化工学报 ›› 2019, Vol. 70 ›› Issue (6): 2060-2074.DOI: 10.11949/j.issn.0438-1157.20181398
收稿日期:
2018-11-22
修回日期:
2019-03-04
出版日期:
2019-06-05
发布日期:
2019-06-05
通讯作者:
杨志广
基金资助:
Zhiguang YANG(),Xinmei JIANG,Chunyan CHENG,Chaosheng ZHU,Zhiqiang HOU
Received:
2018-11-22
Revised:
2019-03-04
Online:
2019-06-05
Published:
2019-06-05
Contact:
Zhiguang YANG
摘要:
线粒体在细胞的能量代谢过程中发挥着关键作用。线粒体内含有各种生物活性物质,它们在人体各种生理和病理过程中发挥着重要作用。综述了近年来有机单、双光子线粒体靶向型离子荧光探针的研究现状,重点介绍了荧光探针的设计机理、识别机理、特点以及生物应用,并对该类探针的未来发展趋势进行了展望。
中图分类号:
杨志广, 江鑫梅, 程春艳, 朱超胜, 侯志强. 线粒体靶向型离子荧光探针的研究进展[J]. 化工学报, 2019, 70(6): 2060-2074.
Zhiguang YANG, Xinmei JIANG, Chunyan CHENG, Chaosheng ZHU, Zhiqiang HOU. Research progress of mitochondria-targeted fluorescent probes for ions[J]. CIESC Journal, 2019, 70(6): 2060-2074.
1 | Balaban R S , Nemoto S , Finkel T . Mitochondria, oxidants, and aging[J]. Cell, 2005, 120(4): 483-495. |
2 | Vakifahmetoglu-Norberg H , Ouchida A T , Norberg E . The role of mitochondria in metabolism and cell death[J]. Biochemical and Biophysical Research Communications, 2017, 482(3): 426-431. |
3 | Yousif L F , Stewart K M , Kelley S O . Targeting mitochondria with organelle-specific compounds: strategies and applications[J]. ChemBiochem, 2009, 10(12): 1939-1950. |
4 | Wu P , Zhao T , Wang S L , et al . Semicondutor quantum dots-based metal ion probes[J]. Nanoscale, 2014, 6(1): 43-64. |
5 | Lee M H , Kim J S , Sessler J L . Small molecule-based ratiometric fluorescence probes for cations, anions, and biomolecules[J]. Chemical Society Reviews, 2015, 44(13): 4185-4191. |
6 | Vyas S , Zaganjor E , Haigis M C . Mitochondria and cancer[J]. Cell, 2016, 166(3): 555-566. |
7 | Zhao L M , Liu G , Zhang B F . A colorimetric and fluorescence enhancement anion probe based on coumarin compounds[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2016, 169: 45-49. |
8 | Lim C S , Cho B R . Two-photon probes for biomedical applications [J]. BMB Reports, 2013, 46(4): 188-194. |
9 | Zhang P S , Wang H , Zhang D , et al . Two-photon fluorescent probe for lysosome-targetable hypochlorous acid detection within living cells[J]. Sensors and Actuators B: Chemical, 2018, 255: 2223-2231. |
10 | 姜娜, 樊江莉, 杨洪宝, 等 . 线粒体荧光探针最新研究进展[J]. 化工学报, 2016, 67(1): 176-190. |
Jiang N , Fan J L , Yang H B , et al . Progress in research of mitochondrial fluorescence probes[J]. CIESC Journal, 2016, 67(1): 176-190. | |
11 | 肖瑜峰, 陈林海, 吕伟, 等 . 线粒体靶向的活性氧荧光探针的研究进展[J]. 生命的化学, 2016, 36(4): 538-547. |
Xiao Y F , Chen L H , Lv W , et al . Mitochondrial targeting fluorescent probes for reactive oxygen species[J]. Chemistry of Life, 2016, 36(4): 538-547. | |
12 | Frederickson C J , Koh J Y , Bush A I . The neurobiology of zinc in health and disease[J]. Nature Reviews Neuroscience, 2005, 6(6): 449-462. |
13 | Toshiyuki F , Yamasaki S , Nishida K , et al . Zinc homeostasis and signaling in health and diseases[J]. Journal of Biological Inorganic Chemistry, 2011, 16(7): 1123-1134. |
14 | Krężel A , Maret W . The biological inorganic chemistry of zinc ions[J]. Archives of Biochemistry and Biophysics, 2016, 611: 3-19. |
15 | 刘璐璐, 但飞君, 付林娜, 等 . 基于喹啉Zn2+荧光探针的合成及其性能[J]. 精细化工, 2017, 34(5): 481-487. |
Liu L L , Dan F J , Fu L N , et al . Synthesis and properties of a fluorescent probe for Zn2+ based on quinoline[J]. Fine Chemicals, 2017, 34(5): 481-487. | |
16 | Li J , Chen Y H , Chen T T , et al . A benzothiazole-based fluorescent probe for efficient detection and discrimination of Zn2+ and Cd2+, using cysteine as an auxiliary reagent[J]. Sensors and Actuators B: Chemical, 2018, 268: 446-455. |
17 | Sreenath K , Allen J R , Davidson M W , et al . A FRET-based indicator for imaging mitochondrial zinc ions[J]. Chemical Communications, 2011, 47(42): 11730-11732. |
18 | Xue L , Li G P , Yu C L , et al . A ratiometric and targetable fluorescent sensor for quantification of mitochondrial zinc ions[J]. Chemistry-A European Journal, 2012, 18(4): 1050-1054. |
19 | Baek N Y , Heo C H , Lim C S , et al . A highly sensitive two-photon fluorescent probe for mitochondrial zinc ions in living tissue[J]. Chemical Communications, 2012, 48(38): 4546-4548. |
20 | Rathore K , Lim C S , Lee Y , et al . Dual-color imaging of cytosolic and mitochondrial zinc ions in live tissues with two-photon fluorescent probes[J]. Organic & Biomolecular Chemistry, 2014, 12(21): 3406-3412. |
21 | Ning P , Jiang J C , Li L C , et al . A mitochondria-targeted ratiometric two-photon fluorescent probe for biological zinc ions detection[J]. Biosensors and Bioelectronics, 2016, 77: 921-927. |
22 | Dalapati S , Jana S , Alam A , et al . Multifunctional fluorescent probe selective for Cu(II) and Fe(III) with dual-mode of binding approach[J]. Sensors and Actuators B: Chemical, 2011, 160(1): 1106-1111. |
23 | Su H T , Sun B , Chen L J , et al . Colorimetric sensing of dopamine based on the aggregation of gold nanoparticles induced by copper ions[J]. Analytical Methods, 2012, 4(12): 3981-3986. |
24 | Giuffrida M L , Rizzarelli E , Tomaselli G A , et al . A novel fully water-soluble Cu(I) probe for fluorescence live cell imaging[J]. Chemical Communications, 2014, 50(69): 9835-9838. |
25 | Hu L , Wang H , Fang B , et al . A reversible two-photon fluorescence probe for Cu(II) based on Schiff-base in HEPES buffer and in vivo imaging[J]. Sensors and Actuators B: Chemical, 2017, 251: 993-1000. |
26 | Dodani S C , Leary S C , Cobine P A , et al . A targetable fluorescent sensor reveals that copper-deficient SCO1 and SCO2 patient cells prioritize mitochondrial copper homeostasis[J]. Journal of the American Chemical Society, 2011, 133(22): 8606-8616. |
27 | Taki M , Akaoka K , Mitsui K , et al . A mitochondria-targeted turn-on fluorescent probe based on a rhodol platform for the detection of copper(I)[J]. Organic & Biomolecular Chemistry, 2014, 12(27): 4999-5005. |
28 | Shen C , Kolanowski J L , Tran C M N , et al . A ratiometric fluorescent sensor for the mitochondrial copper pool[J]. Metallomics, 2016, 8(9): 915-919. |
29 | Li H , Zhang R L , Li C X , et al . Real-time detection and imaging of copper(Ⅱ) in cellular mitochondria[J]. Organic & Biomolecular Chemistry, 2017, 15(3): 598-604. |
30 | Renzoni A , Zino F , Franchi E . Mercury levels along the food chain and risk for exposed populations[J]. Environmental Research, 1998, 77(2): 68-72. |
31 | Richardson S D , Ternes T A . Water analysis: emerging contaminants and current issues[J]. Analytical Chemistry, 2005, 77(12): 3807-3838. |
32 | Gao Y Y , Ma T T , Ou Z Z , et al . Highly sensitive and selective turn-on fluorescent chemosensors for Hg2+ based on thioacetal modified pyrene[J]. Talanta, 2018, 178: 663-669. |
33 | Deepa S , Rajendrakumar R . A symmetrical luminol based azo derivative for trimodal ratiometric Hg2+ sensing and its application to bioimaging in living cells[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 364: 773-786. |
34 | Chen J H , Liu W M , Zhou B J , et al . Coumarin- and rhodamine-fused deep red fluorescent dyes: synthesis, photophysical properties, and bioimaging in vitro [J]. The Journal of Organic Chemistry, 2013, 78(12): 6121-6130. |
35 | Agarwalla H , Mahajan P S , Sahu D , et al . A switch-on NIR probe for specific detection of Hg2+ ion in aqueous medium and in mitochondria[J]. Inorganic Chemistry, 2016, 55(22): 12052-12060. |
36 | Long L , Tan X , Luo S L , et al . Fluorinated near-infrared fluorescent probes for specific detection of Hg2+ in an aqueous medium and mitochondria of living cells[J]. New Journal of Chemistry, 2017, 41(17): 8899-8904. |
37 | Kakhlon O , Cabantchik Z I . The labile iron pool: characterization, measurement, and participation in cellular processes[J]. Free Radical Biology and Medicine, 2002, 33(8): 1037-1046. |
38 | Swaminathan S , Fonseca V A , Alam M G , et al . The role of iron in diabetes and its complications[J]. Diabetes Care, 2007, 30(7): 1926-1933. |
39 | Chen X , Sun W , Bai Y J , et al . Novel rhodamine Schiff base type naked-eye fluorescent probe for sensing Fe3+ and the application in cell[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018, 191: 566-572. |
40 | Chen W D , Gong W T , Ye Z Q , et al . FRET-based ratiometric fluorescent probes for selective Fe3+ sensing and their applications in mitochondria[J]. Dalton Transactions, 2013, 42(28): 10093-10096. |
41 | Zhu C C , Wang M J , Qiu L , et al . A mitochondria-targeting fluorescent Fe3+ probe and its application in labile Fe3+ monitoring via imaging and flow cytometry[J]. Dyes and Pigments, 2018, 157: 328-333. |
42 | Block W D , Knapp E L . Metabolism, toxicity, and manner of action of gold compounds in the treatment of arthritis[J]. The Journal of Pharmacology and Experimental Therapeutics, 1945, 83(4): 275-278. |
43 | Wang Y , Liu Y W , Miao J F , et al . A novel Bodipy-based fluorescent probe for Au3+ ions with high selectivity and its application to bioimaging[J]. Sensors and Actuators B: Chemical, 2016, 226: 364-369. |
44 | Srisuratsiri P , Kanjanasirirat P , Chairongdua A , et al . Reversible rhodamine-alkyne Au3+-selective chemosensor and its bioimaging application[J]. Tetrahedron Letters, 2017, 58(32): 3194-3199. |
45 | Feng Y , Li D X , Wang Q , et al . A carbazole-based mitochondria-targeted two-photon fluorescent probe for gold ions and its application in living cell imaging[J]. Sensors and Actuators B: Chemical, 2016, 225: 572-578. |
46 | Wang W J , Zhang W , Feng Y , et al . Strategically modified highly selective mitochondria-targeted two-photon fluorescent probe for Au3+ employing Schiff-base: inhibited C=N isomerization vs. hydrolysis mechanism[J]. Dyes and Pigments, 2018, 150: 241-251. |
47 | Wolf F I , Torsello A , Fasanella S , et al . Cell physiology of magnesium [J]. Molecular Aspects of Medicine, 2003, 24 (1/2/3): 11-26. |
48 | Marimuthu P , Ramu A . A ratiometric fluorescence chemosensor for Mg2+ ion and its live cell imaging[J]. Sensors and Actuators B: Chemical, 2018, 266: 384-391. |
49 | Liu M , Yu X , Li M , et al . Fluorescent probes for the detection of magnesium ions (Mg2+): from design to application [J]. RSC Advances, 2018, 8(23): 12573-12587. |
50 | Shindo Y , Fujii T , Komatsu H , et al . Newly developed Mg2+-selective fluorescent probe enables visualization of Mg2+ dynamics in mitochondria[J]. PLoS One, 2011, 6(8): e23684. |
51 | Zhang G , Gruskos J J , Afzal M S , et al . Visualizing changes in mitochondrial Mg2+ during apoptosis with organelle-targeted triazole-based ratiometric fluorescent sensors[J]. Chemical Science, 2015, 6(12): 6841-6846. |
52 | Wang Z W , Saifee O , Nonet M L , et al . SLO-1 potassium channels control quantal content of neurotransmitter release at the C. elegans neuromuscular junction[J]. Neuron, 2001, 32(5): 867-881. |
53 | Xiong M Y , Zhu H J , Rong Q M , et al . A membrane-anchored fluorescent probe for detecting K+ in the cell microenvironment[J]. Chemical Communications, 2016, 52(25): 4679-4682. |
54 | Schwarze T , Riemer J , Holdt H J . A ratiometric fluorescent probe for K+ in water based on a phenylaza-18-crown-6 lariat ether [J]. Chemistry-A European Journal, 2018, 24(40): 10116-10121. |
55 | Kong X X , Su F Y , Zhang L Q , et al . A highly selective mitochondria-targeting fluorescent K+ sensor[J]. Angewandte Chemie International Edition, 2015, 54(41): 12053-12056. |
56 | Schindler M , Grabski S , Hoff E , et al . Defective pH regulation of acidic compartments in human breast cancer cells (MCF-7) is normalized in adriamycin-resistant cells (MCF-7adr)[J]. Biochemistry, 1996, 35 (9): 2811-2817. |
57 | Holopainen J M , Saarikoski J , Kinnunen P K J , et al . Elevated lysosomal pH in neuronal ceroid lipofuscinoses (NCLs)[J]. European Journal of Biochemistry, 2001, 268(22): 5851-5856. |
58 | Zhu Q , Li Z , Mu L , et al . A quinoline-based fluorometric and colorimetric dual-modal pH probe and its application in bioimaging[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018, 188: 230-236. |
59 | Lee D , Swamy K M K , Hong J , et al . A rhodamine-based fluorescent probe for the detection of lysosomal pH changes in living cells[J]. Sensors and Actuators B: Chemical, 2018, 266: 416-421. |
60 | Li P , Xiao H B , Cheng Y F , et al . A near-infrared-emitting fluorescent probe for monitoring mitochondrial pH[J]. Chemical Communications, 2014, 50(54): 7184-7187. |
61 | Chen Y C , Zhu C C , Cen J J , et al . Ratiometric detection of pH fluctuation in mitochondria with a new fluorescein/cyanine hybrid sensor[J]. Chemical Science, 2015, 6(5): 3187-3194. |
62 | Wu Y M , Li K , Liu Y H , et al . Mitochondria-targeted ratiometric fluorescent probe for real time monitoring of pH in living cells[J]. Biomaterials, 2015, 53: 669-678. |
63 | Sarkar A R , Heo C H , Xu L , et al . A ratiometric two-photon probe for quantitative imaging of mitochondrial pH values[J]. Chemical Science, 2016, 7(1): 766-773. |
64 | Xiong X Z , Liu J L , He W H , et al . Dose-effect relationship between drinking water fluoride levels and damage to liver and kidney functions in children[J]. Environmental Research, 2007, 103(1): 112-116. |
65 | 张世玲, 彭孝军 . 氟离子荧光探针的研究进展[J].化工学报, 2016, 67(1): 191-201. |
Zhang S L , Peng X J . Research progress on fluorescent probes for fluoride ions[J]. CIESC Journal, 2016, 67(1): 191-201. | |
66 | Yuan X , Zhao C X , Lu Y X , et al . A novel naphthalimide-based probe for highly sensitive and selective recognition of fluoride ion[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 361: 41-47. |
67 | Du M , Huo B L , Liu J M , et al . A near-infrared fluorescent probe for selective and quantitative detection of fluoride ions based on Si-Rhodamine[J]. Analytica Chimica Acta, 2018, 1030: 172-182. |
68 | Zhang S L , Fan J L , Zhang S Z , et al . Lighting up fluoride ions in cellular mitochondria using a highly selective and sensitive fluorescent probe[J]. Chemical Communications, 2014, 50(90): 14021-14024. |
69 | Wu Z S , Tang X J . Visualizing fluoride ion in mitochondria and lysosome of living cells and in living mice with positively charged ratiometric probes[J]. Analytical Chemistry, 2015, 87(17): 8613-8617. |
70 | Shen Y M , Zhang X Y , Zhang Y Y , et al . An ICT-modulated strategy to construct colorimetric and ratiometric fluorescent sensor for mitochondria-targeted fluoride ion in cell living[J]. Sensors and Actuators B: Chemical, 2018, 258: 544-549. |
71 | Zhou K , Ren M G , Wang L , et al . A targetable fluorescent probe for real-time monitoring of fluoride ions in mitochondria[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018, 204: 777-782. |
72 | Pacher P , Beckman J S , Liaudet L . Nitric oxide and peroxynitrite in health and disease[J]. Physiological Reviews, 2007, 87(1): 315-424. |
73 | Li H Y , Li X H , Wu X F , et al . Observation of the generation of ONOO– in mitochondria under various stimuli with a sensitive fluorescence probe[J]. Analytical Chemistry, 2017, 89(10): 5519-5525. |
74 | Zhu B C , Wang Z K , Zhao Z Y , et al . A simple highly selective and sensitive hydroquinone-based two-photon fluorescent probe for imaging peroxynitrite in live cells[J]. Sensors and Actuators B: Chemical, 2018, 262: 380-385. |
75 | Zhang H X , Liu J , Sun Y Q , et al . A mitochondria-targetable fluorescent probe for peroxynitrite: fast response and high selectivity[J]. Chemical Communications, 2015, 51(13): 2721-2724. |
76 | Zhu B C , Zhang M , Wu L , et al . A highly specific far-red fluorescent probe for imaging endogenous peroxynitrite in the mitochondria of living cells[J]. Sensors and Actuators B: Chemical, 2018, 257: 436-441. |
77 | Cheng D , Pan Y , Wang L , et al . Selective visualization of the endogenous peroxynitrite in an inflamed mouse model by a mitochondria-targetable two-photon ratiometric fluorescent probe[J]. Journal of the American Chemical Society, 2017, 139(1): 285-292. |
78 | Sun W , Shi Y D , Ding A X , et al . Imaging viscosity and peroxynitrite by a mitochondria-targeting two-photon ratiometric fluorescent probe[J]. Sensors and Actuators B: Chemical, 2018, 276: 238-246. |
79 | McCord J M . Free radicals and inflammation: protection of synovial fluid by superoxide dismutase[J]. Science, 1974, 185(4150): 529-531. |
80 | Lu D Q , Zhou L Y , Wang R W , et al . A two-photon fluorescent probe for endogenous superoxide anion radical detection and imaging in living cells and tissues[J]. Sensors and Actuators B: Chemical, 2017, 250: 259-266. |
81 | Li R Q , Mao Z Q , Rong L , et al . A two-photon fluorescent probe for exogenous and endogenous superoxide anion imaging in vitro and in vivo [J]. Biosensors and Bioelectronics, 2017, 87: 73-80. |
82 | Zhang Z , Fan J L , Zhao Y H , et al . Mitochondria-accessing ratiometric fluorescent probe for imaging endogenous superoxide anion in live cells and daphnia magna[J]. ACS Sensors, 2018, 3(3): 735-741. |
83 | Han X Y , Wang R , Song X Y , et al . A mitochondrial-targeting near-infrared fluorescent probe for bioimaging and evaluating endogenous superoxide anion changes during ischemia/reperfusion injury[J]. Biomaterials, 2018, 156: 134-146. |
84 | Li P , Zhang W , Li K X , et al . Mitochondria-targeted reaction-based two-photon fluorescent probe for imaging of superoxide anion in live cells and in vivo [J]. Analytical Chemistry, 2013, 85(20): 9877-9881. |
85 | Qin G H , Wu M Q , Wang J X , et al . Sulfur dioxide contributes to the cardiac and mitochondrial dysfunction in rats[J]. Toxicological Sciences, 2016, 151(2): 334-346. |
86 | Ye Z , Duan C , Sheng R L , et al . A novel colorimetric and ratiometric fluorescent probe for visualizing SO2 derivatives in environment and living cells[J]. Talanta, 2018, 176: 389-396. |
87 | Huang M F , Chen L N , Ning J Y , et al . A new lipid droplets-targeted fluorescence probe for specific detection of SO2 derivatives in living cells[J]. Sensors and Actuators B: Chemical, 2018, 261: 196-202. |
88 | Yin G X , Gan Y B , Yu T , et al . A dual-emission and mitochondria-targeted fluorescent probe for rapid detection of SO2 derivatives and its imaging in living cells[J]. Talanta, 2019, 191: 428-434. |
89 | Li H D , Zhou X , Fan J L , et al . Fluorescence imaging of SO2 derivatives in Daphnia magna with a mitochondria-targeted two-photon ratiometric fluorescent probe[J]. Sensors and Actuators B: Chemical, 2018, 254: 709-718. |
90 | Zhao M , Liu D K , Zhou L , et al . Two water-soluble two-photon fluorescence probes for ratiometric imaging endogenous SO2 derivatives in mitochondria[J]. Sensors and Actuators B: Chemical, 2018, 255: 1228-1237. |
[1] | 王琪, 张斌, 张晓昕, 武虎建, 战海涛, 王涛. 氯铝酸-三乙胺离子液体/P2O5催化合成伊索克酸和2-乙基蒽醌[J]. 化工学报, 2023, 74(S1): 245-249. |
[2] | 金伟其, 吴月荣, 王霞, 李力, 裘溯, 袁盼, 王铭赫. 化工园区工业气体泄漏气云红外成像检测技术与国产化装备进展[J]. 化工学报, 2023, 74(S1): 32-44. |
[3] | 米泽豪, 花儿. 基于DFT和COSMO-RS理论研究多元胺型离子液体吸收SO2气体[J]. 化工学报, 2023, 74(9): 3681-3696. |
[4] | 康飞, 吕伟光, 巨锋, 孙峙. 废锂离子电池放电路径与评价研究[J]. 化工学报, 2023, 74(9): 3903-3911. |
[5] | 陆俊凤, 孙怀宇, 王艳磊, 何宏艳. 离子液体界面极化及其调控氢键性质的分子机理[J]. 化工学报, 2023, 74(9): 3665-3680. |
[6] | 郑佳丽, 李志会, 赵新强, 王延吉. 离子液体催化合成2-氰基呋喃反应动力学研究[J]. 化工学报, 2023, 74(9): 3708-3715. |
[7] | 车睿敏, 郑文秋, 王小宇, 李鑫, 许凤. 基于离子液体的纤维素均相加工研究进展[J]. 化工学报, 2023, 74(9): 3615-3627. |
[8] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[9] | 赵亚欣, 张雪芹, 王荣柱, 孙国, 姚善泾, 林东强. 流穿模式离子交换层析去除单抗聚集体[J]. 化工学报, 2023, 74(9): 3879-3887. |
[10] | 陈美思, 陈威达, 李鑫垚, 李尚予, 吴有庭, 张锋, 张志炳. 硅基离子液体微颗粒强化气体捕集与转化的研究进展[J]. 化工学报, 2023, 74(9): 3628-3639. |
[11] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[12] | 王俐智, 杭钱程, 郑叶玲, 丁延, 陈家继, 叶青, 李进龙. 离子液体萃取剂萃取精馏分离丙酸甲酯+甲醇共沸物[J]. 化工学报, 2023, 74(9): 3731-3741. |
[13] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[14] | 宋明昊, 赵霏, 刘淑晴, 李国选, 杨声, 雷志刚. 离子液体脱除模拟油中挥发酚的多尺度模拟与研究[J]. 化工学报, 2023, 74(9): 3654-3664. |
[15] | 王阳, 戴永强, 曾炜. 2,5-二羟基苯磺酸增强离子水凝胶材料热电性能的研究[J]. 化工学报, 2023, 74(9): 3946-3955. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 379
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 711
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||