化工学报 ›› 2024, Vol. 75 ›› Issue (5): 1977-1986.DOI: 10.11949/0438-1157.20240196
赵璐璐(), 唐二军(), 邢旭腾, 刘少杰(), 褚晓萌, 呼娜, 张泽
收稿日期:
2024-02-23
修回日期:
2024-03-06
出版日期:
2024-05-25
发布日期:
2024-06-25
通讯作者:
唐二军,刘少杰
作者简介:
赵璐璐(1999—),女,硕士研究生,luluzhao2023@163.com
基金资助:
Lulu ZHAO(), Erjun TANG(), Xuteng XING, Shaojie LIU(), Xiaomeng CHU, Na HU, Ze ZHANG
Received:
2024-02-23
Revised:
2024-03-06
Online:
2024-05-25
Published:
2024-06-25
Contact:
Erjun TANG, Shaojie LIU
摘要:
通过有机硅化合物γ-氨丙基三乙氧基硅烷(APTES)自水解缩合制得有机-无机杂化材料笼型倍半硅氧烷(POSS),将其接枝到氧化石墨烯(graphene oxide,GO)上以克服GO的聚集,利用Boehm滴定法测定接枝率为98.3%,进一步负载锌离子制得复合纳米粒子POSS/GO/Zn。通过FT-IR、XRD、Raman、NMR和SEM对POSS/GO/Zn结构及微观形貌进行了表征,并将其应用在水性环氧树脂(WEP)涂层材料中,电化学阻抗谱(EIS)和水接触角测试结果表明,所制得的纳米粒子的复合涂层具有优异的防腐和疏水性能,在3.5%氯化钠溶液中浸泡40 d后POSS/GO/Zn/WEP的阻抗值为8.33×105 Ω·cm2,大于空白环氧涂层浸泡第一天的初始值1.46×105 Ω·cm2,水接触角由48.42°增大至98.11°,涂层由亲水转为疏水特性,表明该材料在涂层材料中具有良好的应用潜能。
中图分类号:
赵璐璐, 唐二军, 邢旭腾, 刘少杰, 褚晓萌, 呼娜, 张泽. POSS改性氧化石墨烯对涂层防腐和疏水性能的影响[J]. 化工学报, 2024, 75(5): 1977-1986.
Lulu ZHAO, Erjun TANG, Xuteng XING, Shaojie LIU, Xiaomeng CHU, Na HU, Ze ZHANG. Effects of POSS modified graphene oxide in anti-corrosion and hydrophobic properties of coatings[J]. CIESC Journal, 2024, 75(5): 1977-1986.
组分 | 改性环氧复合涂料 | 环氧涂料(空白) |
---|---|---|
水性环氧乳液 | 19.66 | 19.66 |
固化剂 | 15.66 | 15.66 |
润湿剂 | 0.34 | 0.34 |
增稠剂 | 0.17 | 0.17 |
消泡剂 | 0.17 | 0.17 |
POSS/GO/Zn | 0.015 | 0 |
表1 空白及复合环氧涂料的配比
Table 1 The ratio of blank and composite epoxy coatings
组分 | 改性环氧复合涂料 | 环氧涂料(空白) |
---|---|---|
水性环氧乳液 | 19.66 | 19.66 |
固化剂 | 15.66 | 15.66 |
润湿剂 | 0.34 | 0.34 |
增稠剂 | 0.17 | 0.17 |
消泡剂 | 0.17 | 0.17 |
POSS/GO/Zn | 0.015 | 0 |
图7 在3.5%氯化钠溶液中浸泡不同时间的Nyquist和Bode图:(a)~(c)WEP; (d)~(f) GO/WEP; (g)~(i)POSS/GO/WEP; (j)~(l)POSS/GO/Zn/WEP
Fig.7 The Nyquist and Bode plots of WEP [(a)—(c)], GO/WEP [(d)—(f)], POSS/GO/WEP [(g)—(i)], and POSS/GO/Zn/WEP [(j)—(l)] after immersion for different durations in 3.5%(mass) NaCl solution
1 | Hou B R, Li X G, Ma X M, et al. The cost of corrosion in China[J]. NPJ Materials Degradation, 2017, 1(1): 4-13. |
2 | Ramezanzadeh B, Niroumandrad S, Ahmadi A, et al. Enhancement of barrier and corrosion protection performance of an epoxy coating through wet transfer of amino functionalized graphene oxide[J]. Corrosion Science, 2016, 103: 283-304. |
3 | Xu Y, Lv X P, Ma C F, et al. Shear fatigue performance of epoxy resin waterproof adhesive layer on steel bridge deck pavement[J]. Frontiers in Materials, 2021, 7: 469. |
4 | Cui G, Zhang C C, Wang A L, et al. Research progress on self-healing polymer/graphene anticorrosion coatings[J]. Progress in Organic Coatings, 2021, 155: 106231. |
5 | Mi X Q, Liang N, Xu H F, et al. Toughness and its mechanisms in epoxy resins[J]. Progress in Materials Science, 2022, 130: 100977. |
6 | Zhang C Y, Li W, Liu C, et al. Effect of covalent organic framework modified graphene oxide on anticorrosion and self-healing properties of epoxy resin coatings[J]. Journal of Colloid and Interface Science, 2022, 608: 1025-1039. |
7 | Alexandre M, Dubois P. Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials[J]. Materials Science and Engineering: R: Reports, 2000, 28(1/2):1-63. |
8 | Surnova A, Balkaev D, Musin D, et al. Fully exfoliated graphene oxide accelerates epoxy resin curing, and results in dramatic improvement of the polymer mechanical properties[J]. Composites Part B, 2019, 162: 685-691. |
9 | Zheng W, Chen W G, Feng T, et al. Enhancing chloride ion penetration resistance into concrete by using graphene oxide reinforced waterborne epoxy coating[J]. Progress in Organic Coatings, 2020, 138: 105389. |
10 | Mu J, Gao F J, Cui G, et al. A comprehensive review of anticorrosive graphene-composite coatings[J]. Progress in Organic Coatings, 2021, 157: 106321. |
11 | Xie Y K, Liu W Q, Liang L Y, et al. Incorporation of silica network and modified graphene oxide into epoxy resin for improving thermal and anticorrosion properties[J]. Journal of Applied Polymer Science, 2020, 137(45): 49405. |
12 | Xu T, Jiao Y M, Su Z L, et al. Non-covalent functionalization of graphene oxide with POSS to improve the mechanical properties of epoxy composites[J]. Polymers, 2023, 15(24): 4726. |
13 | Wang H H, Liu L J, Fei G Q, et al. Enhancement of anticorrosion resistance of a fluorinated polyimide matrix by incorporating self-fixing POSS-GO[J]. Progress in Organic Coatings, 2024, 187: 108135. |
14 | 白云, 李琴梅, 刘奕忍, 等. 石墨烯材料表面含氧官能团的表征研究[J]. 分析仪器, 2020(4): 83-88. |
Bai Y, Li Q M, Liu Y R, et al. Analysis of oxygen-containing functional groups on the surface of graphene material[J]. Analytical Instrumentation, 2020(4): 83-88. | |
15 | 张星, 王婧, 张松亭, 等. 羧基化氧化石墨烯的制备与滴定法定量检测[J]. 徐州工程学院学报(自然科学版), 2019, 34(1): 27-32. |
Zhang X, Wang J, Zhang S T, et al. Fabrication of carboxylated graphene oxide and quantitative detection of the content by titration method[J]. Journal of Xuzhou Institute of Technology (Natural Sciences Edition), 2019, 34(1): 27-32. | |
16 | 周志刚. 硅烷偶联剂的水解工艺研究[J]. 石化技术, 2022, 29(4): 220-221. |
Zhou Z G. Study on hydrolysis process of silane coupling agent[J]. Petrochemical Industry Technology, 2022, 29(4): 220-221. | |
17 | Habibiyan A, Ramezanzadeh B, Mahdavian M, et al. Rational assembly of mussel-inspired polydopamine (PDA)-Zn(Ⅱ) complex nanospheres on graphene oxide framework tailored for robust self-healing anti-corrosion coatings application[J]. Chemical Engineering Journal, 2020, 391: 123630. |
18 | Huang S, Kong X, Xiong Y S, et al. An overview of dynamic covalent bonds in polymer material and their applications[J]. European Polymer Journal, 2020, 141: 110094. |
19 | Chen H Y, Wang B, Li J P, et al. High-strength and super-hydrophobic multilayered paper based on nano-silica coating and micro-fibrillated cellulose[J]. Carbohydrate Polymers, 2022, 288: 119371. |
20 | Sun W H, Tang E J, Zhao L L, et al. The waterborne epoxy composite coatings with modified graphene oxide nanosheet supported zinc ion and its self-healing anticorrosion properties[J]. Progress in Organic Coatings, 2023, 182: 107609. |
21 | 董佑邦, 张泽祺, 杨荣杰. 氨丙基低聚硅倍半氧烷及其酰胺化产物的合成与表征[J]. 中国塑料, 2022, 36(8): 1-9. |
Dong Y B, Zhang Z Q, Yang R J. Synthesis and characterization of aminopropyl oligomeric silsesquioxane and its amidation products[J]. China Plastics, 2022, 36(8): 1-9. | |
22 | Wu Y W, Liu L C, Yang R J, et al. Synthesis and characterization of low-functional nitrated and aminated octa(phenyl) silsesquioxane[J]. ChemistrySelect, 2019, 4(10): 2941-2948. |
23 | 武志富, 李素娟. 氢氧化锌和氧化锌的红外光谱特征[J]. 光谱实验室, 2012, 29(4): 2172-2175. |
Wu Z F, Li S J. Infrared spectra characteristics of zinc hydroxide and zinc oxide[J]. Chinese Journal of Spectroscopy Laboratory, 2012, 29(4): 2172-2175. | |
24 | Yang Y, Li X F, Chen J B, et al. ZnO nanoparticles prepared by thermal decomposition of β-cyclodextrin coated zinc acetate[J]. Chemical Physics Letters, 2003, 373(1/2): 22-27. |
25 | Díez-Betriu X, Álvarez-García S, Botas C, et al. Raman spectroscopy for the study of reduction mechanisms and optimization of conductivity in graphene oxide thin films[J]. Journal of Materials Chemistry C, 2013, 1(41): 6905-6912. |
26 | Yadav S, Raman A P S, Meena H, et al. An update on graphene oxide: applications and toxicity[J]. ACS Omega, 2022, 7(40): 35387-35445. |
27 | Liu C B, Zhao H C, Hou P M, et al. Efficient graphene/cyclodextrin-based nanocontainer: synthesis and host-guest inclusion for self-healing anticorrosion application[J]. ACS Applied Materials & Interfaces, 2018, 10(42): 36229-36239. |
28 | Kouhi M, Mohebbi A, Mirzaei M. Evaluation of the corrosion inhibition effect of micro/nanocapsulated polymeric coatings: a comparative study by use of EIS and Tafel experiments and the area under the Bode plot[J]. Research on Chemical Intermediates, 2013, 39(5): 2049-2062. |
29 | Zhong F, He Y, Wang P Q, et al. One-step hydrothermal synthesis of reduced graphene oxide/aspartic acid intercalated layered double hydroxide for enhancing barrier and self-healing properties of epoxy coating[J]. Reactive and Functional Polymers, 2019, 145: 104380. |
30 | Jomy J, Prabhu D, Prabhu P R. Inhibitors incorporated into water-based epoxy coatings on metals for corrosion protection: a review[J]. Journal of Bio- and Tribo-Corrosion, 2022, 8(2): 44. |
31 | 刘旭文, 熊金平, 曹京宜, 等. 无机/有机复合涂层体系在3.5%NaCl溶液中的EIS[J]. 化工学报, 2007, 58(9): 2288-2292. |
Liu X W, Xiong J P, Cao J Y, et al. Electrochemical impedance spectroscopy of inorganic/organic composite coatings in 3.5%NaCl solution[J]. Journal of Chemical Industry and Engineering (China), 2007, 58(9): 2288-2292. | |
32 | Zhou Z Y, Pourhashem S, Wang Z Q, et al. Distinctive roles of graphene oxide, ZnO quantum dots, and their nanohybrids in anti-corrosion and anti-fouling performance of waterborne epoxy coatings[J]. Chemical Engineering Journal, 2022, 439: 135765. |
33 | Motamedi M, Ramezanzadeh M, Ramezanzadeh B, et al. Enhancement of the active/passive anti-corrosion properties of epoxy coating via inclusion of histamine/zinc modified/reduced graphene oxide nanosheets[J]. Applied Surface Science, 2019, 488: 77-91. |
34 | Ammar S, Ramesh K, Vengadaesvaran B, et al. Formulation and characterization of hybrid polymeric/ZnO nanocomposite coatings with remarkable anti-corrosion and hydrophobic characteristics[J]. Journal of Coatings Technology and Research, 2016, 13(5): 921-930. |
35 | Muhammad M, Hu S H, Ma R N, et al. Enhancing the corrosion resistance of Q235 mild steel by incorporating poly(dopamine) modified h-BN nanosheets on zinc phosphate-silane coating[J]. Surface and Coatings Technology, 2020, 390: 125682. |
36 | Wang G W, Song D, Qiao Y X, et al. Developing super-hydrophobic and corrosion-resistant coating on magnesium-lithium alloy via one-step hydrothermal processing[J]. Journal of Magnesium and Alloys, 2023, 11(4): 1422-1439. |
37 | Esfahani M B, Eshaghi A, Bakhshi S R. Transparent hydrophobic, self-cleaning, anti-icing and anti-dust nano-structured silica based thin film on cover glass solar cell[J]. Journal of Non-Crystalline Solids, 2022, 583: 121479. |
38 | Zhang P, Qin B, Xia J H. UV curable robust durable hydrophobic coating based on epoxy polyhedral oligomeric silsesquioxanes (EP-POSS) and their derivatives[J]. ACS Omega, 2022, 7(20): 17108-17118. |
39 | Bai Y X, Zhang H P, Shao Y Y, et al. Recent progresses of superhydrophobic coatings in different application fields: an overview[J]. Coatings, 2021, 11(2): 116. |
40 | 金晶, 安秋凤, 杨博文, 等. 环氧基POSS改性环氧树脂的研制与性能研究[J]. 化工学报, 2020, 71(5): 2432-2439. |
Jin J, An Q F, Yang B W, et al. Preparation and properties of epoxy POSS modified epoxy resin[J]. CIESC Journal, 2020, 71(5): 2432-2439. |
[1] | 裴欣哲, 孙朱行, 林钰翔, 张朝阳, 钱勇, 吕兴才. 电催化分解液氨阳极材料的研究[J]. 化工学报, 2024, 75(5): 1843-1854. |
[2] | 申州洋, 薛康, 刘青, 史成香, 邹吉军, 张香文, 潘伦. 吸热型纳米流体燃料研究进展[J]. 化工学报, 2024, 75(4): 1167-1182. |
[3] | 杨玉维, 李敏, 要智颖, 孙沁林, 刘洋, 葛丹, 孙冰冰. 类器官芯片在纳米药物递送系统研究中的应用及前景[J]. 化工学报, 2024, 75(4): 1209-1221. |
[4] | 司友明, 郑凌峰, 陈鹏忠, 樊江莉, 彭孝军. 新型锑氧簇光刻胶的性能与机理研究[J]. 化工学报, 2024, 75(4): 1705-1717. |
[5] | 冯彬彬, 卢明佳, 黄志宏, 常译文, 崔志明. 碳载体在质子交换膜燃料电池中的应用及优化[J]. 化工学报, 2024, 75(4): 1469-1484. |
[6] | 严孝清, 赵瑛, 张宇哲, 欧鸿辉, 黄起中, 胡华贵, 杨贵东. 五重孪晶铜纳米线@聚吡咯制备及其电催化硝酸盐还原制氨[J]. 化工学报, 2024, 75(4): 1519-1532. |
[7] | 曹宇, 张国辉, 高昂, 杜心宇, 周静, 蔡永茂, 余璇, 于晓明. 二维MXene材料在太阳能电池和金属离子电池中的研究进展[J]. 化工学报, 2024, 75(2): 412-428. |
[8] | 尹玉华, 方灿, 易清风, 李广. 不同碳导电剂对铁-空气电池性能的影响[J]. 化工学报, 2024, 75(2): 685-694. |
[9] | 吴馨, 龚建英, 靳龙, 王宇涛, 黄睿宁. 超声波激励下铝板表面液滴群输运特性的研究[J]. 化工学报, 2023, 74(S1): 104-112. |
[10] | 康飞, 吕伟光, 巨锋, 孙峙. 废锂离子电池放电路径与评价研究[J]. 化工学报, 2023, 74(9): 3903-3911. |
[11] | 刘远超, 关斌, 钟建斌, 徐一帆, 蒋旭浩, 李耑. 单层XSe2(X=Zr/Hf)的热电输运特性研究[J]. 化工学报, 2023, 74(9): 3968-3978. |
[12] | 杨越, 张丹, 郑巨淦, 涂茂萍, 杨庆忠. NaCl水溶液喷射闪蒸-掺混蒸发的实验研究[J]. 化工学报, 2023, 74(8): 3279-3291. |
[13] | 陈天华, 刘兆轩, 韩群, 张程宾, 李文明. 喷雾冷却换热强化研究进展及影响因素[J]. 化工学报, 2023, 74(8): 3149-3170. |
[14] | 陈佳起, 赵万玉, 姚睿充, 侯道林, 董社英. 开心果壳基碳点的合成及其对Q235碳钢的缓蚀行为研究[J]. 化工学报, 2023, 74(8): 3446-3456. |
[15] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||