化工学报 ›› 2025, Vol. 76 ›› Issue (2): 846-857.DOI: 10.11949/0438-1157.20240928
• 材料化学工程与纳米技术 • 上一篇
肖志华1,2(), 房浩楠2, 郑方植2, 孙冬2, 陶丽达2, 李永峰2(
), 徐春明1,2, 马新龙2(
)
收稿日期:
2024-08-14
修回日期:
2024-10-28
出版日期:
2025-03-25
发布日期:
2025-03-10
通讯作者:
李永峰,马新龙
作者简介:
肖志华(1991—),男,讲师,xzh@cup.edu.cn
基金资助:
Zhihua XIAO1,2(), Haonan FANG2, Fangzhi ZHENG2, Dong SUN2, Lida TAO2, Yongfeng LI2(
), Chunming XU1,2, Xinlong MA2(
)
Received:
2024-08-14
Revised:
2024-10-28
Online:
2025-03-25
Published:
2025-03-10
Contact:
Yongfeng LI, Xinlong MA
摘要:
石油沥青具有价格低廉、芳香性高、易缩聚等优点,是制备高附加性硬炭负极材料的理想前体。然而,直接碳化沥青的过程中芳香烃和烷烃易发生缩聚和重排,使其石墨化程度高、层间距小、缺陷位点少,导致储钠性能差。因此,提出在沥青预氧化过程中引入NaCl助氧剂,促进沥青的氧化交联反应,抑制沥青分子结构重排,降低硬炭的石墨化度,增大层间距,引入丰富的CO基团和闭孔结构,进而提升沥青基硬炭负极的储钠性能。在30 和300 mA·g-1下沥青基硬炭负极的比容量高达285.0和145.0 mAh·g-1,首次库仑效率为96.3%。同时,在30 mA·g-1下的平台容量为173.2 mAh·g-1,占总容量的61.4%。此外,该负极在0.1 A·g-1下循环200圈的容量保持率高达93.94%,表现出优异的循环稳定性能。
中图分类号:
肖志华, 房浩楠, 郑方植, 孙冬, 陶丽达, 李永峰, 徐春明, 马新龙. NaCl辅助构筑高性能沥青基硬炭负极材料[J]. 化工学报, 2025, 76(2): 846-857.
Zhihua XIAO, Haonan FANG, Fangzhi ZHENG, Dong SUN, Lida TAO, Yongfeng LI, Chunming XU, Xinlong MA. NaCl assisted constructing high-performance pitch-based hard carbon anode material[J]. CIESC Journal, 2025, 76(2): 846-857.
图1 OHC-NaCl的制备示意图(a);HC,OHC和OHC-NaCl三种硬炭材料前体的FTIR谱图(b)和XPS总图(c);OHC-NaCl硬炭前体的C 1s分峰谱图(d);HC,OHC和OHC-NaCl的XRD谱图(e)
Fig.1 Preparation diagram of OHC-NaCl (a); FTIR (b) and XPS (c) patterns of HC, OHC and OHC-NaCl precursors; C 1s spectra of OHC-NaCl precursor (d); XRD patterns of HC, OHC and OHC-NaCl (e)
图2 HC [(a), (b)],OHC[(c), (d)]和OHC-NaCl[(e), (f)]的SEM和TEM图
Fig.2 The corresponding SEM and TEM images of HC [(a), (b)], OHC [(c), (d)] and OHC-NaCl [(e), (f)]
图3 HC,OHC和OHC-NaCl的拉曼图(a);OHC(b)和OHC-NaCl(c)的拉曼分峰图;N2吸脱附曲线(d)及孔径分布(e);XPS总图(f);OHC(g)和OHC-NaCl(h)的O 1s XPS分峰图及其CO,C—O和O—CO含量占比(i)
Fig.3 Raman patterns of HC, OHC and OHC-NaCl (a); The peak fitting of Raman spectra for OHC (b) and OHC-NaCl (c); N2 adsorption/desorption curves (d) and the corresponding pore-size distribution curves (e); Total XPS survey (f); O 1s spectra of OHC (g) and OHC-NaCl (h), and the corresponding CO, C—O and O—CO percentage (i)
图4 HC、OHC和OHC-NaCl三种硬炭负极在不同电流密度下的倍率性能(a),在30 mA·g-1下的充放电曲线(b)及其对应的平台容量和斜坡容量(c);HC(d),OHC(e)和OHC-NaCl(f)在0.1 mV·s-1下的CV曲线;三种电极在100 mA·g-1下循环100圈的容量保持性能和库仑效率曲线(g),OHC-NaCl在70 mA·g-1下循环200圈的容量保持性能和库仑效率曲线(h);三种电极的电化学阻抗谱图(i)
Fig.4 Rate performance at different current densities (a), charge and discharge profiles at 30 mA·g-1 (b),and the corresponding plateau capacity and slopping capacity (c) of HC, OHC and OHC-NaCl electrodes; CV curves of HC (d), OHC (e) and OHC-NaCl(f) at 0.1 mV·s-1; Cycling performance and CE at 100 mA·g-1 (g) and 70 mA·g-1(h), respectively; (i) Impedance patterns of HC, OHC and OHC-NaCl
图6 NVP//OHC-NaCl全电池的电化学性能:(a)不同电流密度下的倍率性能;(b)充放电曲线;(c)0.4 C下的循环性能(插图为循环100圈后点亮的LEDs灯图);(d)循环不同圈数的充放电曲线
Fig.6 The electrochemical performance of NVP//OHC-NaCl full cell: (a) Rate performance at various current densities; (b) Charge and discharge profiles within 0.1—2.0 C; (c) Cycling performance for 100 cycles (the inset is the lighted LEDs); (d) Charge and discharge profiles at different cycles at 1st, 20th, 50th, 80th and 100th
1 | Wu J R, Yang T, Song Y, et al. Preparation of disordered carbon for alkali metal-ion (lithium, sodium, and potassium) batteries by pitch molecular modification: a review[J]. Carbon, 2024, 221: 118902. |
2 | Wang H H, Niu H Z, Shu K W, et al. Regulating the “core-shell” microstructure of hard carbon through sodium hydroxide activation for achieving high-capacity SIBs anode[J]. Journal of Materials Science & Technology, 2025, 209: 161-170. |
3 | He Q S, Chen H X, Chen X, et al. Tea-derived sustainable materials[J]. Advanced Functional Materials, 2024, 34(11): 2310226. |
4 | Li Z, Zhang Y, Zhou K, et al. A safe organic/inorganic composite anode for sodium-ion batteries[J]. Advanced Energy Materials, 2024, 14(15): 2303786. |
5 | Zhang X, Wang K X, Qiu J H, et al. Low cobalt single atoms loading on N-doped carbon for high Na storage performance[J]. Nano Energy, 2024, 129: 110018. |
6 | Li Y M, Hu Y S, Li H, et al. A superior low-cost amorphous carbon anode made from pitch and lignin for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2016, 4(1): 96-104. |
7 | Song M H, Hu Z W, Yuan C H, et al. Locally curved surface with CoN4 sites enables hard carbon with superior sodium-ion storage performances at -40℃[J]. Advanced Energy Materials, 2024, 14(23): 2304537. |
8 | He J L, Du J T, Feng C M, et al. S/O Co-doped honeycomb-like porous carbon nanosheets with ultra-high edge defects for high-performance sodium storage[J]. Carbon, 2024, 219: 118825. |
9 | Li Y M, Mu L Q, Hu Y S, et al. Pitch-derived amorphous carbon as high performance anode for sodium-ion batteries[J]. Energy Storage Materials, 2016, 2: 139-145. |
10 | Zhang H, Hasa I, Passerini S. Sodium-ion batteries: beyond insertion for Na-ion batteries: nanostructured alloying and conversion anode materials [J]. Advanced Energy Materials, 2018, 8(17): 1870082. |
11 | Shuang W, Wang Y, Wu Y J, et al. An advanced anode composed of layered single-crystal metal-organic framework material for ultra-long cycle-life sodium-ion batteries[J]. Advanced Functional Materials, 2024: 2408962. |
12 | Li Z W, Han M S, Wang J L, et al. Superparamagnetic Fe conversion induces MoS2 fast ion transport in wide-temperature-range sodium-ion batteries[J]. Advanced Functional Materials, 2024: 2404263. |
13 | Lv Z R, Zhao C D, Xie M, et al. 1D insertion chains induced small-polaron collapse in MoS2 2D layers toward fast-charging sodium-ion batteries[J]. Advanced Materials, 2024, 36(6): e2309637. |
14 | Gong Y T, Li Y, Li Y, et al. Metal selenides anode materials for sodium ion batteries: synthesis, modification, and application[J]. Small, 2023, 19(4): e2206194. |
15 | Chen D L, Xu Y K, Lu J G, et al. Intercalation-induced localized conversion reaction in h-CuSe for ultrafast-rechargeable and long-cycling sodium metal battery[J]. Advanced Materials, 2024, 36(32): e2404640. |
16 | Zheng J Q, Wu Y L, Guan C H, et al. Lignin-derived hard carbon anode with a robust solid electrolyte interphase for boosted sodium storage performance[J]. Carbon Energy, 2024, 6(9): e538. |
17 | Dey S C, Worfolk B, Lower L, et al. Phenolic resin derived hard carbon anode for sodium-ion batteries: a review[J]. ACS Energy Letters, 2024, 9(6): 2590-2614. |
18 | Hyun J C, Jin H M, Kwak J H, et al. Design guidelines for a high-performance hard carbon anode in sodium ion batteries[J]. Energy & Environmental Science, 2024, 17(8): 2856-2863. |
19 | He X X, Zhao J H, Lai W H, et al. Soft-carbon-coated, free-standing, low-defect, hard-carbon anode to achieve a 94% initial coulombic efficiency for sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(37): 44358-44368. |
20 | Ghani U, Iqbal N, Aboalhassan A A, et al. One-step sonochemical fabrication of biomass-derived porous hard carbons; towards tuned-surface anodes of sodium-ion batteries[J]. Journal of Colloid and Interface Science, 2022, 611: 578-587. |
21 | Guo H, Sun K, Lu Y X, et al. Hard carbons derived from pine nut shells as anode materials for Na-ion batteries[J]. Chinese Physics B, 2019, 28(6): 068203. |
22 | Gao X Y, Sun Y K, He B W, et al. A bifuctional presodiation reagent for hard carbon anodes enhancing performance of sodium-ion batteries[J]. ACS Energy Letters, 2024, 9(3): 1141-1147. |
23 | Aniskevich Y, Yu J H, Kim J Y, et al. Tracking sodium cluster dynamics in hard carbon with a low specific surface area for sodium-ion batteries[J]. Advanced Energy Materials, 2024, 14(18): 2304300. |
24 | Li Y Q, Lu Y X, Meng Q S, et al. Regulating pore structure of hierarchical porous waste cork-derived hard carbon anode for enhanced Na storage performance[J]. Advanced Energy Materials, 2019, 9(48): 1902852. |
25 | Wan H R, Shen X R, Jiang H, et al. Biomass-derived N/S dual-doped porous hard-carbon as high-capacity anodes for lithium/sodium ions batteries[J]. Energy, 2021, 231: 121102. |
26 | Beda A, Taberna P L, Simon P, et al. Hard carbons derived from green phenolic resins for Na-ion batteries[J]. Carbon, 2018, 139: 248-257. |
27 | Liu Z G, Zhao J H, Yao H, et al. P-doped spherical hard carbon with high initial coulombic efficiency and enhanced capacity for sodium ion batteries[J]. Chemical Science, 2024, 15(22): 8478-8487. |
28 | Zhao Y F, Zheng J, Zhao Y M, et al. Designing hard carbon microsphere structure via halogenation amination and oxidative polymerization reactions for sodium ion insertion mechanism investigation[J]. Journal of Colloid and Interface Science, 2024, 668: 202-212. |
29 | Song Z Q, Di M X, Zhang X Y, et al. Nanoconfined strategy optimizing hard carbon for robust sodium storage[J]. Advanced Energy Materials, 2024, 14(43): 2401763. |
30 | Liu Z T, Hsieh T H, Huang C W, et al. Temperature effects on hard carbon derived from sawdust as anode materials for sodium ion batteries[J]. Journal of the Taiwan Institute of Chemical Engineers, 2024, 154: 104889. |
31 | Cao L Y, Hui W L, Xu Z W, et al. Rape seed shuck derived-lamellar hard carbon as anodes for sodium-ion batteries[J]. Journal of Alloys and Compounds, 2017, 695: 632-637. |
32 | Wang H, Liu S T, Lei C, et al. P-doped hard carbon material for anode of sodium ion battery was prepared by using polyphosphoric acid modified petroleum asphalt as precursor[J]. Electrochimica Acta, 2024, 477: 143812. |
33 | Wang Y L, Chen X H, Ding M J, et al. Oxidation of coal pitch by H2O2 under mild conditions[J]. Energy & Fuels, 2018, 32(1): 796-800. |
34 | Su M Y, Zhang K Y, Ang E H, et al. Structural regulation of coal-derived hard carbon anode for sodium-ion batteries via pre-oxidation[J]. Rare Metals, 2024, 43(6): 2585-2596. |
35 | Ma R, Chen Y X, Li Q, et al. Oxygen-driven closing pore formation in coal-based hard carbon for low-voltage rapid sodium storage[J]. Chemical Engineering Journal, 2024, 493: 152389. |
36 | Daher N, Huo D, Davoisne C, et al. Impact of preoxidation treatments on performances of pitch-based hard carbons for sodium-ion batteries[J]. ACS Applied Energy Materials, 2020, 3(7): 6501-6510. |
37 | Chen H, Sun N, Wang Y X, et al. One stone two birds: pitch assisted microcrystalline regulation and defect engineering in coal-based carbon anodes for sodium-ion batteries[J]. Energy Storage Materials, 2023, 56: 532-541. |
38 | Kang M M, Zhao H Q, Ye J Q, et al. Adsorption dominant sodium storage in three-dimensional coal-based graphite microcrystal/graphene composites[J]. Journal of Materials Chemistry A, 2019, 7(13): 7565-7572. |
39 | Sun D, Zhao L, Sun P L, et al. Rationally regulating closed pore structures by pitch coating to boost sodium storage performance of hard carbon in low-voltage platforms[J]. Advanced Functional Materials, 2024, 34(40): 2403642. |
40 | Wang J, Yan L, Liu B H, et al. A solvothermal pre-oxidation strategy converting pitch from soft carbon to hard carbon for enhanced sodium storage[J]. Chinese Chemical Letters, 2023, 34(4): 107526. |
41 | Xu R, Yi Z L, Song M X, et al. Boosting sodium storage performance of hard carbons by regulating oxygen functionalities of the cross-linked asphalt precursor[J]. Carbon, 2023, 206: 94-104. |
42 | Zhao G X, Xu T Q, Zhao Y M, et al. Conversion of aliphatic structure-rich coal maceral into high-capacity hard carbons for sodium-ion batteries[J]. Energy Storage Materials, 2024, 67: 103282. |
43 | Xie L J, Tang C, Bi Z H, et al. Hard carbon anodes for next-generation Li-ion batteries: review and perspective[J]. Advanced Energy Materials, 2021, 11(38): 2101650. |
44 | Zhao X B, Shi P, Wang H B, et al. Unlocking plateau capacity with versatile precursor crosslinking for carbon anodes in Na-ion batteries[J]. Energy Storage Materials, 2024, 70: 103543. |
45 | Li B F, Xiao Z H, Cao Y T, et al. Mesopore-dominated porous carbon derived from confinement-region activation strategy toward high capacitive desalination performance[J]. Fuel, 2023, 352: 129112. |
46 | Xiao Z H, Zhao L, Yu Z Q, et al. Multilayered graphene endowing superior dispersibility for excellent low temperature performance in lithium-ion capacitor as both anode and cathode[J]. Chemical Engineering Journal, 2022, 429: 132358. |
47 | Tang Z, Zhang R, Wang H Y, et al. Revealing the closed pore formation of waste wood-derived hard carbon for advanced sodium-ion battery[J]. Nature Communications, 2023, 14(1): 6024. |
48 | Yang Y, Du H S, Wang A C, et al. Excellent capacitive storage performance of N-doped porous carbon derived from the orientation-guidance coupled with in situ activation methodology[J]. Journal of Colloid and Interface Science, 2024, 673: 657-668. |
49 | Sadezky A, Muckenhuber H, Grothe H, et al. Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information[J]. Carbon, 2005, 43(8): 1731-1742. |
50 | Xu J, Chen B W, Hu B Q, et al. 3D connected porous structure hard carbon derived from paulownia xylem for high rate performance sodium ion battery anode[J]. Journal of Energy Storage, 2024, 81: 110306. |
51 | Huang G, Zhang H, Gao F, et al. Overview of hard carbon anode for sodium-ion batteries: influencing factors and strategies to extend slope and plateau regions[J]. Carbon, 2024, 228: 119354. |
[1] | 王舒英, 左涛, 石志伟, 范小明, 张卫新. 阳离子交换树脂基介孔石墨化碳合成与储钠性能[J]. 化工学报, 2024, 75(9): 3338-3347. |
[2] | 江洋, 彭长宏, 陈伟, 周豪, 马忠彬, 李洪博, 邱在容, 张国鹏, 周康根. 废旧磷酸铁锂粉料综合回收中试研究[J]. 化工学报, 2024, 75(6): 2353-2361. |
[3] | 吴希, 孙博, 刘银东, 齐传磊, 陈凯毅, 王路海, 许崇, 李永峰. 钠离子电池沥青基碳负极材料制备技术研究进展[J]. 化工学报, 2024, 75(4): 1270-1283. |
[4] | 吴吉昊, 陈涛, 刘思宇, 刘梦柯, 杨卷. 双功能活化制备沥青基硬炭用于钠离子电池负极[J]. 化工学报, 2024, 75(3): 1019-1027. |
[5] | 李靖, 沈聪浩, 郭大亮, 李静, 沙力争, 童欣. 木质素基碳纤维复合材料在储能元件中的应用研究进展[J]. 化工学报, 2023, 74(6): 2322-2334. |
[6] | 钟磊, 邱学青, 张文礼. 木质素衍生炭在碱金属离子电池负极中的研究进展[J]. 化工学报, 2022, 73(8): 3369-3380. |
[7] | 刘宇喆, 李成才, 李琳, 王少辉, 刘培慧, 王同华. 活性炭的微结构与超级电容器性能的构效关系[J]. 化工学报, 2022, 73(4): 1807-1816. |
[8] | 郭行, 韩纹莉, 董晓玲, 李文翠. 调控炭化过程优化煤基硬炭负极储钠性能[J]. 化工学报, 2022, 73(4): 1794-1806. |
[9] | 宋刘斌, 王怡萱, 匡尹杰, 夏宇博, 肖忠良. 钠离子电池中关键材料及技术的发展与前景[J]. 化工学报, 2022, 73(11): 4814-4825. |
[10] | 任博阳, 车晓刚, 刘思宇, 王满, 韩兴华, 董婷, 杨卷. 熔融盐法制备煤基多孔碳纳米片用于钠离子电池负极[J]. 化工学报, 2022, 73(10): 4745-4753. |
[11] | 张毅舟, 吴籼虹, 王治宇, 邱介山. 镶嵌单层MoS2的生物质基硼氮共掺杂碳纳米片合成与储钠性能[J]. 化工学报, 2021, 72(12): 6371-6379. |
[12] | 王博阳, 夏吉利, 董晓玲, 郭行, 李文翠. 不同变质程度煤衍生硬炭的储钠行为研究[J]. 化工学报, 2021, 72(11): 5738-5750. |
[13] | 冯雪廷, 矫庆泽, 李群, 冯彩虹, 赵芸, 黎汉生, 李海军, 蔡惠群. NiCo2S4/N,S-rGO纳米复合材料的制备和电化学储钠性能[J]. 化工学报, 2020, 71(9): 4314-4324. |
[14] | 夏争争, 刘加亮, 牛建杰, 胡涵, 赵青山, 吴明铂. 高分散SiO2/石油沥青基多孔碳用于锂离子电池负极[J]. 化工学报, 2020, 71(6): 2752-2759. |
[15] | 胡涛, 张熊, 安亚斌, 李晨, 马衍伟. 锂离子电容器碳正极材料的研究进展[J]. 化工学报, 2020, 71(6): 2530-2546. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 260
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 165
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||