化工学报 ›› 2016, Vol. 67 ›› Issue (1): 191-201.DOI: 10.11949/j.issn.0438-1157.20150954
张世玲, 彭孝军
收稿日期:
2015-06-19
修回日期:
2014-07-10
出版日期:
2016-01-05
发布日期:
2016-01-05
通讯作者:
彭孝军
基金资助:
国家自然科学基金项目(21136002,21421005);国家重点基础研究发展计划项目(2013CB733702)。
ZHANG Shiling, PENG Xiaojun
Received:
2015-06-19
Revised:
2014-07-10
Online:
2016-01-05
Published:
2016-01-05
Supported by:
supported by the National Natural Science Foundation of China (21136002 and 21421005) and the National Basic Research Program of China(2013CB733702).
摘要:
氟离子是电负性最强、离子半径最小的阴离子,是一个强路易斯碱,在化学、生物学、医学和军事等方面都具有重要作用。适量的氟化物摄入人体可以预防龋齿、治疗骨质疏松症,但是过量的摄入会导致氟斑牙、氟骨症、尿石症以及癌症等疾病,因此氟离子的识别与检测具有重要意义。化学荧光探针具有选择性好、灵敏度高、方便快捷、成本低廉等优点,近年来化学研究者设计合成了大量的氟离子荧光探针。根据识别机理不同,氟离子荧光探针主要划分为3种:氢键型、路易斯酸受体型、氢键和路易斯酸混合型。综述了近年来不同类型的氟离子荧光探针的研究进展,总结了氢键型和路易斯酸型氟离子荧光探针的优缺点,对未来氟离子荧光探针的研究方向进行了展望。
中图分类号:
张世玲, 彭孝军. 氟离子荧光探针的研究进展[J]. 化工学报, 2016, 67(1): 191-201.
ZHANG Shiling, PENG Xiaojun. Research progress on fluorescent probes for fluoride ions[J]. CIESC Journal, 2016, 67(1): 191-201.
[1] | 吴振. 萘酰亚胺类氟离子荧光化学传感器的合成与识别研究[D]. 武汉:湖北大学, 2012.WU Z. The synthesis and study of 1,8-naphthalimide fluorescent chemsensors for fluoride ion[D]. Wuhan: Hubei University, 2012. |
[2] | 吴云扣. 阴离子荧光识别中的氢键及质子转移研究[D]. 大连:大连理工大学, 2007.WU Y K. Fluorescence anion sensing based on hydrogen bonding and proton transfer[D]. Dalian: Dalian University of Technology, 2007. |
[3] | WU Y K, PENG X J, FAN J L, et al. Fluorescence sensing of anions based on inhibition of excited-state intramolecular proton transfer [J]. The Journal of Organic Chemistry, 2007, 72(1): 62-70. DOI: 10.1021/jo061634c. |
[4] | THIAGARAJAN V, RAMAMURTHY P, THIRUMALAI D, et al. A novel colorimetric and fluorescent chemosensor for anions involving PET and ICT pathways [J]. Organic Letters, 2005, 7(4): 657-660. DOI: 10.1021/ol047463k. |
[5] | DUKE R M, GUNNLAUGSSON T. 3-Urea-1,8-naphthalimides are good chemosensors: a highly selective dual colorimetric and fluorescent ICT based anion sensor for fluoride [J]. Tetrahedron Letters, 2011, 52(13): 1503-1505. DOI:10.1016/j.tetlet.2011.01.099. |
[6] | RAJAMALLI P, PRASAD E. Low molecular weight fluorescent organogel for fluoride ion detection [J]. Organic Letters, 2011, 13(14): 3714-3717. DOI: 10.1021/ol201325j. |
[7] | CHENG F, BONDER E M, JÄKLE F. Electron-deficient triarylborane block copolymers: synthesis by controlled free radical polymerization and application in the detection of fluoride ions [J]. Journal of the American Chemical Society, 2013, 135(46): 17286-17289. DOI: 10.1021/ja409525j. |
[8] | QU Y, HUA J L, TIAN H. Colorimetric and ratiometric red fluorescent chemosensor for fluoride ion based on diketopyrrolopyrrole [J]. Organic Letters, 2010, 12(15): 3320-3323. DOI: 10.1021/ol101081m. |
[9] | SARAVANAN C, EASWARAMOORTHI S, HSIOW C, et al. Benzoselenadiazole fluorescent probes-near-ir optical and ratiometric fluorescence sensor for fluoride ion [J]. Organic Letters, 2014, 16(2): 354-357. DOI: 10.1021/ol403082p. |
[10] | SIVARAMAN G, CHELLAPPA D. Rhodamine based sensor for naked-eye detection and live cell imaging of fluoride ions [J]. Journal of Materials Chemistry B, 2013, 1(42): 5768-5772. DOI: 10.1039/C3TB21041C. |
[11] | MAHAPATRA A K, MAJI R, MAITI K, et al. Ratiometric sensing of fluoride and acetate anions based on a BODIPY-azaindole platform and its application to living cell imaging [J]. Analyst, 2014, 139(1): 309-317. DOI: 10.1039/C3AN01663C. |
[12] | LIN C I, SELVI S, FANG J M, et al. Pyreno[2,1-b]pyrrole and bis (pyreno [2,1-b] pyrrole) as selective chemosensors of fluoride ion: a mechanistic study [J]. The Journal of Organic Chemistry, 2007, 72(9): 3537-3542. DOI: 10.1021/jo070169w. |
[13] | SUI B L, KIM B, ZHANG Y W, et al. Highly selective fluorescence turn-on sensor for fluoride detection [J]. ACS Applied Materials & Interfaces, 2013, 5(8): 2920-2923. DOI: 10.1021/am400588w. |
[14] | PENG X J, WU Y K, FAN J L, et al. Colorimetric and ratiometric fluorescence sensing of fluoride: tuning selectivity in proton transfer [J]. The Journal of Organic Chemistry, 2005, 70(25): 10524-10531. DOI: 10.1021/jo051766q. |
[15] | MADHU S, RAVIKANTH M. Boron-dipyrromethene based reversible and reusable selective chemosensor for fluoride detection [J]. Inorganic Chemistry, 2014, 53(3): 1646-1653. DOI: 10.1021/ic402767j. |
[16] | YONG X, SU M J, WANG W, et al. A naked-eye chemosensor for fluoride ions: a selective easy-to-prepare test paper [J]. Organic & Biomolecular Chemistry, 2013, 11(14): 2254-2257. DOI: 10.1039/C3OB27131E. |
[17] | WANG Q G, XIE Y S, DING Y B, et al. Colorimetric fluoride sensors based on deprotonation of pyrrole-hemiquinone compounds [J]. Chemical Communications, 2010, 46(21): 3669-3671. DOI: 10.1039/C001509A. |
[18] | ZHENG X J, ZHU W C, LIU D, et al. Highly selective colorimetric/fluorometric dual-channel fluoride ion probe, and its capability of differentiating cancer cells [J]. ACS Applied Materials & Interfaces, 2014, 6(11): 7996-8000. DOI: 10.1021/am501546h. |
[19] | GHOSH D, RHODES S, HAWKINS K. A simple and effective 1,2,3-triazole based “turn-on” fluorescence sensor for the detection of anions [J]. New Journal of Chemistry, 2015, 39(1): 295-303. DOI: 10.1039/C4NJ01411A. |
[20] | LIU R Y, GAO Y, ZHANG Q B. A fluorescent probe based on hydroxylnaphthalene 2-cyanoacrylate: fluoride ion detection and its bio-imaging in live cells [J]. New Journal of Chemistry, 2014, 38(7): 2941-2945. DOI: 10.1039/C4NJ00018H. |
[21] | YUAN M S, WANG Q, WANG W J, et al. Truxene-cored π-expanded triarylborane dyes as single-and two-photon fluorescent probes for fluoride [J]. Analyst, 2014, 139(6): 1541-1549. DOI: 10.1039/C3AN02179C. |
[22] | SWAMY K M K, LEE Y J, LEE H N, et al. A new fluorescein derivative bearing a boronic acid group as a fluorescent chemosensor for fluoride ion [J]. The Journal of Organic Chemistry, 2006, 71(22): 8626-8628. DOI: 10.1021/jo061429x. |
[23] | GUO Z Q, SHIN I, YOON J. Recognition and sensing of various species using boronic acid derivatives [J]. Chemical Communications, 2012, 48(48): 5956-5967. DOI: 10.1039/C2CC31985C. |
[24] | XU Z C, KIM S K, HAN S J, et al. Ratiometric fluorescence sensing of fluoride ions by an asymmetric bidentate receptor containing a boronic acid and imidazolium group [J]. European Journal of Organic Chemistry, 2009, 2009(18): 3058-3065. DOI: 10.1002/ejoc.200900120. |
[25] | CAO J, ZHAO C C, FENG P, et al. A colorimetric and ratiometric NIR fluorescent turn-on fluoride chemodosimeter based on BODIPY derivatives: high selectivity via specific Si—O cleavage [J]. RSC Advances, 2012, 2(2): 418-420. DOI: 10.1039/C1RA00942G. |
[26] | CAO J, ZHAO C C, ZHU W H. A near-infrared fluorescence chemodosimeter for fluoride via specific Si—O cleavage [J]. Tetrahedron Letters, 2012, 53(16): 2107-2110. DOI:10.1016/j.tetlet.2012.02.051. |
[27] | IM H G, KIM H Y, CHOI M G, et al. Reaction-based dual signaling of fluoride ions by resorufin sulfonates [J]. Organic & Biomolecular Chemistry, 2013, 11(18): 2966-2971. DOI: 10.1039/C3OB00040K. |
[28] | LI L, JI Y Z, TANG X J. Quaternary ammonium promoted ultra selective and sensitive fluorescence detection of fluoride ion in water and living cells [J]. Analytical Chemistry, 2014, 86(20): 10006-10009. DOI: 10.1021/ac503177n. |
[29] | ROY A, KAND D, SAHA T, et al. Pink fluorescence emitting fluoride ion sensor: investigation of the cascade sensing mechanism and bioimaging applications [J]. RSC Advances, 2014, 4(64): 33890-33896. DOI: 10.1039/C4RA06933A. |
[30] | SOKKALINGAM P, LEE C. Highly sensitive fluorescence “turn-on” indicator for fluoride anion with remarkable selectivity in organic and aqueous media [J]. The Journal of Organic Chemistry, 2011, 76(10): 3820-3828. DOI: 10.1021/jo200138t. |
[31] | GU J A, MANI V, HUANG S T. Design and synthesis of ultrasensitive off-on fluoride detecting fluorescence probe via autoinductive signal amplification [J]. Analyst, 2015, 140(1): 346-352. DOI: 10.1039/C4AN01723D. |
[32] | DHANUNJAYARAO K, MUKUNDAM V, VENKATASUBBAIAH K. A highly selective ratiometric detection of F-based on excited-state intramolecular proton-transfer (imidazole) materials [J]. Journal of Materials Chemistry C, 2014, 2(40): 8599-8606. DOI: 10.1039/C4TC01711K. |
[33] | ROY A, KAND D, SAHA T, et al. A cascade reaction based fluorescent probe for rapid and selective fluoride ion detection [J]. Chemical Communications, 2014, 50(41): 5510-5513. DOI: 10.1039/C4CC01665C. |
[34] | KE B W, CHEN W X, NI N T. A fluorescent probe for rapid aqueous fluoride detection and cell imaging [J]. Chemical Communications, 2013, 49(25): 2494-2496. DOI: 10.1039/C2CC37270C. |
[35] | JO M, LIM J, MILJANI? O Š. Selective and sensitive fluoride detection through alkyne cruciform desilylation [J]. Organic Letters, 2013, 15(14): 3518-3521. DOI: 10.1021/ol401120a. |
[36] | RAO M R, MOBIN S M, RAVIKANTH M. Boron-dipyrromethene based specific chemodosimeter for fluoride ion [J]. Tetrahedron, 2010, 66(9): 1728-1734. DOI:10.1016/j.tet.2009.12.039. |
[37] | LU H, WANG Q H, LI Z F, et al. A specific chemodosimeter for fluoride ion based on a pyrene derivative with trimethylsilylethynyl groups [J]. Organic & Biomolecular Chemistry, 2011, 9(12): 4558-4562. DOI: 10.1039/C1OB05164D. |
[38] | FU L, JIANG F L, FORTIN D, et al. A reaction-based chromogenic and fluorescent chemodosimeter for fluoride anions [J]. Chemical Communications, 2011, 47(19): 5503-5505. DOI: 10.1039/C1CC10784D. |
[39] | BUCKLAND D, BHOSALE S V, LANGFORD S J. A chemodosimer based on a core-substituted naphthalene diimide for fluoride ion detection [J]. Tetrahedron Letters, 2011, 52(16): 1990-1992. DOI:10.1016/j.tetlet.2011.02.080. |
[40] | KIM D, SINGHA S, WANG T, et al. In vivo two-photon fluorescent imaging of fluoride with a desilylation-based reactive probe [J]. Chemical Communications, 2012, 48(82): 10243-10245. DOI: 10.1039/C2CC35668F. |
[41] | WANG C Y, YANG S, YI M, et al. Graphene oxide assisted fluorescent chemodosimeter for high-performance sensing and bioimaging of fluoride ions [J]. ACS Applied Materials & Interfaces, 2014, 6(12): 9768-9775. DOI: 10.1021/am502142d. |
[42] | BHALLA V, SINGH H, KUMAR M. Facile cyclization of terphenyl to triphenylene: a new chemodosimeter for fluoride ions [J]. Organic Letters, 2010, 12(3): 628-631. DOI: 10.1021/ol902861b. |
[43] | HOU P, CHEN S, WANG H B, et al. An aqueous red emitting fluorescent fluoride sensing probe exhibiting a large Stokes shift and its application in cell imaging [J]. Chemical Communications, 2014, 50(3): 320-322. DOI: 10.1039/C3CC46630B. |
[44] | PENG Y, DONG Y M, DONG M, et al. A selective, sensitive, colorimetric, and fluorescence probe for relay recognition of fluoride and Cu(Ⅱ) ions with “off-on-off” switching in ethanol-water solution [J]. The Journal of Organic Chemistry, 2012, 77(20): 9072-9080. DOI: 10.1021/jo301548v. |
[45] | DONG M, PENG Y, DONG Y M, et al. A selective, colorimetric, and fluorescent chemodosimeter for relay recognition of fluoride and cyanide anions based on 1,1'-binaphthyl scaffold [J]. Organic Letters, 2012, 14(1): 130-133. DOI: 10.1021/ol202926e. |
[46] | YEH J T, VENKATESAN P, WU S P. A highly selective turn-on fluorescent sensor for fluoride and its application in imaging of living cells [J]. New Journal of Chemistry, 2014, 38(12): 6198-6204. DOI: 10.1039/C4NJ01486C. |
[47] | KIM T, SWAGER T. A fluorescent self-amplifying wavelength-responsive sensory polymer for fluoride ions [J]. Angewandte Chemie International Edition, 2003, 42(39): 4803-4806. DOI:10.1002/anie.200352075. |
[48] | ZHANG S L, FAN J L, ZHANG S Z, et al. Lighting up fluoride ions in cellular mitochondria using a highly selective and sensitive fluorescent probe [J]. Chemical Communications, 2014, 50(90): 14021-14024. DOI: 10.1039/C4CC05094K. |
[49] | KE I, MYAHKOSTUPOV M, CASTELLANO F N, et al. Stibonium ions for the fluorescence turn-on sensing of F- in drinking water at parts per million concentrations [J]. Journal of the American Chemical Society, 2012, 134(37): 15309-15311. DOI: 10.1021/ja308194w. |
[50] | HIRAI M, GABBAÏ F P. Lewis acidic stiborafluorenes for the fluorescence turn-on sensing of fluoride in drinking water at ppm concentrations [J]. Chemical Science, 2014, 5(5): 1886-1893. DOI: 10.1039/C4SC00343H. |
[51] | ZHAO Q, LI F Y, LIU S J, et al. Highly selective phosphorescent chemosensor for fluoride based on an iridium(Ⅲ) complex containing arylborane units [J]. Inorganic Chemistry, 2008, 47(20): 9256-9264. DOI: 10.1021/ic800500c. |
[52] | XU S Y, SUN X L, GE H B, et al. Synthesis and evaluation of a boronate-tagged 1,8-naphthalimide probe for fluoride recognition [J]. Organic & Biomolecular Chemistry, 2015, 13(14): 4143-4148. DOI: 10.1039/C4OB02267J. |
[1] | 唐茹意, 潘罕骞, 郑侠俊, 张广欣, 汪星平, 崔希利, 邢华斌. Z型全氟聚醚的结构表征[J]. 化工学报, 2023, 74(1): 479-486. |
[2] | 陈晨, 杨倩, 陈云, 张睿, 刘冬. 不同氧浓度下煤挥发分燃烧的化学动力学研究[J]. 化工学报, 2022, 73(9): 4133-4146. |
[3] | 李彬, 宋文明, 杨坤龙, 姜爽, 张天永. 水系有机液流电池活性材料的分子工程研究进展[J]. 化工学报, 2022, 73(7): 2806-2818. |
[4] | 任玉鑫, 徐润峰, 王婉颖, 陈鹏忠, 彭孝军. 彩色光刻胶用蒽醌染料的合成及稳定性研究[J]. 化工学报, 2022, 73(5): 2251-2261. |
[5] | 王靖楠, 庞建, 秦磊, 郭超, 吕波, 李春, 王超. 丁烯基多杀菌素高产菌株的选育和改造策略[J]. 化工学报, 2022, 73(2): 566-576. |
[6] | 杨瑞雄, 郑鑫, 陆涛, 赵誉泽, 杨庆华, 卢英华, 何宁, 凌雪萍. 烯酰还原酶基因的替换对裂殖壶菌合成二十碳五烯酸的影响[J]. 化工学报, 2021, 72(7): 3768-3779. |
[7] | 王法军, 黄晋培, 徐建鸿. 微反应器内红色基KD重氮化反应动力学研究[J]. 化工学报, 2021, 72(2): 984-992. |
[8] | 江龙, 王开杰, 孔晴, 陆晟, 陈小强. 基于金刚烷-二氧杂环丁烷化学发光探针的研究进展[J]. 化工学报, 2021, 72(1): 229-246. |
[9] | 秦磊, 俞杰, 宁小钰, 孙文涛, 李春. 合成生物系统构建与绿色生物“智”造[J]. 化工学报, 2020, 71(9): 3979-3994. |
[10] | 狄玲, 陈放, 付荣荣, 杨辰, 邢杨, 王晓宁. 富电子LMOF对有机农药的检测机理研究[J]. 化工学报, 2020, 71(8): 3830-3838. |
[11] | 封悦洋, 王颖, 姚明东, 肖文海, 丁明珠. 生物合成槲皮素糖苷类衍生物的研究进展[J]. 化工学报, 2020, 71(7): 2945-2955. |
[12] | 姚春, 黄龙龙, 常江伟, 丁一旺, 于畅, 邱介山. 碳分子筛的优化设计及其I3-还原性能研究[J]. 化工学报, 2020, 71(6): 2696-2704. |
[13] | 吴悦溪, 曾薇, 刘宏, 李健敏, 彭永臻. Feammox系统内氮素转化途径的研究[J]. 化工学报, 2020, 71(5): 2265-2272. |
[14] | 潘禹, 王华生, 詹鸿峰, 孙缓缓. 微囊藻毒素降解酶MlrA的生物学特征及催化机理研究进展[J]. 化工学报, 2020, 71(3): 945-954. |
[15] | 刘丽雪, 张少峰, 赵长伟, 宝乐尔呼, 俞灵, 王军. β-环糊精为水相单体的复合纳滤膜制备及染料截留性能[J]. 化工学报, 2020, 71(2): 889-898. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 950
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 641
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||