化工学报 ›› 2025, Vol. 76 ›› Issue (4): 1583-1594.DOI: 10.11949/0438-1157.20241134
吴罗长(
), 杨泽宇, 颜建国(
), 朱旭涛, 陈阳, 王子辰
收稿日期:2024-10-14
修回日期:2024-12-26
出版日期:2025-04-25
发布日期:2025-05-12
通讯作者:
颜建国
作者简介:吴罗长(1978—),男,副教授,wlc@xaut.edu.cn
基金资助:
Luochang WU(
), Zeyu YANG, Jianguo YAN(
), Xutao ZHU, Yang CHEN, Zichen WANG
Received:2024-10-14
Revised:2024-12-26
Online:2025-04-25
Published:2025-05-12
Contact:
Jianguo YAN
摘要:
开展超临界二氧化碳1.6 mm × 1.6 mm水平方形管道内受热条件下流动换热特性的实验研究。实验参数为系统压力7.4~8.4 MPa(相对压力p/pcr = 1.003~1.138),质量流速500~1500 kg/(m2·s),热通量100~300 kW/m2。分析了热工参数、浮升力和热加速效应对方管内换热特性的影响规律,根据换热曲线分布特性,将超临界CO2流动换热分为类液相、类两相、类气相3个区域。实验结果表明:类两相区域时,在临界温度处平均壁温与主流温度的差值存在最小值,平均对流传热系数存在峰值。类气态区域内的换热性能较类液相区域相对减弱。浮升力使底部壁面换热得到强化,相比之下顶部壁面的换热较弱,流体热加速效应对本实验对流换热影响几乎可以忽略。通过引入表征浮升力效应的无量纲热通量q+,提出一个适用于方形微小通道超临界CO2换热关联式,预测误差范围为+20%~-20%。
中图分类号:
吴罗长, 杨泽宇, 颜建国, 朱旭涛, 陈阳, 王子辰. 微小方形通道内近超临界压力二氧化碳流动换热特性实验研究[J]. 化工学报, 2025, 76(4): 1583-1594.
Luochang WU, Zeyu YANG, Jianguo YAN, Xutao ZHU, Yang CHEN, Zichen WANG. Experimental study on convection heat transfer characteristics of supercritical carbon dioxide flowing in mini square channels[J]. CIESC Journal, 2025, 76(4): 1583-1594.
| 参数 | 单位 | 不确定度/% |
|---|---|---|
| 压力 | MPa | 0.16 |
| 质量流速 | kg/(m2∙s) | 0.8 |
| 流体温度 | °C | 0.5 |
| 壁面温度 | °C | 0.4 |
| 热通量 | kW/m2 | 4.32 |
| 传热系数 | W/(m2∙°C) | 6.6 |
表1 参数不确定度
Table 1 Uncertainties of the experimental parameters
| 参数 | 单位 | 不确定度/% |
|---|---|---|
| 压力 | MPa | 0.16 |
| 质量流速 | kg/(m2∙s) | 0.8 |
| 流体温度 | °C | 0.5 |
| 壁面温度 | °C | 0.4 |
| 热通量 | kW/m2 | 4.32 |
| 传热系数 | W/(m2∙°C) | 6.6 |
| 序号 | p/MPa | G/(kg/(m2·s)) | q/(kW/m2) |
|---|---|---|---|
| 1 | 7.4 | 1000 | 100 |
| 2 | 7.4 | 1000 | 200 |
| 3 | 7.4 | 1000 | 300 |
| 4 | 7.4 | 500 | 100 |
| 5 | 7.4 | 1500 | 100 |
| 6 | 7.9 | 1000 | 100 |
| 7 | 8.4 | 1000 | 100 |
表2 工况
Table 2 Test conditions
| 序号 | p/MPa | G/(kg/(m2·s)) | q/(kW/m2) |
|---|---|---|---|
| 1 | 7.4 | 1000 | 100 |
| 2 | 7.4 | 1000 | 200 |
| 3 | 7.4 | 1000 | 300 |
| 4 | 7.4 | 500 | 100 |
| 5 | 7.4 | 1500 | 100 |
| 6 | 7.9 | 1000 | 100 |
| 7 | 8.4 | 1000 | 100 |
| 文献 | 关联式 | 适用范围 |
|---|---|---|
| [ | p = 8.2732 MPa d = 4.572 mm Tb = 21 ~ 48.9℃ Reb = 3×104 ~ 3×105 | |
| [ | p = 8.38~8.80 MPa d = 8 mm G = 700~3200 kg/(m2·s) q = 18.40~161.12 kW/m2 | |
| [ | p = 7.46~10.26 MPa d = 4.5 mm,Tb= 29~115℃ G = 208 ~ 874 kg/(m2·s) q=38 ~ 234 kW/m2 | |
| [ | p = 7.40~12.0 MPa d = 0.70~2.16 mm | |
| [ | p = 7.40 ~ 8.44 MPa, d = 2 mm G = 600 ~ 1600 kg/(m2·s) q = 0 ~ 319 kW/m2 | |
| [ | p = 7.58 ~ 9.58 MPa d = 0.948 ~ 8.000 mm G = 419 ~ 1200 kg/(m2·s) q = 20 ~ 130 kW/m2 |
表3 超临界CO2换热关联式
Table 3 Heat transfer correlations for supercritical carbon dioxide
| 文献 | 关联式 | 适用范围 |
|---|---|---|
| [ | p = 8.2732 MPa d = 4.572 mm Tb = 21 ~ 48.9℃ Reb = 3×104 ~ 3×105 | |
| [ | p = 8.38~8.80 MPa d = 8 mm G = 700~3200 kg/(m2·s) q = 18.40~161.12 kW/m2 | |
| [ | p = 7.46~10.26 MPa d = 4.5 mm,Tb= 29~115℃ G = 208 ~ 874 kg/(m2·s) q=38 ~ 234 kW/m2 | |
| [ | p = 7.40~12.0 MPa d = 0.70~2.16 mm | |
| [ | p = 7.40 ~ 8.44 MPa, d = 2 mm G = 600 ~ 1600 kg/(m2·s) q = 0 ~ 319 kW/m2 | |
| [ | p = 7.58 ~ 9.58 MPa d = 0.948 ~ 8.000 mm G = 419 ~ 1200 kg/(m2·s) q = 20 ~ 130 kW/m2 |
| 关联式 | 平均误差 | 平均绝对误差 | 均方根误差 |
|---|---|---|---|
| Bringer-Smith[ | 0.088 | 0.051 | 0.224 |
| Pioro[ | -0.275 | 0.126 | 0.355 |
| Kim-Kim[ | -0.065 | 0.038 | 0.195 |
| Liao[ | -0.208 | 0.066 | 0.257 |
| Lyu[ | 0.295 | 0.545 | 0.738 |
| Preda[ | 0.622 | 0.831 | 0.911 |
| 新关联式 | -0.017 | 0.010 | 0.101 |
表4 换热关联式的预测性能
Table 4 Prediction performances of heat transfer correlations
| 关联式 | 平均误差 | 平均绝对误差 | 均方根误差 |
|---|---|---|---|
| Bringer-Smith[ | 0.088 | 0.051 | 0.224 |
| Pioro[ | -0.275 | 0.126 | 0.355 |
| Kim-Kim[ | -0.065 | 0.038 | 0.195 |
| Liao[ | -0.208 | 0.066 | 0.257 |
| Lyu[ | 0.295 | 0.545 | 0.738 |
| Preda[ | 0.622 | 0.831 | 0.911 |
| 新关联式 | -0.017 | 0.010 | 0.101 |
| 1 | Ma T, Li L, Xu X Y, et al. Study on local thermal-hydraulic performance and optimization of zigzag-type printed circuit heat exchanger at high temperature[J]. Energy Conversion and Management, 2015, 104: 55-66. |
| 2 | Ma T, Xin F, Li L, et al. Effect of fin-endwall fillet on thermal hydraulic performance of airfoil printed circuit heat exchanger[J]. Applied Thermal Engineering, 2015, 89: 1087-1095. |
| 3 | Shi H Y, Li M J, Wang W Q, et al. Heat transfer and friction of molten salt and supercritical CO₂ flowing in an airfoil channel of a printed circuit heat exchanger[J]. International Journal of Heat and Mass Transfer, 2020, 150: 119006. |
| 4 | Shin J H, Yoon S H. Thermal and hydraulic performance of a printed circuit heat exchanger using two-phase nitrogen[J]. Applied Thermal Engineering, 2020, 168: 114802. |
| 5 | 孙玉伟, 林杰, 刘小华, 等. 超临界CO2印刷电路板式换热器动态特性研究[J]. 热科学与技术, 2024, 23(4): 379-387. |
| Sun Y W, Lin J, Liu X H, et al. Study on dynamic characteristics of supercritical CO2 printed circuit heat exchanger[J]. Journal of Thermal Science and Technology, 2024, 23(4): 379-387. | |
| 6 | 李占英, 王江峰, 娄聚伟, 等. 印刷电路板换热器在超临界二氧化碳布雷顿循环系统中的动态特性研究[J]. 西安交通大学学报, 2024, 58(12): 34-44. |
| Li Z Y, Wang J F, Lou J W, et al. Dynamic characteristic analysis of printed circuit heat exchangers in supercritical carbon dioxide Brayton cycle systems[J]. Journal of Xi'an Jiaotong University, 2024, 58(12): 34-44. | |
| 7 | 颜建国, 朱凤岭, 郭鹏程, 等. 高热流低流速条件下超临界CO2在小圆管内的对流换热特性[J]. 化工学报, 2019, 70(5): 1779-1787. |
| Yan J G, Zhu F L, Guo P C, et al. Convective heat transfer of supercritical CO2 flowing a mini circular tube under high heat flux and low mass flux conditions[J]. CIESC Journal, 2019, 70(5): 1779-1787. | |
| 8 | Jiang P X, Zhang Y, Zhao C R, et al. Convection heat transfer of CO₂ at supercritical pressures in a vertical mini tube at relatively low Reynolds numbers[J]. Experimental Thermal and Fluid Science, 2008, 32(8): 1628-1637. |
| 9 | Peng R F, Lei X L, Guo Z M, et al. Forced convective heat transfer of supercritical carbon dioxide in mini-channel under low mass fluxes[J]. International Journal of Heat and Mass Transfer, 2022, 182: 121919. |
| 10 | Wang L, Pan Y C, Lee J D, et al. Convective heat transfer characteristics of supercritical carbon dioxide in vertical miniature tubes of a uniform heating experimental system[J]. International Journal of Heat and Mass Transfer, 2021, 167: 120833. |
| 11 | Li Z Z, Wang S L, Shao Y J, et al. Experimental study on convective heat transfer characteristics of supercritical carbon dioxide in a vertical tube with low mass flux[J]. Applied Thermal Engineering, 2023, 230: 120798. |
| 12 | 王磊, 曹雄金, 罗凯, 等. 不同流动方向上微型加热管内超临界CO2的换热特性[J]. 化工学报, 2023, 74(11): 4535-4547. |
| Wang L, Cao X J, Luo K, et al. Heat transfer characteristics of supercritical CO2 in mini-type heating tube with the different flow directions[J]. CIESC Journal, 2023, 74(11): 4535-4547. | |
| 13 | 李妮, 浦航, 周林, 等. 矩形通道内超临界压力CO2流动换热数值研究[J]. 推进技术, 2024, 45(8): 150-160. |
| Li N, Pu H, Zhou L, et al. Numerical study of flow and heat transfer characteristics of supercritical pressure CO2 in rectangular channel[J]. Journal of Propulsion Technology, 2024, 45(8): 150-160. | |
| 14 | Coleman H W, Steele W G. Engineering application of experimental uncertainty analysis[J]. AIAA Journal, 1995, 33(10): 1888-1896. |
| 15 | Yi Z M, Xu Y, Chen X L. Numerical study on heat transfer characteristics of supercritical CO2 in a vertical heating serpentine micro-tube[J]. Applied Thermal Engineering, 2022, 212: 118609. |
| 16 | Bazargan M, Fraser D, Chatoorgan V. Effect of buoyancy on heat transfer in supercritical water flow in a horizontal round tube[J]. Journal of Heat Transfer, 2005, 127(8): 897-902. |
| 17 | Petukhov B S, Polyakov A F, Kuleshov V A, et al. Turbulent flow and heat transfer in horizontal tubes with substantial influence of thermogravitational forces[C]//Proceeding of International Heat Transfer Conference 5. Tokyo, Japan: Begellhouse, 1974. |
| 18 | Jackson J D. Fluid flow and convective heat transfer to fluids at supercritical pressure[J]. Nuclear Engineering and Design, 2013, 264: 24-40. |
| 19 | Tanimizu K, Sadr R. Experimental investigation of buoyancy effects on convection heat transfer of supercritical CO2 flow in a horizontal tube[J]. Heat and Mass Transfer, 2016, 52(4): 713-726. |
| 20 | 程亮元, 王清洋, 王庆华, 等. 基于类沸腾理论的超临界CO2水平管内强制对流换热特性[J]. 中国电机工程学报, 2023, 43(17): 6718-6727. |
| Cheng L Y, Wang Q Y, Wang Q H, et al. Heat transfer characteristics of forced convection in supercritical CO2 horizontal tube based on pseudo-boiling theory[J]. Proceedings of the CSEE, 2023, 43(17): 6718-6727. | |
| 21 | McEligot D M, Coon C W, Perkins H C. Relaminarization in tubes[J]. International Journal of Heat and Mass Transfer, 1970, 13: 431-433. |
| 22 | Murphy H D, Chambers F W, Mceligot D M. Laterally converging flow(Part 1): Mean flow[J]. Journal of Fluid Mechanics, 1983, 127: 379. |
| 23 | 刘光旭, 黄彦平, 王俊峰, 等. 浮升力效应和流动加速效应对超临界二氧化碳换热影响理论分析[J]. 核动力工程, 2018, 39(6): 34-38. |
| Liu G X, Huang Y P, Wang J F, et al. Theoretical analysis of effect of buoyancy and flow acceleration on heat transfer of supercritical carbon dioxide[J]. Nuclear Power Engineering, 2018, 39(6): 34-38. | |
| 24 | Bringer R P, Smith J M. Heat transfer in the critical region[J]. AIChE Journal, 1957, 3(1): 49-55. |
| 25 | Pioro I, Gupta S, Mokry S. Heat-transfer correlations for supercritical-water and carbon dioxide flowing upward in vertical bare tubes[C]//Proceedings of the ASME 2012 Summer: Heat Transfer Conference. Rio Grande, Puerto Rico, USA, 2012. |
| 26 | Kim D E, Kim M H. Experimental investigation of heat transfer in vertical upward and downward supercritical CO2 flow in a circular tube[J]. International Journal of Heat and Fluid Flow, 2011, 32(1): 176-191. |
| 27 | Liao S M, Zhao T S. An experimental investigation of convection heat transfer to supercritical carbon dioxide in miniature tubes[J]. International Journal of Heat and Mass Transfer, 2002, 45(25): 5025-5034. |
| 28 | Lyu H C, Wang H, Huang Y P, et al. Visualization experiments and piston effect of heat transfer for supercritical carbon dioxide[J]. The Journal of Supercritical Fluids, 2023, 198: 105905. |
| 29 | Preda T, Saltanov E, Pioro I, et al. Development of a heat transfer correlation for supercritical CO2 based on multiple data sets[C]//2012 20th International Conference on Nuclear Engineering and the ASME 2012 Power Conference, Anaheim, California, USA, 2013: 211-217. |
| 30 | Kim D E, Kim M H. Experimental study of the effects of flow acceleration and buoyancy on heat transfer in a supercritical fluid flow in a circular tube[J]. Nuclear Engineering and Design, 2010, 240(10): 3336-3349. |
| [1] | 张晗筱, 王瑞琪, 张亚婷. 基于CNN-LSTM的换热器污垢因子预测研究[J]. 化工学报, 2025, 76(4): 1671-1679. |
| [2] | 产文, 余万, 王岗, 苏华山, 黄芬霞, 胡涛. 改进回热布局的Allam循环热力、经济性能分析和双目标优化[J]. 化工学报, 2025, 76(4): 1680-1692. |
| [3] | 王光磊, 刘晓玲, 徐震, 李琳. 面向压缩空气储能的气-水直接接触换热特性[J]. 化工学报, 2025, 76(4): 1595-1603. |
| [4] | 齐聪, 岳林菲. 交织网状小通道热沉的传热特性[J]. 化工学报, 2025, 76(4): 1534-1544. |
| [5] | 孙睿, 王军锋, 许浩洁, 李步发, 徐雅弦. 喷雾冷却技术及其强化传热机制研究进展[J]. 化工学报, 2025, 76(4): 1404-1421. |
| [6] | 侯亚祺, 张玮, 张鸿, 高飞雨, 胡嘉华. 基于机器学习与粒子群算法的LBM多相流模型优化[J]. 化工学报, 2025, 76(3): 1120-1132. |
| [7] | 许翔, 韩中合, 李恒凡. 结构参数对间接式太阳能储热水箱蓄热特性影响[J]. 化工学报, 2025, 76(3): 1275-1287. |
| [8] | 宫政, 高秀鲁, 赵玲, 胡冬冬. 超临界CO2发泡PBAT/PLA复合材料及其形状记忆性能[J]. 化工学报, 2025, 76(2): 888-896. |
| [9] | 张珂, 任维杰, 王梦娜, 范凯锋, 常丽萍, 李佳斌, 马涛, 田晋平. Bunsen反应产物在微通道中的液-液两相混合特性[J]. 化工学报, 2025, 76(2): 623-636. |
| [10] | 张鑫源, 何呈祥, 李亚婷, 朱春英, 马友光, 付涛涛. 微通道内液液非均相传质的模拟和实验研究方法进展[J]. 化工学报, 2025, 76(2): 484-503. |
| [11] | 魏攀攀, 刘怿楠, 朱春英, 付涛涛, 高习群, 马友光. 改进的T型微通道内双水相液滴的制备[J]. 化工学报, 2025, 76(2): 576-583. |
| [12] | 任超, 王凯, 韩洁, 阳春华. 事件-时间触发的慢时变工业过程动态调度方法[J]. 化工学报, 2025, 76(1): 256-265. |
| [13] | 李海东, 张奇琪, 杨路, AKRAM Naeem, 常承林, 莫文龙, 申威峰. 采用智能进化算法的管壳式换热器详细设计[J]. 化工学报, 2025, 76(1): 241-255. |
| [14] | 黄娜, 蒋云龙, 王东涵, 吴明婷, 蒋雪莉, 钟豫. 通道振动频率对超临界正癸烷裂解流动换热影响的数值研究[J]. 化工学报, 2025, 76(1): 173-183. |
| [15] | 陈晗, 蔡畅, 刘红, 尹洪超. 正戊醇添加剂强化喷雾冷却传热实验研究[J]. 化工学报, 2025, 76(1): 131-140. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号