化工学报 ›› 2024, Vol. 75 ›› Issue (10): 3401-3413.DOI: 10.11949/0438-1157.20240479
收稿日期:
2024-04-30
修回日期:
2024-07-06
出版日期:
2024-10-25
发布日期:
2024-11-04
通讯作者:
王治红
作者简介:
向腾龙(1998—),男,硕士研究生,1569265168@qq.com
Tenglong XIANG1(), Zhihong WANG1(
), Gui WANG2, Long LI2
Received:
2024-04-30
Revised:
2024-07-06
Online:
2024-10-25
Published:
2024-11-04
Contact:
Zhihong WANG
摘要:
为了从天然气发电厂的烟气中捕获二氧化碳(CO2)并回收液化天然气(LNG)的冷能,提出了一种分级回收LNG冷能的工艺。该工艺将液化天然气按温度分为深冷、中冷和浅冷,并将每一段冷能分别与循环介质相匹配,以回收LNG冷能、水和捕获CO2,同时向外界输送电力。在有机朗肯循环(ORC)中,热源是烟道气,冷源是液化天然气。系统的热力学分析表明,该系统的热回收效率、冷能利用率、发电效率和㶲效率分别为41.55%、14.34%、10.80%和53.60%。CO2捕获量和冷能发电量分别为177.30 kg/t和25.86 kWh/t。此外,对LNG再气化压力进行了研究,在气化压力为1.00 MPa时,CO2捕集率达到最大。较高的㶲效率表明了分级冷能利用工艺设计的新颖性以及工作流体在ORC中使用的适宜性。
中图分类号:
向腾龙, 王治红, 汪贵, 李龙. 液化天然气冷能梯级利用的多功能集成系统研究[J]. 化工学报, 2024, 75(10): 3401-3413.
Tenglong XIANG, Zhihong WANG, Gui WANG, Long LI. Research on multifunctional integrated system for cold energy cascade utilization of liquefied natural gas[J]. CIESC Journal, 2024, 75(10): 3401-3413.
参数 | 数值 |
---|---|
LNG温度/℃ | -162.00 |
LNG压力/kPa | 200.00 |
工艺水进口温度/℃ | 25.00 |
冷冻水出口温度/℃ | 7.00 |
工艺水压力/kPa | 100.00 |
LNG质量流量/(kg/s) | 5.00 |
表1 系统所需的热力学参数
Table 1 Thermodynamic parameters required for the system
参数 | 数值 |
---|---|
LNG温度/℃ | -162.00 |
LNG压力/kPa | 200.00 |
工艺水进口温度/℃ | 25.00 |
冷冻水出口温度/℃ | 7.00 |
工艺水压力/kPa | 100.00 |
LNG质量流量/(kg/s) | 5.00 |
组分 | 摩尔分数/% |
---|---|
甲烷 | 90.38 |
乙烷 | 5.37 |
丙烷 | 4.04 |
氮气 | 0.21 |
表2 LNG组分摩尔分数[27]
Table 2 Molar fraction of LNG components[27]
组分 | 摩尔分数/% |
---|---|
甲烷 | 90.38 |
乙烷 | 5.37 |
丙烷 | 4.04 |
氮气 | 0.21 |
参数 | 数值 |
---|---|
温度/℃ | 87.50 |
压力/kPa | 300.00 |
摩尔分数/% | |
N2 | 76.30 |
CO2 | 6.00 |
O2 | 5.90 |
H2O | 11.80 |
表3 废气余热的进口条件和组成[28]
Table 3 Inlet conditions and composition of exhaust gas waste heat[28]
参数 | 数值 |
---|---|
温度/℃ | 87.50 |
压力/kPa | 300.00 |
摩尔分数/% | |
N2 | 76.30 |
CO2 | 6.00 |
O2 | 5.90 |
H2O | 11.80 |
工质 | 化学式 | 正常沸点/℃ |
---|---|---|
甲烷 | CH4 | -161.50 |
R1150 | C2H4 | -103.70 |
R170 | C2H6 | -88.60 |
R1270 | C3H6 | -47.70 |
R290 | C3H8 | -42.170 |
R600a | iC4H10 | -12.40 |
R600 | nC4H10 | -0.50 |
表4 工质的热力学性质[29]
Table 4 Thermodynamic properties of the substances[29]
工质 | 化学式 | 正常沸点/℃ |
---|---|---|
甲烷 | CH4 | -161.50 |
R1150 | C2H4 | -103.70 |
R170 | C2H6 | -88.60 |
R1270 | C3H6 | -47.70 |
R290 | C3H8 | -42.170 |
R600a | iC4H10 | -12.40 |
R600 | nC4H10 | -0.50 |
编号 | 气相分数 | 温度/℃ | 压力/ kPa | 摩尔流量/(kmol/h) | 质量流量/(kg/h) | 质量焓/(kJ/kg) | 质量熵/ (kJ/(kg·K)) | 质量有效能/(kJ/kg) |
---|---|---|---|---|---|---|---|---|
LNG | 0 | -162.00 | 200.00 | 1002.52 | 18000.00 | -5143.90 | 4.19 | 961.43 |
L1 | 0 | -161.63 | 1000.00 | 1002.52 | 18000.00 | -5141.73 | 4.19 | 961.93 |
L2 | 0.47 | -120.00 | 1000.00 | 1002.52 | 18000.00 | -4831.14 | 6.38 | 621.57 |
L3 | 0.94 | -84.65 | 1000.00 | 1002.52 | 18000.00 | -4555.77 | 8.06 | 395.06 |
L4 | 1.00 | -61.32 | 1000.00 | 1002.52 | 18000.00 | -4454.77 | 8.56 | 345.81 |
NG | 1.00 | 20.00 | 1000.00 | 1002.52 | 18000.00 | -4280.79 | 9.26 | 312.76 |
1 | 1.00 | -90.69 | 3600.00 | 723.06 | 11600.00 | -5049.65 | 8.01 | 643.00 |
2 | 0.83 | -110.35 | 1800.00 | 723.06 | 11600.00 | -5077.63 | 8.05 | 602.21 |
3 | 0 | -156.58 | 1800.00 | 723.06 | 11600.00 | -5559.58 | 4.90 | 1058.77 |
4 | 0 | -155.64 | 3600.00 | 723.06 | 11600.00 | -5554.20 | 4.91 | 1060.13 |
5 | 0 | -75.07 | 200.00 | 335.63 | 10092.12 | -3448.63 | 4.02 | 326.67 |
6 | 0 | -74.55 | 1000.00 | 335.63 | 10092.12 | -3446.72 | 4.02 | 327.81 |
7 | 1.00 | 0.00 | 1000.00 | 335.63 | 10092.12 | -2880.52 | 6.40 | 184.45 |
8 | 1.00 | -60.83 | 200.00 | 335.63 | 10092.12 | -2957.47 | 6.49 | 79.63 |
9 | 0 | -42.75 | 100.00 | 90.71 | 4000.00 | -2916.64 | 4.09 | 137.17 |
10 | 0 | -42.33 | 800.00 | 90.71 | 4000.00 | -2915.13 | 4.09 | 138.18 |
11 | 1.00 | 40.00 | 800.00 | 90.71 | 4000.00 | -2381.88 | 5.98 | 110.02 |
12 | 1.00 | -20.83 | 100.00 | 90.71 | 4000.00 | -2462.14 | 6.06 | 5.38 |
13 | 0 | -32.14 | 1000.00 | 249.42 | 7500.00 | -3333.46 | 4.53 | 287.45 |
14 | 0 | -31.12 | 2000.00 | 249.42 | 7500.00 | -3330.76 | 4.54 | 289.33 |
15 | 1.00 | 15.00 | 2000.00 | 249.42 | 7500.00 | -2879.30 | 6.24 | 232.53 |
16 | 1.00 | -18.10 | 1000.00 | 249.42 | 7500.00 | -2913.17 | 6.28 | 188.67 |
flue gas | 1.00 | 87.50 | 300.00 | 1391.45 | 39000.00 | -1794.50 | 5.55 | 108.56 |
F1 | 0.98 | 68.16 | 300.00 | 1391.45 | 39000.00 | -1849.19 | 5.40 | 100.93 |
F2 | 1.00 | 68.16 | 300.00 | 1360.65 | 38445.07 | -1649.26 | 5.42 | 102.21 |
F3 | 0.92 | 39.01 | 300.00 | 1360.65 | 38445.07 | -1797.89 | 4.97 | 88.31 |
F4 | 1.00 | 39.01 | 300.00 | 1257.29 | 36582.82 | -1083.83 | 5.06 | 92.64 |
F5 | 0.98 | -9.21 | 300.00 | 1257.29 | 36582.82 | -1169.43 | 4.77 | 94.67 |
F6 | 1.00 | -9.21 | 300.00 | 1228.51 | 36064.20 | -955.74 | 4.80 | 93.70 |
F7 | 0.94 | -131.07 | 300.00 | 1228.51 | 36064.20 | -1118.02 | 3.93 | 191.85 |
F8 | 0.00 | -131.07 | 300.00 | 74.26 | 3228.13 | -9520.99 | 0.98 | 319.51 |
F9 | 1.00 | -131.07 | 300.00 | 1154.25 | 32836.07 | -291.92 | 4.22 | 160.90 |
F10 | 1.00 | -37.15 | 300.00 | 1154.25 | 32836.07 | -195.93 | 4.74 | 102.24 |
tail gas | 1.00 | 20.00 | 300.00 | 1154.25 | 32836.07 | -137.17 | 4.96 | 94.54 |
H1 | 0 | 68.16 | 300.00 | 30.80 | 554.93 | -15699.92 | 3.57 | 12.57 |
H2 | 0 | 39.01 | 300.00 | 103.36 | 1862.24 | -15825.32 | 3.18 | 1.62 |
H3 | 0 | -9.21 | 300.00 | 28.78 | 518.63 | -16029.15 | 2.46 | 9.41 |
CW-IN-1 | 0 | 25.00 | 100.00 | 2419.32 | 43584.35 | -15887.82 | 2.98 | 0.00 |
CW-OUT-1 | 0 | 7.00 | 100.00 | 2419.32 | 43584.35 | -15965.51 | 2.71 | 2.44 |
CW-IN-2 | 0 | 25.00 | 100.00 | 1378.59 | 24835.47 | -15887.82 | 2.98 | 0 |
CW-OUT-2 | 0 | 7.00 | 100.00 | 1378.59 | 24835.47 | -15965.51 | 2.71 | 2.44 |
表5 模拟过程的热力学数据
Table 5 Thermodynamic data of the simulated process
编号 | 气相分数 | 温度/℃ | 压力/ kPa | 摩尔流量/(kmol/h) | 质量流量/(kg/h) | 质量焓/(kJ/kg) | 质量熵/ (kJ/(kg·K)) | 质量有效能/(kJ/kg) |
---|---|---|---|---|---|---|---|---|
LNG | 0 | -162.00 | 200.00 | 1002.52 | 18000.00 | -5143.90 | 4.19 | 961.43 |
L1 | 0 | -161.63 | 1000.00 | 1002.52 | 18000.00 | -5141.73 | 4.19 | 961.93 |
L2 | 0.47 | -120.00 | 1000.00 | 1002.52 | 18000.00 | -4831.14 | 6.38 | 621.57 |
L3 | 0.94 | -84.65 | 1000.00 | 1002.52 | 18000.00 | -4555.77 | 8.06 | 395.06 |
L4 | 1.00 | -61.32 | 1000.00 | 1002.52 | 18000.00 | -4454.77 | 8.56 | 345.81 |
NG | 1.00 | 20.00 | 1000.00 | 1002.52 | 18000.00 | -4280.79 | 9.26 | 312.76 |
1 | 1.00 | -90.69 | 3600.00 | 723.06 | 11600.00 | -5049.65 | 8.01 | 643.00 |
2 | 0.83 | -110.35 | 1800.00 | 723.06 | 11600.00 | -5077.63 | 8.05 | 602.21 |
3 | 0 | -156.58 | 1800.00 | 723.06 | 11600.00 | -5559.58 | 4.90 | 1058.77 |
4 | 0 | -155.64 | 3600.00 | 723.06 | 11600.00 | -5554.20 | 4.91 | 1060.13 |
5 | 0 | -75.07 | 200.00 | 335.63 | 10092.12 | -3448.63 | 4.02 | 326.67 |
6 | 0 | -74.55 | 1000.00 | 335.63 | 10092.12 | -3446.72 | 4.02 | 327.81 |
7 | 1.00 | 0.00 | 1000.00 | 335.63 | 10092.12 | -2880.52 | 6.40 | 184.45 |
8 | 1.00 | -60.83 | 200.00 | 335.63 | 10092.12 | -2957.47 | 6.49 | 79.63 |
9 | 0 | -42.75 | 100.00 | 90.71 | 4000.00 | -2916.64 | 4.09 | 137.17 |
10 | 0 | -42.33 | 800.00 | 90.71 | 4000.00 | -2915.13 | 4.09 | 138.18 |
11 | 1.00 | 40.00 | 800.00 | 90.71 | 4000.00 | -2381.88 | 5.98 | 110.02 |
12 | 1.00 | -20.83 | 100.00 | 90.71 | 4000.00 | -2462.14 | 6.06 | 5.38 |
13 | 0 | -32.14 | 1000.00 | 249.42 | 7500.00 | -3333.46 | 4.53 | 287.45 |
14 | 0 | -31.12 | 2000.00 | 249.42 | 7500.00 | -3330.76 | 4.54 | 289.33 |
15 | 1.00 | 15.00 | 2000.00 | 249.42 | 7500.00 | -2879.30 | 6.24 | 232.53 |
16 | 1.00 | -18.10 | 1000.00 | 249.42 | 7500.00 | -2913.17 | 6.28 | 188.67 |
flue gas | 1.00 | 87.50 | 300.00 | 1391.45 | 39000.00 | -1794.50 | 5.55 | 108.56 |
F1 | 0.98 | 68.16 | 300.00 | 1391.45 | 39000.00 | -1849.19 | 5.40 | 100.93 |
F2 | 1.00 | 68.16 | 300.00 | 1360.65 | 38445.07 | -1649.26 | 5.42 | 102.21 |
F3 | 0.92 | 39.01 | 300.00 | 1360.65 | 38445.07 | -1797.89 | 4.97 | 88.31 |
F4 | 1.00 | 39.01 | 300.00 | 1257.29 | 36582.82 | -1083.83 | 5.06 | 92.64 |
F5 | 0.98 | -9.21 | 300.00 | 1257.29 | 36582.82 | -1169.43 | 4.77 | 94.67 |
F6 | 1.00 | -9.21 | 300.00 | 1228.51 | 36064.20 | -955.74 | 4.80 | 93.70 |
F7 | 0.94 | -131.07 | 300.00 | 1228.51 | 36064.20 | -1118.02 | 3.93 | 191.85 |
F8 | 0.00 | -131.07 | 300.00 | 74.26 | 3228.13 | -9520.99 | 0.98 | 319.51 |
F9 | 1.00 | -131.07 | 300.00 | 1154.25 | 32836.07 | -291.92 | 4.22 | 160.90 |
F10 | 1.00 | -37.15 | 300.00 | 1154.25 | 32836.07 | -195.93 | 4.74 | 102.24 |
tail gas | 1.00 | 20.00 | 300.00 | 1154.25 | 32836.07 | -137.17 | 4.96 | 94.54 |
H1 | 0 | 68.16 | 300.00 | 30.80 | 554.93 | -15699.92 | 3.57 | 12.57 |
H2 | 0 | 39.01 | 300.00 | 103.36 | 1862.24 | -15825.32 | 3.18 | 1.62 |
H3 | 0 | -9.21 | 300.00 | 28.78 | 518.63 | -16029.15 | 2.46 | 9.41 |
CW-IN-1 | 0 | 25.00 | 100.00 | 2419.32 | 43584.35 | -15887.82 | 2.98 | 0.00 |
CW-OUT-1 | 0 | 7.00 | 100.00 | 2419.32 | 43584.35 | -15965.51 | 2.71 | 2.44 |
CW-IN-2 | 0 | 25.00 | 100.00 | 1378.59 | 24835.47 | -15887.82 | 2.98 | 0 |
CW-OUT-2 | 0 | 7.00 | 100.00 | 1378.59 | 24835.47 | -15965.51 | 2.71 | 2.44 |
设备 | 位号 | 计算公式 | 㶲损失/kW | 㶲效率/% |
---|---|---|---|---|
泵 | P-100 | IP-100=ELNG+WP-100-EL1 | 8.34 | 99.83 |
P-101 | IP-101=E3+WP-101-E4 | 12.97 | 99.62 | |
P-102 | IP-102=E5+WP-102-E6 | 2.15 | 99.77 | |
P-103 | IP-103=E9+WP-103-E10 | 0.54 | 99.65 | |
P-104 | IP-104=E13+WP-104-E14 | 1.73 | 99.71 | |
涡轮机 | K-100 | IK-100=E1-WK-100-E2 | 41.28 | 98.01 |
K-101 | IK-101=E7-WK-101-E8 | 78.15 | 84.89 | |
K-102 | IK-102=E11-WK-102-E12 | 27.09 | 77.84 | |
K-103 | IK-103=E15-WK-103-E16 | 20.81 | 95.70 | |
换热器 | HE-100 | IHE-100= EL1+E2-EL2-E3 | 230.67 | 96.58 |
HE-101 | IHE-101= EF6+E4-EF7-E1 | 360.82 | 91.71 | |
HE-102 | IHE-102= EL2+E8-EL3-E5 | 440.05 | 86.79 | |
HE-103 | IHE-103= EF2+E6-EF3-E7 | 550.36 | 72.63 | |
HE-104 | IHE-104= EL3+E12-EL4-E9 | 99.81 | 94.96 | |
HE-105 | IHE-105= E10+EFlue gas-EF1-E11 | 113.88 | 91.44 | |
HE-106 | IHE-106= EF4+EL4-EF5-ENG | 144.58 | 94.59 | |
HE-107 | IHE-107= EF9+E16-EF10-E13 | 329.20 | 82.31 | |
HE-108 | IHE-108= E14+ECW-IN-1-E15-ECW-OUT-1 | 88.74 | 85.28 | |
HE-109 | IHE-109= EF10+ECW-IN-2-ETailgas-ECW-OUT-2 | 53.39 | 94.28 | |
分离器 | V-100 | IV-100=EF1-EF2-EH1 | 0 | 100.00 |
V-101 | IV-101=EF3-EF4-EH2 | 0.81 | 99.91 | |
V-102 | IV-102=EF5-EF6-EH3 | 22.05 | 97.71 | |
V-103 | IV-103=EF7-EF8-EF9 | 167.88 | 91.27 |
表6 各设备的㶲损失及㶲效率
Table 6 Losses and efficiencies for each piece of equipment
设备 | 位号 | 计算公式 | 㶲损失/kW | 㶲效率/% |
---|---|---|---|---|
泵 | P-100 | IP-100=ELNG+WP-100-EL1 | 8.34 | 99.83 |
P-101 | IP-101=E3+WP-101-E4 | 12.97 | 99.62 | |
P-102 | IP-102=E5+WP-102-E6 | 2.15 | 99.77 | |
P-103 | IP-103=E9+WP-103-E10 | 0.54 | 99.65 | |
P-104 | IP-104=E13+WP-104-E14 | 1.73 | 99.71 | |
涡轮机 | K-100 | IK-100=E1-WK-100-E2 | 41.28 | 98.01 |
K-101 | IK-101=E7-WK-101-E8 | 78.15 | 84.89 | |
K-102 | IK-102=E11-WK-102-E12 | 27.09 | 77.84 | |
K-103 | IK-103=E15-WK-103-E16 | 20.81 | 95.70 | |
换热器 | HE-100 | IHE-100= EL1+E2-EL2-E3 | 230.67 | 96.58 |
HE-101 | IHE-101= EF6+E4-EF7-E1 | 360.82 | 91.71 | |
HE-102 | IHE-102= EL2+E8-EL3-E5 | 440.05 | 86.79 | |
HE-103 | IHE-103= EF2+E6-EF3-E7 | 550.36 | 72.63 | |
HE-104 | IHE-104= EL3+E12-EL4-E9 | 99.81 | 94.96 | |
HE-105 | IHE-105= E10+EFlue gas-EF1-E11 | 113.88 | 91.44 | |
HE-106 | IHE-106= EF4+EL4-EF5-ENG | 144.58 | 94.59 | |
HE-107 | IHE-107= EF9+E16-EF10-E13 | 329.20 | 82.31 | |
HE-108 | IHE-108= E14+ECW-IN-1-E15-ECW-OUT-1 | 88.74 | 85.28 | |
HE-109 | IHE-109= EF10+ECW-IN-2-ETailgas-ECW-OUT-2 | 53.39 | 94.28 | |
分离器 | V-100 | IV-100=EF1-EF2-EH1 | 0 | 100.00 |
V-101 | IV-101=EF3-EF4-EH2 | 0.81 | 99.91 | |
V-102 | IV-102=EF5-EF6-EH3 | 22.05 | 97.71 | |
V-103 | IV-103=EF7-EF8-EF9 | 167.88 | 91.27 |
系统 | 消耗㶲/kW | 有效㶲/kW | 㶲损失/kW | 㶲效率/% |
---|---|---|---|---|
ORC1 | 5765.69 | 5119.95 | 645.74 | 88.80 |
ORC2 | 4204.74 | 3134.03 | 1070.71 | 74.54 |
ORC3 | 3153.00 | 2911.68 | 241.32 | 92.35 |
ORC4 | 1473.18 | 1032.70 | 440.48 | 70.10 |
CO2捕集 | 7786.64 | 6043.68 | 1742.96 | 77.62 |
LNG气化 | 7929.08 | 7005.63 | 923.45 | 88.35 |
整个系统 | 6024.05 | 3228.76 | 2795.29 | 53.60 |
表7 各系统㶲损失和㶲效率
Table 7 Losses and efficiencies of the systems
系统 | 消耗㶲/kW | 有效㶲/kW | 㶲损失/kW | 㶲效率/% |
---|---|---|---|---|
ORC1 | 5765.69 | 5119.95 | 645.74 | 88.80 |
ORC2 | 4204.74 | 3134.03 | 1070.71 | 74.54 |
ORC3 | 3153.00 | 2911.68 | 241.32 | 92.35 |
ORC4 | 1473.18 | 1032.70 | 440.48 | 70.10 |
CO2捕集 | 7786.64 | 6043.68 | 1742.96 | 77.62 |
LNG气化 | 7929.08 | 7005.63 | 923.45 | 88.35 |
整个系统 | 6024.05 | 3228.76 | 2795.29 | 53.60 |
组分 | F8 | F9 | ||
---|---|---|---|---|
摩尔流量/ (kmol/h) | 摩尔 分数/ % | 摩尔流量/ (kmol/h) | 摩尔 分数/ % | |
N2 | 0.4010 | 0.54 | 1061.2712 | 91.94 |
CO2 | 72.5341 | 97.67 | 10.9368 | 0.95 |
O2 | 0.0531 | 0.07 | 82.0424 | 7.11 |
H2O | 1.2762 | 1.72 | 0 | 0 |
表8 流股F8和F9的摩尔组成
Table 8 Molar composition of flow stocks F8 and F9
组分 | F8 | F9 | ||
---|---|---|---|---|
摩尔流量/ (kmol/h) | 摩尔 分数/ % | 摩尔流量/ (kmol/h) | 摩尔 分数/ % | |
N2 | 0.4010 | 0.54 | 1061.2712 | 91.94 |
CO2 | 72.5341 | 97.67 | 10.9368 | 0.95 |
O2 | 0.0531 | 0.07 | 82.0424 | 7.11 |
H2O | 1.2762 | 1.72 | 0 | 0 |
设备位号 | 消耗㶲/kW | 有效㶲/kW | 㶲损失/kW | 换热 效率/% |
---|---|---|---|---|
HE-100 | 6750.12 | 6519.45 | 230.67 | 96.58 |
HE-101 | 4354.65 | 3993.83 | 360.82 | 91.71 |
HE-102 | 3331.10 | 2891.05 | 440.05 | 86.79 |
HE-103 | 2010.50 | 1460.14 | 550.36 | 72.63 |
HE-104 | 1981.26 | 1881.45 | 99.81 | 94.96 |
HE-105 | 1329.59 | 1215.71 | 113.88 | 91.44 |
HE-106 | 2670.43 | 2525.86 | 144.58 | 94.59 |
HE-107 | 1860.63 | 1531.43 | 329.20 | 82.31 |
HE-108 | 602.75 | 514.00 | 88.74 | 85.28 |
HE-109 | 932.56 | 879.17 | 53.39 | 94.28 |
表9 换热器的换热效率
Table 9 Heat transfer efficiency of heat exchangers
设备位号 | 消耗㶲/kW | 有效㶲/kW | 㶲损失/kW | 换热 效率/% |
---|---|---|---|---|
HE-100 | 6750.12 | 6519.45 | 230.67 | 96.58 |
HE-101 | 4354.65 | 3993.83 | 360.82 | 91.71 |
HE-102 | 3331.10 | 2891.05 | 440.05 | 86.79 |
HE-103 | 2010.50 | 1460.14 | 550.36 | 72.63 |
HE-104 | 1981.26 | 1881.45 | 99.81 | 94.96 |
HE-105 | 1329.59 | 1215.71 | 113.88 | 91.44 |
HE-106 | 2670.43 | 2525.86 | 144.58 | 94.59 |
HE-107 | 1860.63 | 1531.43 | 329.20 | 82.31 |
HE-108 | 602.75 | 514.00 | 88.74 | 85.28 |
HE-109 | 932.56 | 879.17 | 53.39 | 94.28 |
文献 | 㶲效率/% | CO2捕获量/(kg/t) | 发电量/(kWh/t) |
---|---|---|---|
本文 | 53.60 | 177.30 | 25.86 |
[ | 25.70 | — | 24.00 |
[ | 38.90 | — | 84.00 |
[ | 51.60 | 114.70 | 380.70 |
[ | 50.00 | 27.59 | 836.00 |
表10 系统结果比较
Table 10 Comparison of system results
文献 | 㶲效率/% | CO2捕获量/(kg/t) | 发电量/(kWh/t) |
---|---|---|---|
本文 | 53.60 | 177.30 | 25.86 |
[ | 25.70 | — | 24.00 |
[ | 38.90 | — | 84.00 |
[ | 51.60 | 114.70 | 380.70 |
[ | 50.00 | 27.59 | 836.00 |
项目 | 数值 |
---|---|
总资本成本/USD | 4400120.00 |
总运营成本/(USD/a) | 1068030.00 |
公用工程总成本/发(USD/a) | 33760.00 |
设备总成本/USD | 1234000.00 |
期望回报率/(%/a) | 20.00 |
表11 系统经济分析
Table 11 System economic analysis
项目 | 数值 |
---|---|
总资本成本/USD | 4400120.00 |
总运营成本/(USD/a) | 1068030.00 |
公用工程总成本/发(USD/a) | 33760.00 |
设备总成本/USD | 1234000.00 |
期望回报率/(%/a) | 20.00 |
设备名称 | 设备位号 | 设备成本/USD | 设备质量/LB | 公用工程成本/(USD/h) |
---|---|---|---|---|
涡轮机 | K-100 | 149000.00 | 9200.00 | 0 |
K-101 | 211000.00 | 10400.00 | 0 | |
K-102 | 148500.00 | 9300.00 | 0 | |
K-103 | 139300.00 | 9000.00 | 0 | |
泵 | P-100 | 26400.00 | 1600.00 | 1.16 |
P-101 | 73300.00 | 3200.00 | 1.73 | |
P-102 | 23200.00 | 1300.00 | 0.58 | |
P-103 | 21400.00 | 1000.00 | 0.17 | |
P-104 | 54200.00 | 2000.00 | 0.58 | |
分离器 | V-100 | 35800.00 | 4900.00 | 0 |
V-101 | 35800.00 | 4900.00 | 0 | |
V-102 | 34700.00 | 4600.00 | 0 | |
V-103 | 27000.00 | 3300.00 | 0 | |
换热器 | E-100 | 34200.00 | 5800.00 | 0 |
E-101 | 17400.00 | 3000.00 | 0 | |
E-102 | 57200.00 | 9700.00 | 0 | |
E-103 | 31700.00 | 5400.00 | 0 | |
E-104 | 21600.00 | 3700.00 | 0 | |
E-105 | 13200.00 | 2300.00 | 0 | |
E-106 | 13300.00 | 2300.00 | 0 | |
E-107 | 20100.00 | 3400.00 | 0 | |
E-108 | 30400.00 | 5200.00 | 0 | |
E-109 | 15300.00 | 2600.00 | 0 |
表12 各设备具体成本
Table 12 Equipment specific costs
设备名称 | 设备位号 | 设备成本/USD | 设备质量/LB | 公用工程成本/(USD/h) |
---|---|---|---|---|
涡轮机 | K-100 | 149000.00 | 9200.00 | 0 |
K-101 | 211000.00 | 10400.00 | 0 | |
K-102 | 148500.00 | 9300.00 | 0 | |
K-103 | 139300.00 | 9000.00 | 0 | |
泵 | P-100 | 26400.00 | 1600.00 | 1.16 |
P-101 | 73300.00 | 3200.00 | 1.73 | |
P-102 | 23200.00 | 1300.00 | 0.58 | |
P-103 | 21400.00 | 1000.00 | 0.17 | |
P-104 | 54200.00 | 2000.00 | 0.58 | |
分离器 | V-100 | 35800.00 | 4900.00 | 0 |
V-101 | 35800.00 | 4900.00 | 0 | |
V-102 | 34700.00 | 4600.00 | 0 | |
V-103 | 27000.00 | 3300.00 | 0 | |
换热器 | E-100 | 34200.00 | 5800.00 | 0 |
E-101 | 17400.00 | 3000.00 | 0 | |
E-102 | 57200.00 | 9700.00 | 0 | |
E-103 | 31700.00 | 5400.00 | 0 | |
E-104 | 21600.00 | 3700.00 | 0 | |
E-105 | 13200.00 | 2300.00 | 0 | |
E-106 | 13300.00 | 2300.00 | 0 | |
E-107 | 20100.00 | 3400.00 | 0 | |
E-108 | 30400.00 | 5200.00 | 0 | |
E-109 | 15300.00 | 2600.00 | 0 |
15 | Sun Q X, Wang Y X, Cheng Z Y, et al. Thermodynamic and economic optimization of a double-pressure organic Rankine cycle driven by low-temperature heat source[J]. Renewable Energy, 2020, 147: 2822-2832. |
16 | Zhang X L, Zhang T, Xue X D, et al. A comparative thermodynamic analysis of Kalina and organic Rankine cycles for hot dry rock: a prospect study in the Gonghe Basin[J]. Frontiers in Energy, 2020, 14(4): 889-900. |
17 | 2022年全球能源部门二氧化碳排放创纪录[J].中外能源, 2023, 28(10): 97. |
In 2022, the global energy sector recorded a record carbon dioxide emission[J]. Sino-Global Energy, 2023, 28(10): 97. | |
18 | Lin W S, Huang M B, He H M, et al. A transcritical CO2 Rankine cycle with LNG cold energy utilization and liquefaction of CO2 in gas turbine exhaust[J]. Journal of Energy Resources Technology, 2009, 131(4): 042201. |
19 | Zhang N, Lior N. A novel near-zero CO2 emission thermal cycle with LNG cryogenic exergy utilization[J]. Energy, 2006, 31(10/11): 1666-1679. |
20 | Kanbur B B, Xiang L M, Dubey S, et al. Mitigation of carbon dioxide emission using liquefied natural gas cold energy in small scale power generation systems[J]. Journal of Cleaner Production, 2018, 200: 982-995. |
21 | Xu J X, Lin W S. A CO2 cryogenic capture system for flue gas of an LNG-fired power plant[J]. International Journal of Hydrogen Energy, 2017, 42(29): 18674-18680. |
22 | Kim Y, Lee J, Cho H, et al. Novel cryogenic carbon dioxide capture and storage process using LNG cold energy in a natural gas combined cycle power plant[J]. Chemical Engineering Journal, 2023, 456: 140980. |
23 | Wang H, Shi X J, Che D F. Thermodynamic optimization of the operating parameters for a combined power cycle utilizing low-temperature waste heat and LNG cold energy[J]. Applied Thermal Engineering, 2013, 59(1/2): 490-497. |
24 | Ouyang T C, Tan J Q, Wu W C, et al. Energy, exergy and economic benefits deriving from LNG-fired power plant: cold energy power generation combined with carbon dioxide capture[J]. Renewable Energy, 2022, 195: 214-229. |
25 | Zhao L, Dong H, Tang J J, et al. Cold energy utilization of liquefied natural gas for capturing carbon dioxide in the flue gas from the magnesite processing industry[J]. Energy, 2016, 105: 45-56. |
1 | Ali Nasir M, Canh N P, Lan Le T N. Environmental degradation & role of financialisation, economic development, industrialisation and trade liberalisation[J]. Journal of Environmental Management, 2021, 277: 111471. |
2 | Wang H L, He J K. China's pre-2020 CO2 emission reduction potential and its influence[J]. Frontiers in Energy, 2019, 13(3): 571-578. |
3 | 徐健玮, 梁颖宗, 罗向龙, 等. 液化天然气深冷-膜蒸馏海水淡化系统集成与分析[J]. 化工学报, 2021, 72(S1): 437-444. |
Xu J W, Liang Y Z, Luo X L, et al. Integration and analysis of PRICO-membrane distillation seawater desalination system[J]. CIESC Journal, 2021, 72(S1): 437-444. | |
4 | Le S, Lee J Y, Chen C L. Waste cold energy recovery from liquefied natural gas (LNG) regasification including pressure and thermal energy[J]. Energy, 2018, 152: 770-787. |
5 | Song R, Cui M M, Liu J J. Single and multiple objective optimization of a natural gas liquefaction process[J]. Energy, 2017, 124: 19-28. |
6 | Wang B J, Wang W, Qi C, et al. Simulation of performance of intermediate fluid vaporizer under wide operation conditions[J]. Frontiers in Energy, 2020, 14(3): 452-462. |
7 | 杜旭, 陈煜, 巨永林. 液化天然气(LNG)的长距离输送及其冷能利用[J]. 化工学报, 2018, 69(S2): 442-449. |
Du X, Chen Y, Ju Y L. Long-distance transportation of liquefied natural gas (LNG) and cold energy utilization[J]. CIESC Journal, 2018, 69(S2): 442-449. | |
8 | Kanbur B B, Xiang L M, Dubey S, et al. Cold utilization systems of LNG: a review[J]. Renewable and Sustainable Energy Reviews, 2017, 79: 1171-1188. |
9 | Ghaebi H, Parikhani T, Rostamzadeh H. Energy, exergy and thermoeconomic analysis of a novel combined cooling and power system using low-temperature heat source and LNG cold energy recovery[J]. Energy Conversion and Management, 2017, 150: 678-692. |
10 | Lee U, Park K, Jeong Y S, et al. Design and analysis of a combined Rankine cycle for waste heat recovery of a coal power plant using LNG cryogenic exergy[J]. Industrial & Engineering Chemistry Research, 2014, 53(23): 9812-9824. |
26 | Dauber F, Span R. Modelling liquefied-natural-gas processes using highly accurate property models[J]. Applied Energy, 2012, 97: 822-827. |
27 | Dong H, Zhao L, Zhang S Y, et al. Using cryogenic exergy of liquefied natural gas for electricity production with the Stirling cycle[J]. Energy, 2013, 63: 10-18. |
28 | Ma J, Song X D, Zhang B, et al. Optimal design of dual-stage combined cycles to recover LNG cold energy and low-temperature waste thermal energy for sustainable power generation[J]. Energy Conversion and Management, 2022, 269: 116141. |
29 | Wang X, Zhao L, Zhang L H, et al. A novel combined system for LNG cold energy utilization to capture carbon dioxide in the flue gas from the magnesite processing industry[J]. Energy, 2019, 187: 115963. |
30 | 何翠兰. 基于HYSYS的LNG冷电联产工艺研究[D]. 成都: 西南石油大学, 2018. |
He C L. Study on LNG cogeneration process based on HYSYS[D]. Chengdu: Southwest Petroleum University, 2018. | |
31 | Xiong Y Q, Luo P, Hua B. A novel CO2-capturing natural gas combined cycle with LNG cold energy utilization[J]. Energy Procedia, 2014, 61: 899-903. |
11 | Bao J J, Lin Y, Zhang R X, et al. Strengthening power generation efficiency utilizing liquefied natural gas cold energy by a novel two-stage condensation Rankine cycle (TCRC) system[J]. Energy Conversion and Management, 2017, 143: 312-325. |
12 | Sun H, Zhu H M, Liu F, et al. Simulation and optimization of a novel Rankine power cycle for recovering cold energy from liquefied natural gas using a mixed working fluid[J]. Energy, 2014, 70: 317-324. |
13 | Xue F E, Chen Y, Ju Y L. Design and optimization of a novel cryogenic Rankine power generation system employing binary and ternary mixtures as working fluids based on the cold exergy utilization of liquefied natural gas (LNG)[J]. Energy, 2017, 138: 706-720. |
14 | Bao J J, Zhang R X, Yuan T, et al. A simultaneous approach to optimize the component and composition of zeotropic mixture for power generation systems[J]. Energy Conversion and Management, 2018, 165: 354-362. |
[1] | 马旭, 滕亚栋, 刘杰, 王宇璐, 张鹏, 张莲海, 姚万龙, 展静, 吴青柏. 喷雾法水合物法捕集分离烟道气中CO2[J]. 化工学报, 2024, 75(5): 2001-2016. |
[2] | 孙琼, 杨富鑫, 谭厚章, 王晓坡. 低共熔溶剂捕集烟气CO2模拟研究[J]. 化工学报, 2024, 75(10): 3705-3717. |
[3] | 王迪, 崔颖晗, 孙灵芳, 周云龙. 超临界二氧化碳混合工质储能系统热力学分析[J]. 化工学报, 2024, 75(10): 3414-3423. |
[4] | 赵若晗, 黄蒙蒙, 朱春英, 付涛涛, 高习群, 马友光. 缩口T型微通道内纳米流体吸收CO2的流动与传质研究[J]. 化工学报, 2024, 75(1): 221-230. |
[5] | 毛磊, 刘冠章, 袁航, 张光亚. 可捕集CO2的纳米碳酸酐酶粒子的高效制备及性能研究[J]. 化工学报, 2023, 74(6): 2589-2598. |
[6] | 王皓, 唐思扬, 钟山, 梁斌. MEA吸收CO2富液解吸过程中固体颗粒表面的强化作用分析[J]. 化工学报, 2023, 74(4): 1539-1548. |
[7] | 高孝麟, 陈昌国. 空气驱动的膜电解技术促进硅灰石矿化CO2产白炭黑的研究[J]. 化工学报, 2023, 74(11): 4739-4748. |
[8] | 张鑫琦, 张宸, 张舵咏, 宣涛, 干桌臻, 朱炫灿, 王丽伟. 高选择性PEI@MOF-808吸附剂在潮湿烟气中的碳捕集性能研究[J]. 化工学报, 2023, 74(10): 4330-4342. |
[9] | 王煦清, 严圣林, 朱礼涛, 张希宝, 罗正鸿. 填料塔中有机胺吸收CO2气液传质的研究进展[J]. 化工学报, 2023, 74(1): 237-256. |
[10] | 张劢, 田瑶, 郭之旗, 王叶, 窦广进, 宋浩. 光催化-生物杂合系统设计优化用于燃料和化学品绿色合成[J]. 化工学报, 2022, 73(7): 2774-2789. |
[11] | 李淼, 赵虹, 姜标, 陈思远, 闫龙. 煤制乙炔关键中间体BaC2合成的热力学分析[J]. 化工学报, 2022, 73(5): 1908-1919. |
[12] | 李贵贤, 王可, 王健, 孟文亮, 李婧玮, 杨勇, 范宗良, 王东亮, 周怀荣. 膜分离捕集燃煤电厂烟气CO2过程优化设计[J]. 化工学报, 2022, 73(11): 5065-5077. |
[13] | 黄子轩, 陈欢, 李海, 王明龙, 陈光进, 刘蓓. ZIF-8浆液中试分离CO2/N2过程模拟及能耗分析[J]. 化工学报, 2022, 73(1): 322-331. |
[14] | 赵旭, 卜昌盛, 王昕晔, 张鑫, 程晓磊, 王乃继, 朴桂林. 铁基载氧体辅助无烟煤焦富氧燃烧动力学分析[J]. 化工学报, 2022, 73(1): 384-392. |
[15] | 徐健玮, 梁颖宗, 罗向龙, 陈健勇, 杨智, 陈颖. 液化天然气深冷-膜蒸馏海水淡化系统集成与分析[J]. 化工学报, 2021, 72(S1): 437-444. |
阅读次数 | ||||||||||||||||||||||||||||||||||
全文 293
|
|
|||||||||||||||||||||||||||||||||
摘要 |
|
|||||||||||||||||||||||||||||||||