化工学报 ›› 2025, Vol. 76 ›› Issue (4): 1595-1603.DOI: 10.11949/0438-1157.20240959
收稿日期:2024-08-25
修回日期:2024-10-20
出版日期:2025-04-25
发布日期:2025-05-12
通讯作者:
徐震
作者简介:王光磊(1988—),男,硕士,高级工程师,wangguanglei@sdepci.com
基金资助:
Guanglei WANG1(
), Xiaoling LIU1, Zhen XU2,3(
), Lin LI1
Received:2024-08-25
Revised:2024-10-20
Online:2025-04-25
Published:2025-05-12
Contact:
Zhen XU
摘要:
为提高压缩空气储能系统效率,提出将直接接触换热器用作再热器以充分利用系统压缩热。利用加压湿化器实验系统和空气-水体系,研究了加压条件下基于泡沫陶瓷板波纹填料的直接接触换热过程,分析了填料液泛特性,以及操作压力、水气比、进口水温、进口空气比焓等参数对体积传质系数和效能的影响。结果表明,填料体积传质系数随水气比增加呈增大趋势,随进口水温的升高呈减小趋势,而效能随水气比的增加呈减小趋势,随进口水温升高呈增大趋势。进口空气比焓对直接接触换热过程的影响较小。对压缩空气储能系统,直接接触换热工艺设计时,水气比宜取为1.0~1.2,操作压力宜取为0.3~0.4 MPa。
中图分类号:
王光磊, 刘晓玲, 徐震, 李琳. 面向压缩空气储能的气-水直接接触换热特性[J]. 化工学报, 2025, 76(4): 1595-1603.
Guanglei WANG, Xiaoling LIU, Zhen XU, Lin LI. Performances of gas-water direct contact heat exchange for compressed air energy storage[J]. CIESC Journal, 2025, 76(4): 1595-1603.
| 参数 | 数值 |
|---|---|
| 材质 | 碳化硅 |
| 波距/mm | 25 |
| 波高/mm | 9 |
| 波纹角/(°) | 45 |
| 孔密度/PPI | 15~20 |
表1 填料参数
Table1 Parameters of packing
| 参数 | 数值 |
|---|---|
| 材质 | 碳化硅 |
| 波距/mm | 25 |
| 波高/mm | 9 |
| 波纹角/(°) | 45 |
| 孔密度/PPI | 15~20 |
| 1 | 高志远, 张晶, 庄卫金, 等. 关于新型电力系统部分特点的思考[J]. 电力自动化设备, 2023, 43(6): 137-143, 151. |
| Gao Z Y, Zhang J, Zhuang W J, et al. Thoughts on some characteristics of new style power system[J]. Electric Power Automation Equipment, 2023, 43(6): 137-143, 151. | |
| 2 | 陈以明, 李治. 智慧能源发展方向及趋势分析[J]. 动力工程学报, 2020, 40(10): 852-858, 864. |
| Chen Y M, Li Z. Analysis on the development trend and features of smart energy sources[J]. Journal of Chinese Society of Power Engineering, 2020, 40(10): 852-858, 864. | |
| 3 | Ge G Q, Wang H R, Li R X, et al. Investigation and improvement of complex characteristics of packed bed thermal energy storage (PBTES) in adiabatic compressed air energy storage (A-CAES) systems[J]. Energy, 2024, 296: 131229. |
| 4 | 郑琼, 江丽霞, 徐玉杰, 等. 碳达峰、碳中和背景下储能技术研究进展与发展建议[J]. 中国科学院院刊, 2022, 37(4): 529-540. |
| Zheng Q, Jiang L X, Xu Y J, et al. Research progress and development suggestions of energy storage technology under background of carbon peak and carbon neutrality[J]. Bulletin of Chinese Academy of Sciences, 2022, 37(4): 529-540. | |
| 5 | Schönig F, Wilmers J, Sobolyev A, et al. Digital twin modelling for compressed air energy storage plants: dynamic modelling of the discharge unit[J]. Journal of Energy Storage, 2024, 88: 111551. |
| 6 | 陈来军, 梅生伟, 王斌, 等. 火电耦合压缩空气储能技术研究进展及展望[J]. 中国电机工程学报, 2024, 44(18): 7264-7276. |
| Chen L J, Mei S W, Wang B, et al. An overview and outlook on thermal power unit coupled with compressed air energy storage[J]. Proceedings of the CSEE, 2024, 44(18): 7264-7276. | |
| 7 | Foley A, Díaz Lobera I. Impacts of compressed air energy storage plant on an electricity market with a large renewable energy portfolio[J]. Energy, 2013, 57: 85-94. |
| 8 | Yang B, Li D Y, Zhang Y, et al. Review of innovative design and application of hydraulic compressed air energy storage technology[J]. Journal of Energy Storage, 2024, 98: 113031. |
| 9 | 张文, 王龙轩, 丛晓明, 等. 新型压缩空气储能及其技术发展[J]. 科学技术与工程, 2023, 23(36): 15335-15347. |
| Zhang W, Wang L X, Cong X M, et al. New type of compressed air energy storage and its technological development[J]. Science Technology and Engineering, 2023, 23(36): 15335-15347. | |
| 10 | 李鹏, 李国能, 苏航, 等. 不同运行方案下AA-CAES系统性能分析及优化[J]. 动力工程学报, 2022, 42(9): 843-851. |
| Li P, Li G N, Su H, et al. Performance analysis and optimization of AA-CAES system under different operation schemes[J]. Journal of Chinese Society of Power Engineering, 2022, 42(9): 843-851. | |
| 11 | 韩中合, 马帆帆, 吴迪, 等. 基于AA-CAES的综合能源系统协同优化与性能分析[J]. 太阳能学报, 2022, 43(12): 550-558. |
| Han Z H, Ma F F, Wu D, et al. Collaborative optimization and performance analysis of integrated energy system based on AA-CAES[J]. Acta Energiae Solaris Sinica, 2022, 43(12): 550-558. | |
| 12 | Razmi A R, Soltani M, Ardehali A, et al. Design, thermodynamic, and wind assessments of a compressed air energy storage (CAES) integrated with two adjacent wind farms: a case study at Abhar and Kahak sites, Iran[J]. Energy, 2021, 221: 119902. |
| 13 | Özen D N, Hançer Güleryüz E, Acılar A M. Advanced exergo-economic analysis of an advanced adiabatic compressed air energy storage system with the modified productive structure analysis method and multi-objective optimization study[J]. Journal of Energy Storage, 2024, 81: 110380. |
| 14 | Pottie D, Cardenas B, Garvey S, et al. Comparative analysis of isochoric and isobaric adiabatic compressed air energy storage[J]. Energies, 2023, 16(6): 2646. |
| 15 | 梅生伟, 张通, 张学林, 等. 非补燃压缩空气储能研究及工程实践: 以金坛国家示范项目为例[J]. 实验技术与管理, 2022, 39(5): 1-8, 14. |
| Mei S W, Zhang T, Zhang X L, et al. Research and engineering practice of non-supplementary combustion compressed air energy storage: taking Jintan national demonstration project as an example[J]. Experimental Technology and Management, 2022, 39(5): 1-8, 14. | |
| 16 | Geissbühler L, Becattini V, Zanganeh G, et al. Pilot-scale demonstration of advanced adiabatic compressed air energy storage(Part 1): Plant description and tests with sensible thermal-energy storage[J]. Journal of Energy Storage, 2018, 17: 129-139. |
| 17 | Hartmann N, Vöhringer O, Kruck C, et al. Simulation and analysis of different adiabatic compressed air energy storage plant configurations[J]. Applied Energy, 2012, 93: 541-548. |
| 18 | Yang L, Zhang L, Xi Y, et al. Thermal performance of counterflow wet cooling tower filled with inclined folding wave packing: an experimental and numerical investigation[J]. International Journal of Heat and Mass Transfer, 2024, 235: 126151. |
| 19 | Wei H Y, Huang S F, Zhang X S. Experimental and simulation study on heat and mass transfer characteristics in direct-contact total heat exchanger for flue gas heat recovery[J]. Applied Thermal Engineering, 2022, 200: 117657. |
| 20 | Xu Z, Xie Y C, Xiao Y H. A compact packing humidifier for the micro humid air turbine cycle: design method and experimental evaluation[J]. Applied Thermal Engineering, 2017, 125: 727-734. |
| 21 | Patel P, Sharma A, Monde A D, et al. Performance analysis of melting phenomena in an ice-freezing type direct-contact heat exchanger[J]. Journal of Energy Storage, 2022, 50: 104575. |
| 22 | Li B, Li Z X, Yang P Y, et al. Modeling and optimization of the thermal-hydraulic performance of direct contact heat exchanger using quasi-opposite Jaya algorithm[J]. International Journal of Thermal Sciences, 2022, 173: 107421. |
| 23 | 潘晓伟, 王绍民, 李硕, 等. 直接接触式低温烟气余热回收塔设计参数优化研究[J]. 热科学与技术, 2022, 21(6): 609-614. |
| Pan X W, Wang S M, Li S, et al. Design optimization study on direct contact tower used for low temperature flue gas waste heat recovery[J]. Journal of Thermal Science and Technology, 2022, 21(6): 609-614. | |
| 24 | 谢迎春, 梅宁. 逆流湿化器的效能分析[J]. 化工学报, 2014, 65(S1): 61-65. |
| Xie Y C, Mei N. Energy effectiveness analysis of countercurrent humidifier[J]. CIESC Journal, 2014, 65(S1):61-65. | |
| 25 | Yang X P, Chong D T, Liu J P, et al. Experimental study on the direct contact condensation of the steam-air mixture in subcooled water flow in a rectangular channel[J]. International Journal of Heat and Mass Transfer, 2015, 88: 424-432. |
| 26 | 陈瑶, 殷勇高, 张小松, 等. 跨温区直接蒸发冷却的热质传递特性[J]. 化工学报, 2013, 64(5): 1532-1540. |
| Chen Y, Yin Y G, Zhang X S, et al. Characteristics of heat and mass transfer in direct evaporative cooling process in different temperature ranges[J]. CIESC Journal, 2013, 64(5): 1532-1540. | |
| 27 | Gu L D, Min J C, Tang Y C. Effects of mass transfer on heat and mass transfer characteristics between water surface and airstream[J]. International Journal of Heat and Mass Transfer, 2018, 122:1093-1102. |
| 28 | Parente J, Traverso A, Massardo A. Saturator analysis for an evaporative gas turbine cycle[J]. Applied Thermal Engineering, 2003, 23: 1275-1293. |
| 29 | Hyland R W, Wexler A. Formulations for the thermodynamic properties of dry air from 173.15 K to 473.15K, and of saturated moist air from 173.15 K to 372.15 K, at pressures to 5 MPa[J]. ASHRAE Transactions, 1983, 89: 520-535. |
| 30 | Wagner W, Crouzet A. Property of Water and Steam[M]. Beijing: Science Press, 2003. |
| 31 | Halasz B. Application of a general non-dimensional mathematical model to cooling towers[J]. International Journal of Thermal Sciences, 1999, 38(1): 75-88. |
| 32 | Xu Z, Lu Y, Xie Y C. Hydrodynamic and heat and mass transfer performances of novel ceramic foam packing to humidification tower[J]. Applied Thermal Engineering, 2015, 87: 707-713. |
| [1] | 蒲黎明, 汪贵, 郑春来, 王科, 向腾龙, 王治红. 混合制冷级联天然气液化工艺优化及分析[J]. 化工学报, 2024, 75(S1): 267-275. |
| [2] | 李焱, 郑利军, 张恩勇, 王云飞. 深水海底管道软管内部流体渗透特性模型与试验研究[J]. 化工学报, 2024, 75(S1): 118-125. |
| [3] | 程婷, 焦纬洲, 刘有智. 功能性填料在超重力旋转填料床中的应用和研究进展[J]. 化工学报, 2024, 75(4): 1414-1428. |
| [4] | 王清莲, 熊佩芸, 韩俏飞, 叶长燊, 王红星, 杨臣, 邱挺. 高性能负载型催化填料的制备及其性能研究[J]. 化工学报, 2024, 75(11): 4226-4236. |
| [5] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
| [6] | 何洋, 高森虎, 吴青云, 张明理, 龙涛, 牛佩, 高景辉, 孟颖琪. 析湿工况下平直开缝翅片传热传质特性的数值研究[J]. 化工学报, 2023, 74(3): 1073-1081. |
| [7] | 王煦清, 严圣林, 朱礼涛, 张希宝, 罗正鸿. 填料塔中有机胺吸收CO2气液传质的研究进展[J]. 化工学报, 2023, 74(1): 237-256. |
| [8] | 赵继昊, 唐伟强, 徐小飞, 赵双良, 贺炅皓. 高分子复合材料中键合剂在不同纳米填料表面的吸附能计算[J]. 化工学报, 2022, 73(7): 3174-3181. |
| [9] | 王兵兵, 王超, 徐志明. 圆筒电极抑制换热表面CaCO3污垢沉积特性研究[J]. 化工学报, 2022, 73(2): 634-642. |
| [10] | 张舒蕾, 李冰杰, 蒋健, 董新宇, 刘璐. 凸面恒温基底上固着液滴蒸发特性研究[J]. 化工学报, 2022, 73(12): 5537-5546. |
| [11] | 黄子轩, 陈欢, 李海, 王明龙, 陈光进, 刘蓓. ZIF-8浆液中试分离CO2/N2过程模拟及能耗分析[J]. 化工学报, 2022, 73(1): 322-331. |
| [12] | 郝仁杰, 谯敏, 黄卫星. 气-液并流通过堆叠筛板填料的脉冲流特性[J]. 化工学报, 2021, 72(3): 1314-1321. |
| [13] | 李群生, 李洋, 任钟旗, 薛嘉星. FGP型填料的开发及在甲醇精馏节能减排中的应用[J]. 化工学报, 2021, 72(12): 6232-6240. |
| [14] | 郭达, 祁贵生, 刘有智, 焦纬洲, 闫文超, 高雨松. 错流旋转填料床的质、热同传性能及传热机理研究[J]. 化工学报, 2021, 72(11): 5543-5551. |
| [15] | 唐子龙,肖凡凡,尹玉华,李森雨,汪靖伦. 功能硅烷在有机-无机复合固态电解质中的应用研究进展[J]. 化工学报, 2021, 72(10): 5002-5015. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号