y, Wei R W, et al. Stable, bright, and long-fluorescence-lifetime dyes for deep-near-infrared bioimaging[J]. Journal of the American Chemical Society, 2022, 144(31): 14351-14362. |
55 | Wei R W, Dong Y, Wang X L, et al. Rigid and photostable shortwave infrared dye absorbing/emitting beyond 1200 nm for high-contrast multiplexed imaging[J]. Journal of the American Chemical Society, 2023, 145(22): 12013-12022. |
56 | Fu M Y, Xiao Y, Qian X H, et al. A design concept of long-wavelength fluorescent analogs of rhodamine dyes: replacement of oxygen with silicon atom[J]. Chemical Communications, 2008(15): 1780-1782. |
57 | Koide Y, Urano Y, Hanaoka K, et al. Evolution of group 14 rhodamines as platforms for near-infrared fluorescence probes utilizing photoinduced electron transfer[J]. ACS Chemical Biology, 2011, 6(6): 600-608. |
58 | Rao D N, Ji X C, Miller S C. Silicon functionalization expands the repertoire of Si-rhodamine fluorescent probes[J]. Chemical Science, 2022, 13(20): 6081-6088. |
59 | Heilemann M, van de Linde S, Schüttpelz M, et al. Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes[J]. Angewandte Chemie (International Ed. in English), 2008, 47(33): 6172-6176. |
60 | van de Linde S, Heilemann M, Sauer M. Live-cell super-resolution imaging with synthetic fluorophores[J]. Annual Review of Physical Chemistry, 2012, 63: 519-540. |
61 | Jradi F M, Lavis L D. Chemistry of photosensitive fluorophores for single-molecule localization microscopy[J]. ACS Chemical Biology, 2019, 14(6): 1077-1090. |
62 | Uno S N, Kamiya M, Yoshihara T, et al. A spontaneously blinking fluorophore based on intramolecular spirocyclization for live-cell super-resolution imaging[J]. Nature Chemistry, 2014, 6(8): 681-689. |
63 | Morozumi A, Kamiya M, Uno S N, et al. Spontaneously blinking fluorophores based on nucleophilic addition/dissociation of intracellular glutathione for live-cell super-resolution imaging[J]. Journal of the American Chemical Society, 2020, 142(21): 9625-9633. |
64 | Wang L, Tran M, D'Este E, et al. A general strategy to develop cell permeable and fluorogenic probes for multicolour nanoscopy[J]. Nature Chemistry, 2020, 12(2): 165-172. |
65 | Lardon N, Wang L, Tschanz A, et al. Systematic tuning of rhodamine spirocyclization for super-resolution microscopy[J]. Journal of the American Chemical Society, 2021, 143(36): 14592-14600. |
66 | Lincoln R, Bossi M L, Remmel M, et al. A general design of caging-group-free photoactivatable fluorophores for live-cell nanoscopy[J]. Nature Chemistry, 2022, 14(9): 1013-1020. |
67 | Qiao Q L, Liu W J, Chen J, et al. An acid-regulated self-blinking fluorescent probe for resolving whole-cell lysosomes with long-term nanoscopy[J]. Angewandte Chemie (International Ed. in English), 2022, 61(21): e202202961. |
68 | Qi Q K, Chi W J, Li Y Y, et al. A H-bond strategy to develop acid-resistant photoswitchable rhodamine spirolactams for super-resolution single-molecule localization microscopy[J]. Chemical Science, 2019, 10(18): 4914-4922. |
69 | Jiang G W, Ren T B, D’Este E, et al. A synergistic strategy to develop photostable and bright dyes with long Stokes shift for nanoscopy[J]. Nature Communications, 2022, 13(1): 2264. |
70 | Grimm J B, Tkachuk A N, Patel R, et al. Optimized red-absorbing dyes for imaging and sensing[J]. Journal of the American Chemical Society, 2023, 145(42): 23000-23013. |
71 | Hanaoka K, Iwaki S, Yagi K, et al. General design strategy to precisely control the emission of fluorophores via a twisted intramolecular charge transfer (TICT) process[J]. Journal of the American Chemical Society, 2022, 144(43): 19778-19790. |
72 | Xu N, Qiao Q L, Chen J, et al. Trifluoroethylamine-substituted solvatochromic fluorophores exhibit polarity-insensitive high brightness[J]. Chemical Communications, 2024, 60(11): 1424-1427. |
73 | Xu N, Qiao Q L, Fang X N, et al. Solvatochromic buffering fluorescent probe resolves the lipid transport and morphological changes during lipid droplet fusion by super-resolution imaging[J]. Analytical Chemistry, 2024, 96(11): 4709-4715. |
74 | Jiang W C, Qiao Q L, Chen J, et al. RNA buffering fluorogenic probe for nucleolar morphology stable imaging and nucleolar stress-generating agents screening[J]. Advanced Science, 2024, 11(15): e2309743. |
[1] | 江文钞, 徐兆超. 细胞器超分辨成像荧光染料[J]. 化工学报, 2024, 75(4): 1333-1354. |
[2] | 狄玲, 陈放, 付荣荣, 杨辰, 邢杨, 王晓宁. 富电子LMOF对有机农药的检测机理研究[J]. 化工学报, 2020, 71(8): 3830-3838. |
[3] | 杨志广, 江鑫梅, 程春艳, 朱超胜, 侯志强. 线粒体靶向型离子荧光探针的研究进展[J]. 化工学报, 2019, 70(6): 2060-2074. |
[4] | 张世玲, 彭孝军. 氟离子荧光探针的研究进展[J]. 化工学报, 2016, 67(1): 191-201. |
[5] | 苏凤宜, 邢新会. 利用荧光素异硫氰酸酯检测季铵盐阳离子表面活性剂的方法 [J]. 化工学报, 2008, 59(10): 2589-2595. |
[6] | 赵同丰,赵德丰,孙孝森,程侣柏. 新型苯并氧杂蒽类荧光染料的研究 [J]. CIESC Journal, 1998, 49(4): 515-520. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 195
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 329
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||