化工学报

• •    

喷雾法水合物法捕集分离烟道气中CO2研究

马旭1,2(), 滕亚栋3,4, 刘杰3,4, 王宇璐1,2, 张鹏1(), 张莲海1, 姚万龙5, 展静1, 吴青柏1   

  1. 1.中国科学院西北生态环境资源研究院冻土工程国家重点实验室,甘肃 兰州 730000
    2.中国科学院大学,北京 100049
    3.兰州理工大学能源与动力工程学院,甘肃 兰州 730050
    4.甘肃省生物质能与太阳能互补供能系统重点实验室,甘肃 兰州 730050
    5.甘肃人合机电节能环保科技工程有限公司,甘肃 兰州 730030
  • 收稿日期:2023-11-21 修回日期:2024-03-27 出版日期:2024-03-28
  • 通讯作者: 张鹏
  • 作者简介:马旭(1996—),女,硕士研究生,maxu@nieer.ac.cn
  • 基金资助:
    甘肃省科技重大专项(22ZD6FA004);甘肃省中小企业创新基金项目(22CX3JA003);国家自然科学基金面上项目(42276230);冻土工程国家重点实验室自主课题(SKLFSE-ZT-202103)

Study on CO2 capture and separation from flue gas by spraying hydrate method

Xu MA1,2(), Yadong TENG3,4, Jie LIU3,4, Yulu WANG1,2, Peng ZHANG1(), Lianhai ZHANG1, Wanlong YAO5, Jing ZHAN1, Qingbai WU1   

  1. 1.State Key Laboratory of Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China
    2.University of Chinese Academy of Sciences, Beijing 100049, China
    3.School of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou 730050, Gansu, China
    4.Gansu Key Laboratory of Complementary Energy System of Biomass and Solar Energy, Lanzhou 730050, Gansu, China
    5.Gansu Ren He Electromechanical Energy Saving Environmental Protection Technology Engineering Co. , Ltd. , Lanzhou 730030, Gansu, China
  • Received:2023-11-21 Revised:2024-03-27 Online:2024-03-28
  • Contact: Peng ZHANG

摘要:

对发电厂等大型点源释放的CO2捕集,是减少人为CO2排放的一种选择,水合物法作为一种新型气体分离提纯技术,形成速率和水转化为水合物比率的强化是该技术关键。本研究利用自主开发的喷雾水合物反应器,进行大水量(640 ml)和小水量(160 ml)碳捕集实验,考察了喷嘴孔径(0.1 mm和0.8 mm)、不同浓度动力学促进剂:十二烷基硫酸钠 (SDS)和L-蛋氨酸(L-Met)对碳捕集效率及水合物生长特性的影响。实验结果表明:0.1 mm孔径喷嘴有利于CO2捕集。L-Met和SDS体系每摩尔水最终圈闭的CO2较纯水体系均提升一个数量级,且低浓度(0.1 wt.%)促进剂效率优于高浓度(1 wt.%)。大水量实验SDS体系最终气体消耗量最高为0.0848 mol /mol H2O,为L-Met体系的1.4倍,但捕集速率L-Met体系优于SDS体系。小水量实验L-Met体系气体捕获量与捕集速率均优于SDS体系。促进剂浓度为0.1 wt.%时水合物爬壁生长角度是1 wt.%的1.8倍。综合评估,0.1 wt.% L-Met、0.1 mm喷嘴和小水量(3.33 ml/min)的注液方式共同作用,碳捕集性能最佳。上述实验结果为强化喷雾反应器中水合物法捕集烟道气中CO2提供参考与基础实验数据。

关键词: 水合物, 二氧化碳捕集, 烟道气, 喷雾, 促进剂, 水合物形态

Abstract:

The capture of CO2 released from large point sources, such as power plants, is an option to reduce anthropogenic CO2 emissions. And for the hydrate method, regarded as a novel gas separation and purification technology, the enhancement of formation rate and percentage of water being converted to hydrate are still the key focus of researches. In this study, a self-developed spray hydrate reactor was used to carry out carbon capture experiments with large and small water volumes (respectively 640 and 160 ml). And the carbon capture efficiency and hydrate growth characteristics were investigated under the nozzle aperture diameters of 0.1 and 0.8 mm, and different concentrations of kinetic promoters: sodium dodecyl sulfate (SDS) and L-methionine (L-Met). The experimental results show that the 0.1 mm aperture nozzle is favorable for CO2 capture. For both L-Met and SDS systems, the final amount of CO2 gas trapped in per mole of solution is an order of magnitude higher than that in pure water, and the efficiency of the promoter is better at a lower concentration (0.1 wt.%) than that at a higher concentration (1 wt.%). The final gas consumption of the SDS system in the large water volume experiment is the highest at 0.0848 mol /mol H2O, 1.4 times that of the L-Met system, but the capture rate of the L-Met system is better than that of the SDS system. In the small water volume experiment, the gas capture amount and capture rate of the L-Met system are better than that of the SDS system. The growth angle of hydrate wall-climbing is 1.8 times that of 1 wt.% at 0.1 wt.% promoter. Such combination of L-Met solution with concentration 0.1 wt.%, a nozzle with aperture 0.1 mm, and an injection method with small rate 3.33 ml/min, represents best performance of promoting hydrate-based CO2 capture. Above experimental results provide reference and basic experimental data for the enhancement of CO2 capture in flue gas by hydrate method in spray reactor.

Key words: hydrate, CO2 capture, flue gas, spray, promoters, hydrate morphology

中图分类号: