化工学报 ›› 2024, Vol. 75 ›› Issue (12): 4815-4824.DOI: 10.11949/0438-1157.20240513
收稿日期:2024-05-11
修回日期:2024-08-13
出版日期:2024-12-25
发布日期:2025-01-03
通讯作者:
李锦锦,奚桢浩
作者简介:陈旭东(1997—),男,硕士研究生, chxd10152139@163.com
基金资助:
Xudong CHEN(
), Weidong FU, Jinjin LI(
), Ling ZHAO, Zhenhao XI(
)
Received:2024-05-11
Revised:2024-08-13
Online:2024-12-25
Published:2025-01-03
Contact:
Jinjin LI, Zhenhao XI
摘要:
用单甲氧基聚乙二醇(mPEG)大分子引发剂引发2-丁烯氧基-2-氧代-1,3,2-二氧磷杂环戊烷(BenEP)开环聚合制备了嵌段共聚物mPEG44-b-PBenEP44,通过点击反应、酯化反应等聚合后改性方法,将二硫键与紫杉醇引入PBenEP链段的侧链,制备了一种还原响应性聚磷酸酯基紫杉醇前药mPEG44-b-(PBenEP34-g-SS-PTX3)(PEBSP),其载药量为14.57%。PEBSP的自组装行为研究表明:PEBSP在水中能形成平均直径约为71 nm的球形纳米颗粒,其临界胶束浓度是60 mg∙L-1;PEBSP球形纳米颗粒在正常条件下能稳定存在,在还原性介质中(10 mmol·L-1谷胱甘肽)会因为二硫键断裂,可控、持续地释放药物紫杉醇。
中图分类号:
陈旭东, 付伟东, 李锦锦, 赵玲, 奚桢浩. 聚磷酸酯-紫杉醇前药合成及其还原响应药物释放研究[J]. 化工学报, 2024, 75(12): 4815-4824.
Xudong CHEN, Weidong FU, Jinjin LI, Ling ZHAO, Zhenhao XI. Synthesis of amphiphilic polyphosphoester-PTX prodrug and its potential in reduction-responsive drug release[J]. CIESC Journal, 2024, 75(12): 4815-4824.
图5 芘的荧光发射光谱强度与PEBSP水溶液浓度对数的函数关系
Fig.5 Intensity of the fluorescence emission spectrum of pyrene as a function of logarithm concentration of PEBSP in aqueous solution
图6 PEBSP纳米颗粒的TEM粒径分布(插图:TEM图像)(a),DLS粒径分布(b)
Fig.6 Particle size distribution of PEBSP nanoparticles analyzed from the corresponding TEM image (inset) (a) and measured by DLS (b)
图7 PEBSP纳米颗粒在pH 7.4 (a), pH 7.4+10 mmol·L -1 GSH (b)中粒径分布随时间的变化
Fig.7 Particle size distribution of PEBSP nanoparticles at various time intervals under different conditions: (a) pH 7.4; (b) pH 7.4+10 mmol·L-1 GSH
图10 不同浓度的聚合物PEBS培养48 h后L929细胞和HepG2细胞的细胞存活率
Fig.10 Cell viability of L929 and HepG2 cells treated with PEBS at different concentrations for 48 h incubation
| 1 | Albert A. Chemical aspects of selective toxicity[J]. Nature, 1958, 182(4633): 421-423. |
| 2 | Ekladious I, Colson Y L, Grinstaff M W. Polymer-drug conjugate therapeutics: advances, insights and prospects[J]. Nature Reviews Drug Discovery, 2019, 18(4): 273-294. |
| 3 | 冯霞, 梁世乐, 李晓锋, 等. 聚乙二醇支载紫杉醇给药系统的制备与抗癌活性[J]. 化工学报, 2003, 54(2): 209-214. |
| Feng X, Liang S L, Li X F, et al. Preparation and antitumor effect of drug delivery system of taxol conjugated to polyethylene glycol[J]. CIESC Journal, 2003, 54(2): 209-214. | |
| 4 | Guerassimoff L, Ferrere M, Bossion A, et al. Stimuli-sensitive polymer prodrug nanocarriers by reversible-deactivation radical polymerization[J]. Chemical Society Reviews, 2024, 53(12): 6511-6567. |
| 5 | Lin C, Liang Y X, Guo M Y, et al. Stimuli-responsive polyprodrug for cancer therapy[J]. Materials Today Advances, 2022, 15: 100266. |
| 6 | Liu N X, Chen Q H, Zhang Q Q, et al. The application of prodrug-based drug delivery strategy in anticancer drugs[J]. Current Topics in Medicinal Chemistry, 2021, 21(24): 2184-2204. |
| 7 | Deng Z Y, Liu S Y. Controlled drug delivery with nanoassemblies of redox-responsive prodrug and polyprodrug amphiphiles[J]. Journal of Controlled Release, 2020, 326: 276-296. |
| 8 | Du H L, Zhao S, Wang Y Q, et al. pH/cathepsin B hierarchical-responsive nanoconjugates for enhanced tumor penetration and chemo-immunotherapy[J]. Advanced Functional Materials, 2020, 30(39): 2003757. |
| 9 | Sun H L, Zhong Z Y. 100th anniversary of macromolecular science viewpoint: biological stimuli-sensitive polymer prodrugs and nanoparticles for tumor-specific drug delivery[J]. ACS Macro Letters, 2020, 9(9): 1292-1302. |
| 10 | Li D, Song Y, He J L, et al. Polymer-doxorubicin prodrug with biocompatibility, pH response, and main chain breakability prepared by catalyst-free click reaction[J]. ACS Biomaterials Science & Engineering, 2019, 5(5): 2307-2315. |
| 11 | Wu G Y, Lupton J R, Turner N D, et al. Glutathione metabolism and its implications for health[J]. The Journal of Nutrition, 2004, 134(3): 489-492. |
| 12 | Kuppusamy P, Li H Q, Ilangovan G, et al. Noninvasive imaging of tumor redox status and its modification by tissue glutathione levels[J]. Cancer Research, 2002, 62(1): 307-312. |
| 13 | Zhao J T, Li X M, Ma T, et al. Glutathione-triggered prodrugs: design strategies, potential applications, and perspectives[J]. Medicinal Research Reviews, 2024, 44(3): 1013-1054. |
| 14 | Luo L, Qi Y M, Zhong H, et al. GSH-sensitive polymeric prodrug: synthesis and loading with photosensitizers as nanoscale chemo-photodynamic anti-cancer nanomedicine[J]. Acta Pharmaceutica Sinica B, 2022, 12(1): 424-436. |
| 15 | Li Y H, Wu Y X, Chen J T, et al. A simple glutathione-responsive turn-on theranostic nanoparticle for dual-modal imaging and chemo-photothermal combination therapy[J]. Nano Letters, 2019, 19(8): 5806-5817. |
| 16 | Yilmaz Z E, Jérôme C. Polyphosphoesters: new trends in synthesis and drug delivery applications[J]. Macromolecular Bioscience, 2016, 16(12): 1745-1761. |
| 17 | Bauer K N, Tee H T, Velencoso M M, et al. Main-chain poly(phosphoester)s: history, syntheses, degradation, bio-and flame-retardant applications[J]. Progress in Polymer Science, 2017, 73: 61-122. |
| 18 | Appukutti N, Serpell C J. High definition polyphosphoesters: between nucleic acids and plastics[J]. Polymer Chemistry, 2018, 9(17): 2210-2226. |
| 19 | Pelosi C, Tinè M R, Wurm F R. Main-chain water-soluble polyphosphoesters: multi-functional polymers as degradable PEG-alternatives for biomedical applications[J]. European Polymer Journal, 2020, 141: 110079. |
| 20 | Liu J Y, Huang W, Pang Y, et al. Molecular self-assembly of a homopolymer: an alternative to fabricate drug-delivery platforms for cancer therapy[J]. Angewandte Chemie International Edition, 2011, 50(39): 9162-9166. |
| 21 | Wang Y C, Yuan Y Y, Du J Z, et al. Recent progress in polyphosphoesters: from controlled synthesis to biomedical applications[J]. Macromolecular Bioscience, 2009, 9(12): 1154-1164. |
| 22 | Zhang F W, Zhang S Y, Pollack S F, et al. Improving paclitaxel delivery: in vitro and in vivo characterization of PEGylated polyphosphoester-based nanocarriers[J]. Journal of the American Chemical Society, 2015, 137(5): 2056-2066. |
| 23 | Zhang Q Q, He J L, Zhang M Z, et al. A polyphosphoester-conjugated camptothecin prodrug with disulfide linkage for potent reduction-triggered drug delivery[J]. Journal of Materials Chemistry B, 2015, 3(24): 4922-4932. |
| 24 | Ma G Q, Liu J, He J L, et al. Dual-responsive polyphosphoester-doxorubicin prodrug containing a diselenide bond: synthesis, characterization, and drug delivery[J]. ACS Biomaterials Science & Engineering, 2018, 4(7): 2443-2452. |
| 25 | Liu J, He J L, Zhang M Z, et al. A synergistic polyphosphoester-based co-delivery system of the anticancer drug doxorubicin and the tumor suppressor gene p53 for lung cancer therapy[J]. Journal of Materials Chemistry B, 2018, 6(20): 3262-3273. |
| 26 | Dong S X, Sun Y, Liu J, et al. Multifunctional polymeric prodrug with simultaneous conjugating camptothecin and doxorubicin for pH/reduction dual-responsive drug delivery[J]. ACS Applied Materials & Interfaces, 2019, 11(9): 8740-8748. |
| 27 | Iwasaki Y, Yamaguchi E. Synthesis of well-defined thermoresponsive polyphosphoester macroinitiators using organocatalysts[J]. Macromolecules, 2010, 43(6): 2664-2666. |
| 28 | Clément B, Grignard B, Koole L, et al. Metal-free strategies for the synthesis of functional and well-defined polyphosphoesters[J]. Macromolecules, 2012, 45(11): 4476-4486. |
| 29 | Rheinberger T, Flögel U, Koshkina O, et al. Real-time 31P NMR reveals different gradient strengths in polyphosphoester copolymers as potential MRI-traceable nanomaterials[J]. Communications Chemistry, 2023, 6(1): 182. |
| 30 | Schöttler S, Landfester K, Mailänder V. Controlling the stealth effect of nanocarriers through understanding the protein corona[J]. Angewandte Chemie International Edition, 2016, 55(31): 8806-8815. |
| 31 | 张跃庭, 董岸杰, 邓联东, 等. 紫杉醇两亲性共聚物纳米胶束体外释药动力学[J]. 化工学报, 2004, 55(6): 952-957. |
| Zhang Y T, Dong A J, Deng L D, et al. In vitro release kinetics of amphiphilic block copolymer nano-micelles loaded with paclitaxel[J]. CIESC Journal, 2004, 55(6): 952-957. | |
| 32 | Riva R, Shah U, Thomassin J M, et al. Design of degradable polyphosphoester networks with tailor-made stiffness and hydrophilicity as scaffolds for tissue engineering[J]. Biomacromolecules, 2020, 21(2): 349-355. |
| 33 | Jia L J, Li Z Y, Zheng D D, et al. A targeted and redox/pH-responsive chitosan oligosaccharide derivatives based nanohybrids for overcoming multidrug resistance of breast cancer cells[J]. Carbohydrate Polymers, 2021, 251: 117008. |
| 34 | Wang J, Huang S W, Zhang P C, et al. Effect of side-chain structures on gene transfer efficiency of biodegradable cationic polyphosphoesters[J]. International Journal of Pharmaceutics, 2003, 265(1/2): 75-84. |
| 35 | Li J J, Chen X D, Jiang J, et al. Synthesis of amphiphilic block polyphosphoester and exploring its potential in reduction-responsive drug release[J]. ACS Applied Polymer Materials, 2024, 6(1): 693-700. |
| 36 | Torchilin V. Tumor delivery of macromolecular drugs based on the EPR effect[J]. Advanced Drug Delivery Reviews, 2011, 63(3): 131-135. |
| [1] | 郭骐瑞, 任丽媛, 陈康, 黄翔宇, 马卫华, 肖乐勤, 周伟良. 用于HTPB推进剂浆料的静态混合管数值模拟[J]. 化工学报, 2024, 75(S1): 206-216. |
| [2] | 谢慧慧, 姜佳鑫, 王鑫, 李正, 郭鑫, 吕欣然, 王凌云, 刘杨. 深共晶溶剂聚合物包覆膜传输分离铂、钯的研究[J]. 化工学报, 2024, 75(S1): 235-243. |
| [3] | 宋世萍, 汤晓玲, 郑仁朝. 谷胱甘肽双功能合成酶分子改造及应用[J]. 化工学报, 2024, 75(S1): 251-258. |
| [4] | 孙娜娜, 董红妹, 郭文豪, 柳健, 胡建波, 靳爽. 改性磁性纳米粒子稳定的稠油O/W型乳状液的流变性影响因素及管输压降预测模型[J]. 化工学报, 2024, 75(S1): 143-157. |
| [5] | 胡术刚, 田国庆, 刘文娟, 徐广飞, 刘华清, 张建, 王艳龙. 纳米零价铁的制备及氧化还原技术的应用进展[J]. 化工学报, 2024, 75(9): 3041-3055. |
| [6] | 杨子驰, 谢冰琪, 石瑞莘, 雷虹, 陈晨, 周才金, 张吉松. 套管膜式微反应器内高效安全的气液传质-反应过程研究进展[J]. 化工学报, 2024, 75(9): 3011-3027. |
| [7] | 白炳林, 杜燊, 李明佳, 张传琪. 基于水相剥离的单壁碳纳米管薄膜透光和导电特性[J]. 化工学报, 2024, 75(7): 2680-2687. |
| [8] | 那雪梅, 王雨, 姜尧竹, 贾男, 王颖, 李春. 异源CYP450酶的表达优化促进工程酿酒酵母合成熊果酸[J]. 化工学报, 2024, 75(7): 2624-2632. |
| [9] | 杜海燕, 朱凯, 游峰, 王金凤, 赵一帆, 张楠, 李英. 用于应变传感器的自愈合抗冻离子水凝胶[J]. 化工学报, 2024, 75(7): 2709-2722. |
| [10] | 王寅, 初鹏飞, 刘虎, 吕静, 黄守莹, 王胜平, 马新宾. 不同pH铝溶胶对二甲醚羰基化成型丝光沸石催化剂性能的影响[J]. 化工学报, 2024, 75(7): 2533-2543. |
| [11] | 张晗, 张淑宁, 刘珂, 邓冠龙. 基于慢特征分析与最小二乘支持向量回归集成的草酸钴合成过程粒度预报[J]. 化工学报, 2024, 75(6): 2313-2321. |
| [12] | 赵璐璐, 唐二军, 邢旭腾, 刘少杰, 褚晓萌, 呼娜, 张泽. POSS改性氧化石墨烯对涂层防腐和疏水性能的影响[J]. 化工学报, 2024, 75(5): 1977-1986. |
| [13] | 司友明, 郑凌峰, 陈鹏忠, 樊江莉, 彭孝军. 新型锑氧簇光刻胶的性能与机理研究[J]. 化工学报, 2024, 75(4): 1705-1717. |
| [14] | 孙涛, 孙美莉, 陆然, 余一梓, 王凯峰, 纪晓俊. 合成生物学改造酵母驱动丁二酸绿色生物制造[J]. 化工学报, 2024, 75(4): 1382-1393. |
| [15] | 严孝清, 赵瑛, 张宇哲, 欧鸿辉, 黄起中, 胡华贵, 杨贵东. 五重孪晶铜纳米线@聚吡咯制备及其电催化硝酸盐还原制氨[J]. 化工学报, 2024, 75(4): 1519-1532. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号