化工学报 ›› 2024, Vol. 75 ›› Issue (6): 2353-2361.DOI: 10.11949/0438-1157.20240004
江洋1(), 彭长宏1(
), 陈伟1, 周豪1, 马忠彬2, 李洪博2, 邱在容1, 张国鹏1, 周康根1
收稿日期:
2024-01-03
修回日期:
2024-04-12
出版日期:
2024-06-25
发布日期:
2024-07-03
通讯作者:
彭长宏
作者简介:
江洋(1996—),男,博士研究生,jycsu19@163.com
基金资助:
Yang JIANG1(), Changhong PENG1(
), Wei CHEN1, Hao ZHOU1, Zhongbin MA2, Hongbo LI2, Zairong QIU1, Guopeng ZHANG1, Kanggen ZHOU1
Received:
2024-01-03
Revised:
2024-04-12
Online:
2024-06-25
Published:
2024-07-03
Contact:
Changhong PENG
摘要:
为研究废旧磷酸铁锂粉料(LFP/C)经高温煅烧-中和沉淀除杂后实现电池级磷酸铁和碳酸锂综合回收的效能,以氟/铝含量较高的废旧LFP/C为对象,构建了年处理规模为500 t的中试平台,从工艺稳定性、产品性能表征、初步经济评估及二次废渣再利用等角度进行研究。结果显示,通过此法可实现高于85.63%铝去除和94.70%钛去除,除铝液中铁铝质量比由203增加至1077,为废旧LFP/C综合回收奠定基础。所制备的FePO4及Li2CO3符合电池级标准,再生的LFP/C正极材料在0.1 C条件下首次充放电库仑效率可达95.2%,1 C条件下经过250圈循环后容量保持率达97.1%,展现出较好的电化学性能。此外,经济评估进一步凸显了该工艺在经济和环境效益方面的优越性。
中图分类号:
江洋, 彭长宏, 陈伟, 周豪, 马忠彬, 李洪博, 邱在容, 张国鹏, 周康根. 废旧磷酸铁锂粉料综合回收中试研究[J]. 化工学报, 2024, 75(6): 2353-2361.
Yang JIANG, Changhong PENG, Wei CHEN, Hao ZHOU, Zhongbin MA, Hongbo LI, Zairong QIU, Guopeng ZHANG, Kanggen ZHOU. Pilot study on comprehensive recycling of waste lithium iron phosphate powder[J]. CIESC Journal, 2024, 75(6): 2353-2361.
反应步骤 | 方程式 |
---|---|
煅烧脱氟 | |
浸出过程 | |
中和除杂 | |
沉磷酸铁 | |
深度除杂 | |
回收锂 |
表1 工艺各步骤涉及的反应方程式
Table 1 The reaction equations involved in each step of the process
反应步骤 | 方程式 |
---|---|
煅烧脱氟 | |
浸出过程 | |
中和除杂 | |
沉磷酸铁 | |
深度除杂 | |
回收锂 |
项目 | 浸出率/% | ||||||||
---|---|---|---|---|---|---|---|---|---|
Fe | P | Li | Al | F | Ti | Mn | Ni | Co | |
煅烧前 | 97.7 | 96.5 | 99.8 | 83.1 | 75.2 | 67.3 | 95.4 | 95.8 | 75.9 |
煅烧后 | 90.4 | 87.8 | 97.6 | 42.3 | 0.03 | 57.5 | 94.8 | 93.7 | 63.3 |
表2 废旧LFP/C煅烧前后有价元素浸出率的变化
Table 2 Variations in leaching rates of valuable elements in spent LFP/C before and after calcination
项目 | 浸出率/% | ||||||||
---|---|---|---|---|---|---|---|---|---|
Fe | P | Li | Al | F | Ti | Mn | Ni | Co | |
煅烧前 | 97.7 | 96.5 | 99.8 | 83.1 | 75.2 | 67.3 | 95.4 | 95.8 | 75.9 |
煅烧后 | 90.4 | 87.8 | 97.6 | 42.3 | 0.03 | 57.5 | 94.8 | 93.7 | 63.3 |
元素 | 浸出液中浓度 | 净化液中浓度 | 沉降率/% |
---|---|---|---|
Fe | 77 g/L | 82.9 g/L | 10.67 |
P | 41.8 g/L | 38.4 g/L | 13.22 |
Li | 10.7 g/L | 12.4 g/L | 0.03 |
Al | 380 mg/L | 77 mg/L | 85.63 |
Ti | 315 mg/L | 22 mg/L | 94.70 |
Mn | 82 mg/L | 80 mg/L | — |
Ni | 55 mg/L | 12 mg/L | — |
Co | 20 mg/L | 14 mg/L | — |
表3 除铝后溶液中离子浓度变化
Table 3 Alterations in ionic concentrations in solution upon aluminum removal
元素 | 浸出液中浓度 | 净化液中浓度 | 沉降率/% |
---|---|---|---|
Fe | 77 g/L | 82.9 g/L | 10.67 |
P | 41.8 g/L | 38.4 g/L | 13.22 |
Li | 10.7 g/L | 12.4 g/L | 0.03 |
Al | 380 mg/L | 77 mg/L | 85.63 |
Ti | 315 mg/L | 22 mg/L | 94.70 |
Mn | 82 mg/L | 80 mg/L | — |
Ni | 55 mg/L | 12 mg/L | — |
Co | 20 mg/L | 14 mg/L | — |
元素 | 含量/% |
---|---|
Fe | 36.02 |
P | 20.31 |
Li | 0.004 |
Al | 0.011 |
Ti | 0.002 |
Mn | 0.003 |
Ni | 0.002 |
Cu | 0 |
Co | 0 |
Ca | 0 |
F | 0 |
表4 电池用磷酸铁产品组成成分
Table 4 Chemical analysis of battery-grade iron phosphate products
元素 | 含量/% |
---|---|
Fe | 36.02 |
P | 20.31 |
Li | 0.004 |
Al | 0.011 |
Ti | 0.002 |
Mn | 0.003 |
Ni | 0.002 |
Cu | 0 |
Co | 0 |
Ca | 0 |
F | 0 |
元素 | 含量/% |
---|---|
Fe | 36.18 |
P | 20.48 |
Li | 0.005 |
Al | 0.071 |
Ti | 0.026 |
Mn | 0.003 |
Ni | 0.001 |
Cu | 0 |
Co | 0 |
Ca | 0 |
F | 0 |
表5 陶瓷用磷酸铁成分分析
Table 5 Chemical analysis of FePO4 for ceramic applications
元素 | 含量/% |
---|---|
Fe | 36.18 |
P | 20.48 |
Li | 0.005 |
Al | 0.071 |
Ti | 0.026 |
Mn | 0.003 |
Ni | 0.001 |
Cu | 0 |
Co | 0 |
Ca | 0 |
F | 0 |
项目 | 投加或产出/kg | ||
---|---|---|---|
Fe | P | Li | |
废旧LFP/C粉料 | -638.6 | -390.6 | -87.8 |
浓磷酸 | 0 | -51.5 | 0 |
工业铁粉 | -90.3 | 0 | 0 |
磷酸二氢钠 | 0 | -29.1 | 0 |
副产亚铁 | -55.5 | 0 | 0 |
磷酸铁 | +751.9 | +416.2 | +0.06 |
碳酸锂 | 0 | 0 | +71.8 |
磷酸锂 | 0 | +15.5 | +10.4 |
难溶渣 | +16.9 | +13.7 | +0.96 |
二浸渣 | +4.8 | +9.6 | +0.43 |
提锂液 | 0 | 0 | +0.3 |
洗涤水(系统循环) | +5.7 | +9.8 | +3.8 |
平衡率 | 99.35% | 98.64% | 99.94% |
表6 实验过程中各元素的平衡计算
Table 6 Balancing calculations of each element from the expending test
项目 | 投加或产出/kg | ||
---|---|---|---|
Fe | P | Li | |
废旧LFP/C粉料 | -638.6 | -390.6 | -87.8 |
浓磷酸 | 0 | -51.5 | 0 |
工业铁粉 | -90.3 | 0 | 0 |
磷酸二氢钠 | 0 | -29.1 | 0 |
副产亚铁 | -55.5 | 0 | 0 |
磷酸铁 | +751.9 | +416.2 | +0.06 |
碳酸锂 | 0 | 0 | +71.8 |
磷酸锂 | 0 | +15.5 | +10.4 |
难溶渣 | +16.9 | +13.7 | +0.96 |
二浸渣 | +4.8 | +9.6 | +0.43 |
提锂液 | 0 | 0 | +0.3 |
洗涤水(系统循环) | +5.7 | +9.8 | +3.8 |
平衡率 | 99.35% | 98.64% | 99.94% |
序号 | 消耗/产生 | 参考价格 | 消耗/产出量 | 费用/CNY | |
---|---|---|---|---|---|
17 | 总利润 | +14013 CNY | |||
1 | 废旧LFP/C粉料 | 13000 CNY/t | -2.0 t | -26000 | |
2 | 硫酸 | 200 CNY/t | -2.0 t | -400 | |
3 | 磷酸 | 6800 CNY/t | -170 kg | -1156 | |
4 | 工业铁粉 | 2500 CNY/t | -110 kg | -275 | |
5 | 自来水 | 4.1 CNY/m3 | -10 m3 | -41 | |
6 | 磷酸二氢钠 | 5800 CNY/t | -150 kg | -870 | |
7 | 双氧水 | 1250 CNY/m3 | -1.2 m3 | -1500 | |
8 | 氢氧化钠 | 3500 CNY/t | -3.2 t | -11200 | |
9 | 碳酸钠 | 2950 CNY/t | -750 kg | -2212 | |
10 | 副产亚铁 | 400 CNY/t | -270 kg | -108 | |
11 | 一般固废处理 | 300 CNY/t | 1.0 t | -300 | |
12 | 危废处理 | 3000 CNY/t | 300 kg | -900 | |
13 | 电池用磷酸铁 | 11000 CNY/t | 1.20 t | +13200 | |
14 | 陶瓷用磷酸铁 | 6000 CNY/t | 840 kg | +5040 | |
15 | 电池级碳酸锂 | 93000 CNY/t | 385 kg | +35805 | |
16 | 磷酸锂 | 85000 CNY/t | 58 kg | +4930 |
表7 回收2.0 t废旧LFP/C的投入与产出量
Table 7 The input and output for processing 2.0 t of spent LFP/C
序号 | 消耗/产生 | 参考价格 | 消耗/产出量 | 费用/CNY | |
---|---|---|---|---|---|
17 | 总利润 | +14013 CNY | |||
1 | 废旧LFP/C粉料 | 13000 CNY/t | -2.0 t | -26000 | |
2 | 硫酸 | 200 CNY/t | -2.0 t | -400 | |
3 | 磷酸 | 6800 CNY/t | -170 kg | -1156 | |
4 | 工业铁粉 | 2500 CNY/t | -110 kg | -275 | |
5 | 自来水 | 4.1 CNY/m3 | -10 m3 | -41 | |
6 | 磷酸二氢钠 | 5800 CNY/t | -150 kg | -870 | |
7 | 双氧水 | 1250 CNY/m3 | -1.2 m3 | -1500 | |
8 | 氢氧化钠 | 3500 CNY/t | -3.2 t | -11200 | |
9 | 碳酸钠 | 2950 CNY/t | -750 kg | -2212 | |
10 | 副产亚铁 | 400 CNY/t | -270 kg | -108 | |
11 | 一般固废处理 | 300 CNY/t | 1.0 t | -300 | |
12 | 危废处理 | 3000 CNY/t | 300 kg | -900 | |
13 | 电池用磷酸铁 | 11000 CNY/t | 1.20 t | +13200 | |
14 | 陶瓷用磷酸铁 | 6000 CNY/t | 840 kg | +5040 | |
15 | 电池级碳酸锂 | 93000 CNY/t | 385 kg | +35805 | |
16 | 磷酸锂 | 85000 CNY/t | 58 kg | +4930 |
1 | Liu J H, Meng Z. Innovation model analysis of new energy vehicles: taking Toyota, Tesla and BYD as an example[J]. Procedia Engineering, 2017, 174: 965-972. |
2 | Li K P, Wang L. Optimal electric vehicle subsidy and pricing decisions with consideration of EV anxiety and EV preference in green and non-green consumers[J]. Transportation Research Part E: Logistics and Transportation Review, 2023, 170: 103010. |
3 | Ma J H, Hou Y M, Wang Z X, et al. Pricing strategy and coordination of automobile manufacturers based on government intervention and carbon emission reduction[J]. Energy Policy, 2021, 148: 111919. |
4 | Ji X Y, Wu T, Wang C, et al. A novel optimization method for high-penetration electric vehicles integration to electrical distribution network[J]. Frontiers in Energy Research, 2022, 10: 1012192. |
5 | Hou F Y, Yao F, Li Z. A torque-compensated fault-tolerant control method for electric vehicle traction motor with short-circuit fault[J]. Sustainability, 2022, 14(21): 13853. |
6 | Xu Z R, Gao L B, Liu Y J, et al. Review—recent developments in the doped LiFePO4 cathode materials for power lithium ion batteries[J]. Journal of the Electrochemical Society, 2016, 163(13): A2600-A2610. |
7 | Jyoti J, Singh B P, Tripathi S K. Recent advancements in development of different cathode materials for rechargeable lithium ion batteries[J]. Journal of Energy Storage, 2021, 43: 103112. |
8 | Wang W, Wu Y F. An overview of recycling and treatment of spent LiFePO4 batteries in China[J]. Resources, Conservation and Recycling, 2017, 127: 233-243. |
9 | Srivastava V, Rantala V, Mehdipour P, et al. A comprehensive review of the reclamation of resources from spent lithium-ion batteries[J]. Chemical Engineering Journal, 2023, 474: 145822. |
10 | Rautela R, Yadav B R, Kumar S. A review on technologies for recovery of metals from waste lithium-ion batteries[J]. Journal of Power Sources, 2023, 580: 233428. |
11 | Liang Q, Yue H F, Wang S F, et al. Recycling and crystal regeneration of commercial used LiFePO4 cathode materials[J]. Electrochimica Acta, 2020, 330: 135323. |
12 | Sun Q F, Li X L, Zhang H Z, et al. Resynthesizing LiFePO4/C materials from the recycled cathode via a green full-solid route[J]. Journal of Alloys and Compounds, 2020, 818: 153292. |
13 | Lan Y, Li X, Zhou G, et al. Direct regenerating cathode materials from spent lithium-ion batteries[J]. Advanced Science, 2024, 11(1): e2304425. |
14 | Yang T Z, Luo D, Yu A P, et al. Enabling future closed-loop recycling of spent lithium-ion batteries: direct cathode regeneration[J]. Advanced Materials, 2023, 35(36): e2203218. |
15 | Zhou F, Maxisch T, Ceder G. Configurational electronic entropy and the phase diagram of mixed-valence oxides: the case of LiFePO4 [J]. Physical Review Letters, 2006, 97(15): 155704. |
16 | 周弋惟, 陈卓, 徐建鸿. 湿法冶金回收废旧锂电池正极材料的研究进展[J]. 化工学报, 2022, 73(1): 85-96. |
Zhou Y W, Chen Z, Xu J H. Progress and prospect of recycling spent lithium battery cathode materials by hydrometallurgy[J]. CIESC Journal, 2022, 73(1): 85-96. | |
17 | 贺理珀, 孙淑英, 于建国. 退役锂离子电池中有价金属回收研究进展[J]. 化工学报, 2018, 69(1): 327-340. |
He L P, Sun S Y, Yu J G. Review on processes and technologies for recovery of valuable metals from spent lithium-ion batteries[J]. CIESC Journal, 2018, 69(1): 327-340. | |
18 | Zhang J L, Hu J T, Liu Y B, et al. Sustainable and facile method for the selective recovery of lithium from cathode scrap of spent LiFePO4 batteries[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(6): 5626-5631. |
19 | Yang Y X, Meng X Q, Cao H B, et al. Selective recovery of lithium from spent lithium iron phosphate batteries: a sustainable process[J]. Green Chemistry, 2018, 20(13): 3121-3133. |
20 | Yan T T, Zhong S W, Zhou M M, et al. High-efficiency method for recycling lithium from spent LiFePO4 cathode[J]. Nanotechnology Reviews, 2020, 9(1): 1586-1593. |
21 | Wang X J, Zheng S L, Zhang Y, et al. Sulfuric acid leaching of ball-milling activated FePO4 residue after lithium extraction from spent lithium iron phosphate cathode powder[J]. Waste Management, 2022, 153: 31-40. |
22 | Yu W H, Guo Y, Shang Z, et al. A review on comprehensive recycling of spent power lithium-ion battery in China[J]. eTransportation, 2022, 11: 100155. |
23 | 肖忠良, 尹碧露, 宋刘斌, 等. 废旧锂离子电池回收工艺研究进展及其安全风险分析[J]. 化工学报, 2023, 74(4): 1446-1456. |
Xiao Z L, Yin B L, Song L B, et al. Research progress of waste lithium-ion battery recycling process and its safety risk analysis[J]. CIESC Journal, 2023, 74(4): 1446-1456. | |
24 | Wu Y, Zhou K G, Zhang X K, et al. Al/Ti removal from the sulfate leachate of the spent LiFePO4/C powder through high-temperature co-precipitation triggered by Fe(Ⅲ)[J]. Industrial & Engineering Chemistry Research, 2023, 62(35): 13902-13910. |
25 | Wu Y, Zhou K G, Zhang X K, et al. Aluminum separation by sulfuric acid leaching-solvent extraction from Al-bearing LiFePO4/C powder for recycling of Fe/P[J]. Waste Management, 2022, 144: 303-312. |
26 | Mrozik W, Ali Rajaeifar M, Heidrich O, et al. Environmental impacts, pollution sources and pathways of spent lithium-ion batteries[J]. Energy & Environmental Science, 2021, 14(12): 6099-6121. |
27 | Lou W B, Zhang Y, Zhang Y, et al. A facile way to regenerate FePO4∙2H2O precursor from spent lithium iron phosphate cathode powder: spontaneous precipitation and phase transformation in an acidic medium[J]. Journal of Alloys and Compounds, 2021, 856: 158148. |
28 | Xu Y Z, Yan X M, Fan L, et al. Remediation of Cd(Ⅱ)-contaminated soil by three kinds of ferrous phosphate nanoparticles[J]. RSC Advances, 2016, 6(21): 17390-17395. |
29 | Lou W B, Zhang Y, Zhang Y, et al. Leaching performance of Al-bearing spent LiFePO4 cathode powder in H2SO4 aqueous solution[J]. Transactions of Nonferrous Metals Society of China, 2021, 31(3): 817-831. |
30 | Xiao C, Zeng L. Thermodynamic study on recovery of lithium using phosphate precipitation method[J]. Hydrometallurgy, 2018, 178: 283-286. |
31 | Iuliano M, Ciavatta L, de Tommaso G. The solubility constant of variscite[J]. Soil Science Society of America Journal, 2008, 72(2): 343-346. |
32 | Jiang Y, Zhang G P, Zhou K G, et al. Sequential separation and recovery of phosphorus and lithium from lithium phosphate slag by selective extraction-precipitation[J]. Separation and Purification Technology, 2024, 333: 125907. |
33 | Jiang Y, Peng C H, Zhou K G, et al. Recovery of iron from titanium white waste for the preparation of LiFePO4 battery[J]. Journal of Cleaner Production, 2023, 415: 137817. |
[1] | 吴吉昊, 陈涛, 刘思宇, 刘梦柯, 杨卷. 双功能活化制备沥青基硬炭用于钠离子电池负极[J]. 化工学报, 2024, 75(3): 1019-1027. |
[2] | 李贵贤, 曹阿波, 孟文亮, 王东亮, 杨勇, 周怀荣. 耦合固体氧化物电解槽的CO2制甲醇过程设计与评价研究[J]. 化工学报, 2023, 74(7): 2999-3009. |
[3] | 包嘉靖, 别洪飞, 王子威, 肖睿, 刘冬, 吴石亮. 正庚烷对冲扩散火焰中添加长链醚类对碳烟前体生成特性的影响[J]. 化工学报, 2023, 74(4): 1680-1692. |
[4] | 陈佩佩, 汪秋英, 肖泽卿, 周思佳, 张小亮. 石墨烯量子点复合膜的调控制备:前体的影响[J]. 化工学报, 2023, 74(12): 5006-5015. |
[5] | 刘宇喆, 李成才, 李琳, 王少辉, 刘培慧, 王同华. 活性炭的微结构与超级电容器性能的构效关系[J]. 化工学报, 2022, 73(4): 1807-1816. |
[6] | 季东, 王健, 王可, 李婧玮, 孟文亮, 杨勇, 李贵贤, 王东亮, 周怀荣. 不同CO2捕集技术的CO2耦合绿氢制甲醇工艺研究[J]. 化工学报, 2022, 73(10): 4565-4575. |
[7] | 石秀娟, 梁文俊, 尹国彬, 王金柱. 低温等离子体协同Mn基催化剂降解氯苯研究[J]. 化工学报, 2022, 73(10): 4472-4483. |
[8] | 任博阳, 车晓刚, 刘思宇, 王满, 韩兴华, 董婷, 杨卷. 熔融盐法制备煤基多孔碳纳米片用于钠离子电池负极[J]. 化工学报, 2022, 73(10): 4745-4753. |
[9] | 向茂乔, 耿玉琦, 朱庆山. 氮化硅粉体制备技术及粉体质量研究进展[J]. 化工学报, 2022, 73(1): 73-84. |
[10] | 宋奕慧, 雷志轶, 范国利, 杨兰, 林彦军, 李峰. 基于LiAl-LDH/C杂化前体制备高比表面固体碱催化剂及其催化性能研究[J]. 化工学报, 2021, 72(6): 3084-3094. |
[11] | 胡涛, 张熊, 安亚斌, 李晨, 马衍伟. 锂离子电容器碳正极材料的研究进展[J]. 化工学报, 2020, 71(6): 2530-2546. |
[12] | 杨庆, 许思敏, 张大伟, 杨庆春. 石油与煤路线制乙二醇过程的技术经济分析[J]. 化工学报, 2020, 71(5): 2164-2172. |
[13] | 赵京, 张玉锋, 魏小林, 李腾, 宾峰. 高碱煤燃烧过程中亚微米颗粒物PM1的生成特性[J]. 化工学报, 2019, 70(8): 3113-3120. |
[14] | 冯可, 王玥, 李金华, 楚学影, 胡思怡, 林志远. Cd2+前体反应时间对CdSe量子棒长径比的调控及其光学特性研究[J]. 化工学报, 2019, 70(7): 2795-2801. |
[15] | 张建利, 王旭, 马丽萍, 于旭飞, 马清祥, 范素兵, 赵天生. MgFeMn-HTLcs的制备、改性及其CO加氢性能[J]. 化工学报, 2018, 69(5): 2073-2080. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 322
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 234
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||