化工学报 ›› 2024, Vol. 75 ›› Issue (S1): 143-157.DOI: 10.11949/0438-1157.20240646
收稿日期:
2024-06-11
修回日期:
2024-06-25
出版日期:
2024-12-25
发布日期:
2024-12-17
通讯作者:
孙娜娜
作者简介:
孙娜娜(1987—),女,博士,副教授,bingyuxuan6666@126.com
基金资助:
Nana SUN(), Hongmei DONG, Wenhao GUO, Jian LIU, Jianbo HU, Shuang JIN
Received:
2024-06-11
Revised:
2024-06-25
Online:
2024-12-25
Published:
2024-12-17
Contact:
Nana SUN
摘要:
旨在探讨改性磁性纳米粒子质量分数、溶液酸碱度(pH)、油水比、NaCl浓度、搅拌速度以及乳化温度对稠油O/W型乳状液流变特性的影响规律,并结合Zeta电位、界面张力和油滴分布揭示了其作用机制。为了更深入且精确地分析以上因素对乳状液流动特性的影响,开展了六因素三水平的正交流变实验,采用幂律流体压降公式计算了各组条件下单位管长压降,并应用SPSS软件进行了方差分析和非线性回归分析,构建了一个适用于O/W型乳状液的管输压降预测模型。最后,使用Matlab软件对压降进行了最优解的求解。研究结果显示,油水比对乳状液流变特性影响最为显著,且改性磁性纳米粒子可以成功制备出油水比为8∶2的稠油O/W型乳状液。当改性磁性纳米粒子质量分数控制在0.07%,含油率维持在50.38%,NaCl浓度为0.12 mol/L,搅拌速度设置为664.10 r/min,且乳化温度保持在16.92℃时,该稠油O/W型乳状液的单位长度管输压降能达到最小值,即66.93 Pa/m,该最优方案表明较低质量分数的改性磁性纳米粒子能在低温条件下实现稠油大幅度减阻输送。此外,通过实证研究,所构建的模型在严格的正交实验条件下展现出较好的管输压降预测能力,从而提供了一种可靠的方法来评估和优化稠油O/W型乳状液的输送性能。
中图分类号:
孙娜娜, 董红妹, 郭文豪, 柳健, 胡建波, 靳爽. 改性磁性纳米粒子稳定的稠油O/W型乳状液的流变性影响因素及管输压降预测模型[J]. 化工学报, 2024, 75(S1): 143-157.
Nana SUN, Hongmei DONG, Wenhao GUO, Jian LIU, Jianbo HU, Shuang JIN. Rheological property influencing factors and a pressure drop prediction model for pipeline transportation in thick oil O/W emulsions stabilized by modified magnetic nanoparticles[J]. CIESC Journal, 2024, 75(S1): 143-157.
温度/℃ | 稠油密度/(kg/m3) |
---|---|
20 | 954.71 |
30 | 953.59 |
40 | 953.38 |
50 | 952.37 |
60 | 950.17 |
70 | 947.85 |
表1 不同温度下的稠油密度
Table 1 Density of thick oil at different temperatures
温度/℃ | 稠油密度/(kg/m3) |
---|---|
20 | 954.71 |
30 | 953.59 |
40 | 953.38 |
50 | 952.37 |
60 | 950.17 |
70 | 947.85 |
水平 | 改性磁性纳米粒子质量分数/% | pH | 含油率/% | NaCl浓度/(mol/L) | 搅拌速度/(r/min) | 乳化温度/℃ |
---|---|---|---|---|---|---|
1 | 0 | 5 | 50 | 0.02 | 200 | 14.3 |
2 | 0.06 | 7.5 | 65 | 0.08 | 900 | 22.5 |
3 | 0.12 | 10 | 80 | 0.14 | 1600 | 35 |
表2 选择的因素及水平
Table 2 Selected factors and levels
水平 | 改性磁性纳米粒子质量分数/% | pH | 含油率/% | NaCl浓度/(mol/L) | 搅拌速度/(r/min) | 乳化温度/℃ |
---|---|---|---|---|---|---|
1 | 0 | 5 | 50 | 0.02 | 200 | 14.3 |
2 | 0.06 | 7.5 | 65 | 0.08 | 900 | 22.5 |
3 | 0.12 | 10 | 80 | 0.14 | 1600 | 35 |
序号 | 改性磁性纳米粒子质量分数 | pH | 含油率 | NaCl 浓度 | 搅拌 速度 | 乳化 温度 |
---|---|---|---|---|---|---|
1 | 3 | 2 | 2 | 2 | 2 | 1 |
2 | 2 | 3 | 1 | 2 | 2 | 3 |
3 | 3 | 1 | 3 | 3 | 2 | 1 |
4 | 2 | 1 | 3 | 1 | 2 | 3 |
5 | 2 | 1 | 2 | 3 | 3 | 2 |
6 | 2 | 2 | 1 | 3 | 3 | 1 |
7 | 3 | 1 | 1 | 2 | 1 | 2 |
8 | 1 | 1 | 2 | 2 | 3 | 3 |
9 | 3 | 2 | 1 | 1 | 3 | 3 |
10 | 3 | 3 | 3 | 1 | 3 | 2 |
11 | 2 | 3 | 2 | 1 | 1 | 1 |
12 | 1 | 2 | 2 | 1 | 2 | 2 |
13 | 1 | 2 | 3 | 3 | 1 | 3 |
14 | 1 | 3 | 3 | 2 | 3 | 1 |
15 | 1 | 1 | 1 | 1 | 1 | 1 |
16 | 2 | 2 | 3 | 2 | 1 | 2 |
17 | 1 | 3 | 1 | 3 | 2 | 2 |
18 | 3 | 3 | 2 | 3 | 1 | 3 |
表3 6因素3水平正交实验
Table 3 6-factor 3-level orthogonal experiment
序号 | 改性磁性纳米粒子质量分数 | pH | 含油率 | NaCl 浓度 | 搅拌 速度 | 乳化 温度 |
---|---|---|---|---|---|---|
1 | 3 | 2 | 2 | 2 | 2 | 1 |
2 | 2 | 3 | 1 | 2 | 2 | 3 |
3 | 3 | 1 | 3 | 3 | 2 | 1 |
4 | 2 | 1 | 3 | 1 | 2 | 3 |
5 | 2 | 1 | 2 | 3 | 3 | 2 |
6 | 2 | 2 | 1 | 3 | 3 | 1 |
7 | 3 | 1 | 1 | 2 | 1 | 2 |
8 | 1 | 1 | 2 | 2 | 3 | 3 |
9 | 3 | 2 | 1 | 1 | 3 | 3 |
10 | 3 | 3 | 3 | 1 | 3 | 2 |
11 | 2 | 3 | 2 | 1 | 1 | 1 |
12 | 1 | 2 | 2 | 1 | 2 | 2 |
13 | 1 | 2 | 3 | 3 | 1 | 3 |
14 | 1 | 3 | 3 | 2 | 3 | 1 |
15 | 1 | 1 | 1 | 1 | 1 | 1 |
16 | 2 | 2 | 3 | 2 | 1 | 2 |
17 | 1 | 3 | 1 | 3 | 2 | 2 |
18 | 3 | 3 | 2 | 3 | 1 | 3 |
序号 | 剪切应力/Pa | |||||||
---|---|---|---|---|---|---|---|---|
10 s-1 | 50 s-1 | 90 s-1 | 130 s-1 | 170 s-1 | 210 s-1 | 250 s-1 | 290 s-1 | |
1 | 8.120 | 14.416 | 19.998 | 28.615 | 36.385 | 43.299 | 50.298 | 54.963 |
2 | 0.110 | 0.798 | 1.793 | 2.350 | 2.863 | 3.478 | 4.052 | 4.709 |
3 | 5.780 | 21.735 | 31.671 | 41.247 | 49.985 | 59.263 | 70.399 | 80.561 |
4 | 5.630 | 14.691 | 22.897 | 31.078 | 39.834 | 48.942 | 57.495 | 66.907 |
5 | 3.190 | 10.976 | 16.592 | 20.553 | 24.109 | 27.098 | 29.669 | 32.442 |
6 | 0.440 | 2.514 | 5.010 | 7.654 | 9.730 | 11.536 | 14.109 | 16.405 |
7 | 0.270 | 1.169 | 2.483 | 3.776 | 5.153 | 6.184 | 7.147 | 7.812 |
8 | 1.950 | 6.007 | 8.848 | 10.866 | 12.462 | 13.101 | 14.644 | 15.149 |
9 | 0.460 | 2.280 | 3.916 | 5.171 | 6.196 | 7.308 | 8.075 | 8.986 |
10 | 8.500 | 26.829 | 39.715 | 49.049 | 56.401 | 63.215 | 70.858 | 77.088 |
11 | 0.340 | 2.472 | 5.017 | 7.164 | 9.196 | 11.657 | 14.353 | 15.869 |
12 | 1.160 | 4.573 | 7.497 | 9.937 | 12.268 | 14.431 | 16.182 | 17.794 |
13 | 3.420 | 13.364 | 21.265 | 28.689 | 35.271 | 41.368 | 47.997 | 54.530 |
14 | 4.040 | 8.922 | 10.825 | 11.524 | 16.297 | 20.431 | 20.938 | 21.571 |
15 | 1.350 | 1.806 | 2.845 | 3.964 | 4.933 | 5.789 | 6.504 | 6.595 |
16 | 3.340 | 13.383 | 20.301 | 27.012 | 33.049 | 39.440 | 45.802 | 52.008 |
17 | 0.150 | 0.262 | 0.274 | 0.374 | 0.703 | 0.928 | 1.201 | 1.376 |
18 | 0.520 | 2.691 | 4.702 | 5.964 | 6.782 | 7.471 | 8.095 | 8.879 |
表4 正交流变实验结果
Table 4 Positive alternating current experimental results
序号 | 剪切应力/Pa | |||||||
---|---|---|---|---|---|---|---|---|
10 s-1 | 50 s-1 | 90 s-1 | 130 s-1 | 170 s-1 | 210 s-1 | 250 s-1 | 290 s-1 | |
1 | 8.120 | 14.416 | 19.998 | 28.615 | 36.385 | 43.299 | 50.298 | 54.963 |
2 | 0.110 | 0.798 | 1.793 | 2.350 | 2.863 | 3.478 | 4.052 | 4.709 |
3 | 5.780 | 21.735 | 31.671 | 41.247 | 49.985 | 59.263 | 70.399 | 80.561 |
4 | 5.630 | 14.691 | 22.897 | 31.078 | 39.834 | 48.942 | 57.495 | 66.907 |
5 | 3.190 | 10.976 | 16.592 | 20.553 | 24.109 | 27.098 | 29.669 | 32.442 |
6 | 0.440 | 2.514 | 5.010 | 7.654 | 9.730 | 11.536 | 14.109 | 16.405 |
7 | 0.270 | 1.169 | 2.483 | 3.776 | 5.153 | 6.184 | 7.147 | 7.812 |
8 | 1.950 | 6.007 | 8.848 | 10.866 | 12.462 | 13.101 | 14.644 | 15.149 |
9 | 0.460 | 2.280 | 3.916 | 5.171 | 6.196 | 7.308 | 8.075 | 8.986 |
10 | 8.500 | 26.829 | 39.715 | 49.049 | 56.401 | 63.215 | 70.858 | 77.088 |
11 | 0.340 | 2.472 | 5.017 | 7.164 | 9.196 | 11.657 | 14.353 | 15.869 |
12 | 1.160 | 4.573 | 7.497 | 9.937 | 12.268 | 14.431 | 16.182 | 17.794 |
13 | 3.420 | 13.364 | 21.265 | 28.689 | 35.271 | 41.368 | 47.997 | 54.530 |
14 | 4.040 | 8.922 | 10.825 | 11.524 | 16.297 | 20.431 | 20.938 | 21.571 |
15 | 1.350 | 1.806 | 2.845 | 3.964 | 4.933 | 5.789 | 6.504 | 6.595 |
16 | 3.340 | 13.383 | 20.301 | 27.012 | 33.049 | 39.440 | 45.802 | 52.008 |
17 | 0.150 | 0.262 | 0.274 | 0.374 | 0.703 | 0.928 | 1.201 | 1.376 |
18 | 0.520 | 2.691 | 4.702 | 5.964 | 6.782 | 7.471 | 8.095 | 8.879 |
序号 | K | n | R2 |
---|---|---|---|
1 | 0.447 | 0.852 | 0.994 |
2 | 0.026 | 0.918 | 0.988 |
3 | 0.891 | 0.790 | 0.996 |
4 | 0.390 | 0.905 | 0.997 |
5 | 1.075 | 0.603 | 0.997 |
6 | 0.054 | 1.006 | 0.997 |
7 | 0.032 | 0.977 | 0.992 |
8 | 0.844 | 0.515 | 0.983 |
9 | 0.137 | 0.740 | 0.994 |
10 | 2.687 | 0.593 | 0.998 |
11 | 0.047 | 1.032 | 0.998 |
12 | 0.267 | 0.744 | 0.998 |
13 | 0.585 | 0.799 | 0.999 |
14 | 0.813 | 0.588 | 0.937 |
15 | 0.157 | 0.662 | 0.957 |
16 | 0.564 | 0.796 | 0.999 |
17 | 0.002 | 1.159 | 0.951 |
18 | 0.268 | 0.622 | 0.981 |
表5 不同实验条件下的稠度系数和幂律指数
Table 5 Consistency coefficients and power law indices under different experimental conditions
序号 | K | n | R2 |
---|---|---|---|
1 | 0.447 | 0.852 | 0.994 |
2 | 0.026 | 0.918 | 0.988 |
3 | 0.891 | 0.790 | 0.996 |
4 | 0.390 | 0.905 | 0.997 |
5 | 1.075 | 0.603 | 0.997 |
6 | 0.054 | 1.006 | 0.997 |
7 | 0.032 | 0.977 | 0.992 |
8 | 0.844 | 0.515 | 0.983 |
9 | 0.137 | 0.740 | 0.994 |
10 | 2.687 | 0.593 | 0.998 |
11 | 0.047 | 1.032 | 0.998 |
12 | 0.267 | 0.744 | 0.998 |
13 | 0.585 | 0.799 | 0.999 |
14 | 0.813 | 0.588 | 0.937 |
15 | 0.157 | 0.662 | 0.957 |
16 | 0.564 | 0.796 | 0.999 |
17 | 0.002 | 1.159 | 0.951 |
18 | 0.268 | 0.622 | 0.981 |
序号 | ΔP/(Pa/m) |
---|---|
1 | 3312.78 |
2 | 107.05 |
3 | 5246.84 |
4 | 3517.17 |
5 | 3154.39 |
6 | 141.88 |
7 | 118.69 |
8 | 1780.26 |
9 | 151.96 |
10 | 7594.92 |
11 | 138.14 |
12 | 1325.32 |
13 | 3561.91 |
14 | 2255.37 |
15 | 148.06 |
16 | 3396.03 |
17 | 66.93 |
18 | 169.53 |
表6 18组乳状液的单位管长管输压降
Table 6 Tubular transport pressure drop per unit tube length for 18 groups of emulsions
序号 | ΔP/(Pa/m) |
---|---|
1 | 3312.78 |
2 | 107.05 |
3 | 5246.84 |
4 | 3517.17 |
5 | 3154.39 |
6 | 141.88 |
7 | 118.69 |
8 | 1780.26 |
9 | 151.96 |
10 | 7594.92 |
11 | 138.14 |
12 | 1325.32 |
13 | 3561.91 |
14 | 2255.37 |
15 | 148.06 |
16 | 3396.03 |
17 | 66.93 |
18 | 169.53 |
最大值 | 最小值 | 实验数值 | 归一化 |
---|---|---|---|
0.12 | 0 | 0 | 0 |
0.12 | 0 | 0.06 | 0.5 |
0.12 | 0 | 0.12 | 1 |
表7 改性磁性纳米粒子质量分数归一化
Table 7 Homogenization of mass fraction of modified magnetic nanoparticles
最大值 | 最小值 | 实验数值 | 归一化 |
---|---|---|---|
0.12 | 0 | 0 | 0 |
0.12 | 0 | 0.06 | 0.5 |
0.12 | 0 | 0.12 | 1 |
最大值 | 最小值 | 实验数值 | 归一化 |
---|---|---|---|
10 | 5 | 5 | 0 |
10 | 5 | 7.5 | 0.5 |
10 | 5 | 10 | 1 |
表8 pH归一化
Table 8 pH homogenization
最大值 | 最小值 | 实验数值 | 归一化 |
---|---|---|---|
10 | 5 | 5 | 0 |
10 | 5 | 7.5 | 0.5 |
10 | 5 | 10 | 1 |
最大值 | 最小值 | 实验数值 | 归一化 |
---|---|---|---|
1600 | 200 | 200 | 0 |
1600 | 200 | 900 | 0.5 |
1600 | 200 | 1600 | 1 |
表9 搅拌速度归一化
Table 9 Stirring speed homogenization
最大值 | 最小值 | 实验数值 | 归一化 |
---|---|---|---|
1600 | 200 | 200 | 0 |
1600 | 200 | 900 | 0.5 |
1600 | 200 | 1600 | 1 |
最大值 | 最小值 | 实验数值 | 归一化 |
---|---|---|---|
0.14 | 0.02 | 0.02 | 0 |
0.14 | 0.02 | 0.08 | 0.5 |
0.14 | 0.02 | 0.14 | 1 |
表10 NaCl浓度归一化
Table 10 NaCl concentration homogenization
最大值 | 最小值 | 实验数值 | 归一化 |
---|---|---|---|
0.14 | 0.02 | 0.02 | 0 |
0.14 | 0.02 | 0.08 | 0.5 |
0.14 | 0.02 | 0.14 | 1 |
最大值 | 最小值 | 实验数值 | 归一化 |
---|---|---|---|
80 | 50 | 50 | 0 |
80 | 50 | 65 | 0.5 |
80 | 50 | 80 | 1 |
表11 油水比归一化
Table 11 Oil-water ratio homogenization
最大值 | 最小值 | 实验数值 | 归一化 |
---|---|---|---|
80 | 50 | 50 | 0 |
80 | 50 | 65 | 0.5 |
80 | 50 | 80 | 1 |
最大值 | 最小值 | 实验数值 | 归一化 |
---|---|---|---|
35 | 14.3 | 14.3 | 0 |
35 | 14.3 | 22.5 | 0.396 |
35 | 14.3 | 35 | 1 |
表12 乳化温度归一化
Table 12 Emulsification temperature homogenization
最大值 | 最小值 | 实验数值 | 归一化 |
---|---|---|---|
35 | 14.3 | 14.3 | 0 |
35 | 14.3 | 22.5 | 0.396 |
35 | 14.3 | 35 | 1 |
最大值 | 最小值 | 实验数值 | 归一化 |
---|---|---|---|
7594.924 | 66.932 | 66.932 | 0 |
7594.924 | 66.932 | 107.048 | 0.005 |
7594.924 | 66.932 | 118.687 | 0.007 |
7594.924 | 66.932 | 138.135 | 0.009 |
7594.924 | 66.932 | 141.878 | 0.010 |
7594.924 | 66.932 | 148.055 | 0.011 |
7594.924 | 66.932 | 151.962 | 0.011 |
7594.924 | 66.932 | 169.532 | 0.014 |
7594.924 | 66.932 | 1325.317 | 0.167 |
7594.924 | 66.932 | 1780.264 | 0.228 |
7594.924 | 66.932 | 2255.368 | 0.291 |
7594.924 | 66.932 | 3154.388 | 0.410 |
7594.924 | 66.932 | 3312.779 | 0.431 |
7594.924 | 66.932 | 3396.028 | 0.442 |
7594.924 | 66.932 | 3517.170 | 0.458 |
7594.924 | 66.932 | 3561.914 | 0.464 |
7594.924 | 66.932 | 5246.842 | 0.688 |
7594.924 | 66.932 | 7594.924 | 1 |
表13 压降归一化
Table 13 Voltage drop homogenization
最大值 | 最小值 | 实验数值 | 归一化 |
---|---|---|---|
7594.924 | 66.932 | 66.932 | 0 |
7594.924 | 66.932 | 107.048 | 0.005 |
7594.924 | 66.932 | 118.687 | 0.007 |
7594.924 | 66.932 | 138.135 | 0.009 |
7594.924 | 66.932 | 141.878 | 0.010 |
7594.924 | 66.932 | 148.055 | 0.011 |
7594.924 | 66.932 | 151.962 | 0.011 |
7594.924 | 66.932 | 169.532 | 0.014 |
7594.924 | 66.932 | 1325.317 | 0.167 |
7594.924 | 66.932 | 1780.264 | 0.228 |
7594.924 | 66.932 | 2255.368 | 0.291 |
7594.924 | 66.932 | 3154.388 | 0.410 |
7594.924 | 66.932 | 3312.779 | 0.431 |
7594.924 | 66.932 | 3396.028 | 0.442 |
7594.924 | 66.932 | 3517.170 | 0.458 |
7594.924 | 66.932 | 3561.914 | 0.464 |
7594.924 | 66.932 | 5246.842 | 0.688 |
7594.924 | 66.932 | 7594.924 | 1 |
因素 | 改性磁性纳米 粒子质量分数/% | pH | 油水比 | NaCl 浓度/(mol/L) | 搅拌 速度/ (r/min) | 乳化 温度/℃ |
---|---|---|---|---|---|---|
F值 | 0.529 | 0.105 | 14.327 | 0.03 | 0.533 | 0.347 |
sig.值 | 0.6 | 0.901 | <0.01 | 0.97 | 0.597 | 0.712 |
表14 方差分析结果
Table 14 ANOVA results
因素 | 改性磁性纳米 粒子质量分数/% | pH | 油水比 | NaCl 浓度/(mol/L) | 搅拌 速度/ (r/min) | 乳化 温度/℃ |
---|---|---|---|---|---|---|
F值 | 0.529 | 0.105 | 14.327 | 0.03 | 0.533 | 0.347 |
sig.值 | 0.6 | 0.901 | <0.01 | 0.97 | 0.597 | 0.712 |
模型 | R | R2 | 调整后R2 | 标准估算的错误 |
---|---|---|---|---|
7 | 0.980 | 0.960 | 0.943 | 0.068916 |
表15 模型汇总
Table 15 Summary of models
模型 | R | R2 | 调整后R2 | 标准估算的错误 |
---|---|---|---|---|
7 | 0.980 | 0.960 | 0.943 | 0.068916 |
模型 | 平方和 | 自由度 | 均方 | F | 显著性 | |
---|---|---|---|---|---|---|
7 | 回归 | 1.357 | 5 | 0.271 | 57.144 | 0.000 |
残差 | 0.057 | 12 | 0.005 | — | — | |
总计 | 1.414 | 17 | — | — | — |
表16 F检验结果
Table 16 F-test results
模型 | 平方和 | 自由度 | 均方 | F | 显著性 | |
---|---|---|---|---|---|---|
7 | 回归 | 1.357 | 5 | 0.271 | 57.144 | 0.000 |
残差 | 0.057 | 12 | 0.005 | — | — | |
总计 | 1.414 | 17 | — | — | — |
模型 | 未标准化系数 | 标准化系数 Beta | t | 显著性 | ||
---|---|---|---|---|---|---|
B | 标准错误 | |||||
7 | 常量 | 0.041 | 0.024 | 1.684 | 0.118 | |
(ah)2 | 0.741 | 0.076 | 0.816 | 9.729 | 0 | |
(eh)3 | -0.436 | 0.077 | -0.479 | -5.639 | 0 | |
ae | 0.298 | 0.063 | 0.355 | 4.698 | 0.001 | |
ac | 0.146 | 0.054 | 0.17 | 2.68 | 0.02 | |
ad | 0.165 | 0.062 | 0.196 | 2.659 | 0.021 |
表17 t 检验和模型共线性诊断
Table 17 t-test and model covariance diagnosis
模型 | 未标准化系数 | 标准化系数 Beta | t | 显著性 | ||
---|---|---|---|---|---|---|
B | 标准错误 | |||||
7 | 常量 | 0.041 | 0.024 | 1.684 | 0.118 | |
(ah)2 | 0.741 | 0.076 | 0.816 | 9.729 | 0 | |
(eh)3 | -0.436 | 0.077 | -0.479 | -5.639 | 0 | |
ae | 0.298 | 0.063 | 0.355 | 4.698 | 0.001 | |
ac | 0.146 | 0.054 | 0.17 | 2.68 | 0.02 | |
ad | 0.165 | 0.062 | 0.196 | 2.659 | 0.021 |
油水比 | 理论压降/Pa | 实验压降/Pa | 误差绝对值/% |
---|---|---|---|
75∶25 | 4961.435 | 5031.388 | 1.39% |
70∶30 | 3501.285 | 3653.878 | 4.18% |
65∶35 | 2256.346 | 2298.687 | 1.84% |
60∶40 | 1226.616 | 1310.264 | 6.38% |
55∶45 | 412.097 | 436.962 | 5.69% |
表18 理论压降与实验压降对比
Table 18 Theoretical pressure drop vs experimental pressure drop
油水比 | 理论压降/Pa | 实验压降/Pa | 误差绝对值/% |
---|---|---|---|
75∶25 | 4961.435 | 5031.388 | 1.39% |
70∶30 | 3501.285 | 3653.878 | 4.18% |
65∶35 | 2256.346 | 2298.687 | 1.84% |
60∶40 | 1226.616 | 1310.264 | 6.38% |
55∶45 | 412.097 | 436.962 | 5.69% |
改性磁性纳米粒子质量分数/% | 含油率/% | NaCl浓度/ (mol/L) | 搅拌速度/ (r/min) | 乳化温度/℃ | 理论压降/Pa | 实验压降/Pa | 误差绝对值/% |
---|---|---|---|---|---|---|---|
0.07 | 50 | 0.12 | 660 | 17 | 67.437 | 68.228 | 1.16 |
表19 最优解的实验验证
Table 19 Experimental verification of the optimal solution
改性磁性纳米粒子质量分数/% | 含油率/% | NaCl浓度/ (mol/L) | 搅拌速度/ (r/min) | 乳化温度/℃ | 理论压降/Pa | 实验压降/Pa | 误差绝对值/% |
---|---|---|---|---|---|---|---|
0.07 | 50 | 0.12 | 660 | 17 | 67.437 | 68.228 | 1.16 |
1 | Martínez-Palou R, de Lourdes Mosqueira M, Zapata-Rendón B, et al. Transportation of heavy and extra-heavy crude oil by pipeline: a review[J]. Journal of Petroleum Science and Engineering, 2011, 75(3/4): 274-282. |
2 | Fakher S, Ahdaya M, Elturki M, et al. Critical review of asphaltene properties and factors impacting its stability in crude oil[J]. Journal of Petroleum Exploration and Production Technology, 2020, 10(3): 1183-1200. |
3 | Zhang F, Zhang Q, Zhou Z H, et al. Study on the effect of different viscosity reducers on viscosity reduction and emulsification with Daqing crude oil[J]. Molecules, 2023, 28(3): 1399. |
4 | 韩晋晋, 刘渊. 浅谈水包油乳化降黏技术在我国稠油管输中的应用前景[J]. 石化技术, 2016, 23(6): 35-36. |
Han J J, Liu Y. Application prospect of oil-in-water emulsifying and viscosity reducing technology in heavy oil transportation in China[J]. Petrochemical Industry Technology, 2016, 23(6): 35-36. | |
5 | 檀家桐, 扈海莉, 李爱军. 稠油管道输送技术综述[J]. 内蒙古石油化工, 2019, 45 (8): 66-68. |
Tan J T, Hu H L, Li A J. Heavy oil transportation technology: a review[J]. Inner Mongolia Petrochemical Industry, 2019, 45(8): 66-68. | |
6 | Frelichowska J, Bolzinger M A, Pelletier J, et al. Topical delivery of lipophilic drugs from O/W Pickering emulsions[J]. International Journal of Pharmaceutics, 2009, 371(1/2): 56-63. |
7 | Low L E, Tan L T H, Goh B H, et al. Magnetic cellulose nanocrystal stabilized Pickering emulsions for enhanced bioactive release and human colon cancer therapy[J]. International Journal of Biological Macromolecules, 2019, 127: 76-84. |
8 | Purcar V, Cinteza O, Donescu D, et al. Surface modification of silica particles assisted by CO2 [J]. The Journal of Supercritical Fluids, 2014, 87: 34-39. |
9 | Liu J, Bin Y Z, Masaru M. Magnetic behavior of Zn-doped Fe3O4 nanoparticles estimated in terms of crystal domain size[J]. The Journal of Physical Chemistry C, 2012, 116 (1): 134-143. |
10 | Purcar V, Caprarescu S, Donescu D, et al. Degradation of TiO2 and/or SiO2 hybrid films doped with different cationic dyes[J]. Thin Solid Films, 2013, 534: 301-307. |
11 | Zhao F P, Repo E, Yin D L, et al. One-pot synthesis of trifunctional chitosan-EDTA-β-cyclodextrin polymer for simultaneous removal of metals and organic micropollutants[J]. Scientific Reports, 2017, 7(1): 15811. |
12 | Tang J T, Song Y, Zhao F P, et al. Compressible cellulose nanofibril (CNF) based aerogels produced via a bio-inspired strategy for heavy metal ion and dye removal[J]. Carbohydrate Polymers, 2019, 208: 404-412. |
13 | Peng B L, Tang J T, Luo J H, et al. Applications of nanotechnology in oil and gas industry: progress and perspective[J]. The Canadian Journal of Chemical Engineering, 2018, 96(1): 91-100. |
14 | Lv T, Zhang S, Qi D M, et al. Enhanced demulsification from aqueous media by using magnetic chitosan-based flocculant[J]. Journal of Colloid and Interface Science, 2018, 518: 76-83. |
15 | Fang S W, Chen B, Zhang H, et al. The effects of ultrasonic time, temperature, size and polyether type on performances of magnetic flocculants for oily wastewater produced from polymer flooding treatment[J]. Separation Science and Technology, 2016, 51: 2991-2999. |
16 | Huang X F, Xiong Y J, Lu L J, et al. Manipulation of surface hydrophobicity and charge of demulsifying bacteria using functional magnetic nanoparticles: a mechanistic study of demulsification performance[J]. Energy & Fuels, 2017, 31(3): 3295-3304. |
17 | Low L E, Tey B T, Ong B H, et al. Palm olein-in-water Pickering emulsion stabilized by Fe3O4-cellulose nanocrystal nanocomposites and their responses to pH[J]. Carbohydrate Polymers, 2017, 155: 391-399. |
18 | Jia K L, Guo Y S, Yu Y, et al. pH-responsive Pickering emulsions stabilized solely by surface-inactive nanoparticles via an unconventional stabilization mechanism[J]. Soft Matter, 2021, 17(12): 3346-3357. |
19 | Mendiratta S, Ali A A A, Hejazi S H, et al. Dual stimuli-responsive Pickering emulsions from novel magnetic hydroxyapatite nanoparticles and their characterization using a microfluidic platform[J]. Langmuir, 2021, 37(4): 1353-1364. |
20 | Gálvez-Vergara A, Fresco-Cala B, Cárdenas S. Switchable Pickering emulsions stabilized by polystyrene-modified magnetic nanoparticles[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 606: 125462. |
21 | Lan Q, Liu C, Yang F, et al. Synthesis of bilayer oleic acid-coated Fe3O4 nanoparticles and their application in pH-responsive Pickering emulsions[J]. Journal of Colloid and Interface Science, 2007, 310(1): 260-269. |
22 | Fu E Y, Chen K M, Wang Q L, et al. Formation and stabilization of Pickering emulsions using salt-sensitive core-shell cationic nanoparticles[J]. Journal of Materials Science, 2021, 56(25): 14019-14034. |
23 | Xu J J, Xu W, Sun D Y, et al. The stepwise organization of nanoparticles into a Pickering emulsion[J]. Soft Matter, 2021, 17(7): 1796-1801. |
24 | Fu C, Liu N. Rheology and stability of nanoparticle-stabilized CO2 foam under reservoir conditions[J]. Journal of Petroleum Science and Engineering, 2021, 196: 107671. |
25 | Maurya N K, Mandal A. Investigation of synergistic effect of nanoparticle and surfactant in macro emulsion based EOR application in oil reservoirs[J]. Chemical Engineering Research and Design, 2018, 132: 370-384. |
26 | Heard J, Harvey E, Johnson B B, et al. The effect of filamentous bacteria on foam production and stability[J]. Colloids and Surfaces B: Biointerfaces, 2008, 63(1): 21-26. |
27 | Ashrafizadeh S N, Motaee E, Hoshyargar V. Emulsification of heavy crude oil in water by natural surfactants[J]. Journal of Petroleum Science and Engineering, 2012, 86: 137-143. |
28 | 李明远, 吴肇亮. 石油乳状液[M]. 北京: 科学出版社, 2009. |
Li M Y, Wu Z L. Petroleum Emulsion[M]. Beijing: Science Press, 2009. | |
29 | 刘浩民, 邹林, 耿雷, 等. 石油磺酸盐-乙二胺复合驱油体系研究[J]. 精细石油化工进展, 2016, 17(3): 35-38. |
Liu H M, Zou L, Geng L, et al. Study on a combined petroleum sulfonate-ethanediamine flooding system[J]. Advances in Fine Petrochemicals, 2016, 17(3): 35-38. | |
30 | 刘岩, 王新龙. CO3O4纳米颗粒稳定的Pickering乳液的稳定性研究[C]//2013中国化工学会年会论文集. 南京, 2013: 222. |
Liu Y, Wang X L. Stability study of Pickering emulsion stabilized by CO3O4 nanoparticles[C]//Proceedings of the 2013 Annual Meeting of the Chinese Chemical Society. Nanjing, 2013: 222. | |
31 | 孙娜娜. 塔河稠油乳化降黏及微波化学破乳研究[D]. 成都: 西南石油大学, 2016. |
Sun N N. Research on the emulsification of Tahe heavy crude oil and its' demulsification by microwave chemical method[D]. Chengdu: Southwest Petroleum University, 2016. | |
32 | Giovanna B, Karim G, Craig W C. Mesoscale model for ostwald ripening of catalyst nanoparticles[J]. Journal of The Electrochemical Society, 2021, 168 (5): 054515 |
33 | 陈小榆. 工程流体力学[M]. 北京: 石油工业出版社, 2015. |
Chen X Y. Engineering Fluid Mechanics[M]. Beijing: Petroleum Industry Press, 2015. | |
34 | 蒋华义. 输油管道设计与管理[M]. 北京: 石油工业出版社, 2010. |
Jiang H Y. Design and Management of Oil Pipeline[M]. Beijing: Petroleum Industry Press, 2010. |
[1] | 郭骐瑞, 任丽媛, 陈康, 黄翔宇, 马卫华, 肖乐勤, 周伟良. 用于HTPB推进剂浆料的静态混合管数值模拟[J]. 化工学报, 2024, 75(S1): 206-216. |
[2] | 谢慧慧, 姜佳鑫, 王鑫, 李正, 郭鑫, 吕欣然, 王凌云, 刘杨. 深共晶溶剂聚合物包覆膜传输分离铂、钯的研究[J]. 化工学报, 2024, 75(S1): 235-243. |
[3] | 蒋晓煜, 雒焕婷, 洪瑞, 杜文静. 调制差示扫描量热法测定二元醇型冷却液的比热容[J]. 化工学报, 2024, 75(S1): 40-46. |
[4] | 杜得辉, 冯威, 张江辉, 项燕龙, 乔高攀, 李蔚. 微型翅片疏水复合强化管管内流动沸腾换热预测模型[J]. 化工学报, 2024, 75(S1): 95-107. |
[5] | 郭鑫, 李文静, 乔俊飞. 基于自组织模块化神经网络的污水处理过程出水参数预测[J]. 化工学报, 2024, 75(9): 3242-3254. |
[6] | 李季, 王建林, 何睿, 周新杰, 王雯, 赵利强. 基于DBSVDD-RVR的多模态间歇过程质量变量在线软测量[J]. 化工学报, 2024, 75(9): 3231-3241. |
[7] | 赵武灵, 满奕. 基于变分编码器的纳米纤维素分子结构预测模型框架研究[J]. 化工学报, 2024, 75(9): 3221-3230. |
[8] | 丁家琦, 刘海涛, 赵普, 朱香凝, 王晓放, 谢蓉. 煤炭超临界水制氢反应器内多相流场智能滚动预测研究[J]. 化工学报, 2024, 75(8): 2886-2896. |
[9] | 杜海燕, 朱凯, 游峰, 王金凤, 赵一帆, 张楠, 李英. 用于应变传感器的自愈合抗冻离子水凝胶[J]. 化工学报, 2024, 75(7): 2709-2722. |
[10] | 黎宏陶, 王振雷, 王昕. 基于即时学习的改进条件高斯回归软测量[J]. 化工学报, 2024, 75(6): 2299-2312. |
[11] | 张晗, 张淑宁, 刘珂, 邓冠龙. 基于慢特征分析与最小二乘支持向量回归集成的草酸钴合成过程粒度预报[J]. 化工学报, 2024, 75(6): 2313-2321. |
[12] | 张文焱, 刘浩, 宋伟龙, 赵频, 王新华. 不同粒径UiO-66混掺改性TFN-FO膜的构建及性能评价[J]. 化工学报, 2024, 75(5): 1920-1928. |
[13] | 张文惠, 唐茹意, 崔希利, 邢华斌. 羧酸端基Y型全氟聚醚的氟谱解析及结构表征[J]. 化工学报, 2024, 75(4): 1718-1723. |
[14] | 申州洋, 薛康, 刘青, 史成香, 邹吉军, 张香文, 潘伦. 吸热型纳米流体燃料研究进展[J]. 化工学报, 2024, 75(4): 1167-1182. |
[15] | 肖扬可, 常印龙, 李平, 王文俊, 李伯耿, 刘平伟. 动态化学交联聚烯烃类弹性体研究进展[J]. 化工学报, 2024, 75(4): 1394-1413. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 55
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 105
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||