化工学报 ›› 2025, Vol. 76 ›› Issue (2): 888-896.DOI: 10.11949/0438-1157.20241003
• 材料化学工程与纳米技术 • 上一篇
收稿日期:
2024-09-05
修回日期:
2024-10-16
出版日期:
2025-03-25
发布日期:
2025-03-10
通讯作者:
胡冬冬
作者简介:
宫政(1999—),男,博士研究生,Y30210042@mail.ecust.edu.cn
基金资助:
Zheng GONG(), Xiulu GAO, Ling ZHAO, Dongdong HU(
)
Received:
2024-09-05
Revised:
2024-10-16
Online:
2025-03-25
Published:
2025-03-10
Contact:
Dongdong HU
摘要:
采用超临界CO2辅助制备生物可降解聚己二酸对苯二甲酸丁二醇酯(PBAT)/聚乳酸(PLA)形状记忆发泡材料,研究了PLA含量对PBAT/PLA复合材料中CO2溶解扩散行为、熔融结晶、流变行为及发泡行为的影响,考察了PLA含量对PBAT/PLA发泡材料的形状记忆性能和力学性能的影响。结果表明,PBAT有利于PLA分子链段局部运动,促进了PLA的冷结晶过程;在低频剪切作用下,随着PLA含量的增加,PBAT/PLA的复数黏度增加;PLA降低了CO2在PBAT/PLA复合材料中的解吸扩散系数,提高了发泡材料的刚性,起到稳定泡孔形貌和抗收缩的作用;PLA质量分数20%时,复合材料获得最大稳定发泡倍率20.5倍,PBAT/PLA发泡材料(发泡倍率7.5)形状固定率为86.8%,形状恢复率为94.3%,综合性能最佳。PLA有利于提高PBAT/PLA发泡材料的形状固定率,但不利于其形状恢复率。同时,PLA质量分数低于20%时,PLA的引入提高了PBAT/PLA发泡材料的拉伸/压缩模量和强度。
中图分类号:
宫政, 高秀鲁, 赵玲, 胡冬冬. 超临界CO2发泡PBAT/PLA复合材料及其形状记忆性能[J]. 化工学报, 2025, 76(2): 888-896.
Zheng GONG, Xiulu GAO, Ling ZHAO, Dongdong HU. Preparation and shape memory properties of PBAT/PLA foams by supercritical CO2[J]. CIESC Journal, 2025, 76(2): 888-896.
样品 | PBAT/% | PLA/% | 抗氧剂1010/% |
---|---|---|---|
PBAT | 99.8 | 0 | 0.2 |
PBAT/PLA10 | 89.8 | 10 | 0.2 |
PBAT/PLA20 | 79.8 | 20 | 0.2 |
PBAT/PLA30 | 69.8 | 30 | 0.2 |
表1 PBAT/PLA共混配方
Table 1 PBAT/PLA blending formulations
样品 | PBAT/% | PLA/% | 抗氧剂1010/% |
---|---|---|---|
PBAT | 99.8 | 0 | 0.2 |
PBAT/PLA10 | 89.8 | 10 | 0.2 |
PBAT/PLA20 | 79.8 | 20 | 0.2 |
PBAT/PLA30 | 69.8 | 30 | 0.2 |
样品 | Tg, PLA/℃ | Tc, PBAT/℃ | Tcc, PLA/℃ | Tm, PBAT/℃ | Tm, PLA/℃ |
---|---|---|---|---|---|
PBAT | — | 71.7 | — | 120.7 | — |
PLA | 62.2 | — | 136.0 | — | 167.1 |
PBAT/PLA10 | 61.5 | 71.9 | 103.6 | 122.4 | 168.6 |
PBAT/PLA20 | 61.3 | 72.1 | 105.6 | 123.6 | 169.2 |
PBAT/PLA30 | 61.2 | 73.1 | 106.8 | 125.0 | 169.5 |
表2 PBAT/PLA复合材料的DSC数据
Table 2 DSC data of PBAT/PLA composites
样品 | Tg, PLA/℃ | Tc, PBAT/℃ | Tcc, PLA/℃ | Tm, PBAT/℃ | Tm, PLA/℃ |
---|---|---|---|---|---|
PBAT | — | 71.7 | — | 120.7 | — |
PLA | 62.2 | — | 136.0 | — | 167.1 |
PBAT/PLA10 | 61.5 | 71.9 | 103.6 | 122.4 | 168.6 |
PBAT/PLA20 | 61.3 | 72.1 | 105.6 | 123.6 | 169.2 |
PBAT/PLA30 | 61.2 | 73.1 | 106.8 | 125.0 | 169.5 |
样品 | M0/g | Dd/(10-11 m2·s-1) |
---|---|---|
PBAT | 17.1 | 6.5 |
PBAT/PLA10 | 14.7 | 6.3 |
PBAT/PLA20 | 13.4 | 5.7 |
PBAT/PLA30 | 12.1 | 5.1 |
表3 CO2在PBAT/PLA复合材料中的溶解度和解吸扩散系数
Table 3 Solubility and desorption coefficients of CO2 in PBAT/PLA composites
样品 | M0/g | Dd/(10-11 m2·s-1) |
---|---|---|
PBAT | 17.1 | 6.5 |
PBAT/PLA10 | 14.7 | 6.3 |
PBAT/PLA20 | 13.4 | 5.7 |
PBAT/PLA30 | 12.1 | 5.1 |
1 | 张润, 薛平, 王苏炜, 等. 形状记忆聚合物制备与应用研究进展[J]. 中国塑料, 2020, 34(6): 100-109. |
Zhang R, Xue P, Wang S W, et al. Research progress in preparation and applications of shape memory polymers[J]. China Plastics, 2020, 34(6): 100-109. | |
2 | Hu J L, Kumar B, Narayana H. Stress memory polymers[J]. Journal of Polymer Science Part B: Polymer Physics, 2015, 53(13): 893-898. |
3 | Schulz M. Speeding up artificial muscles[J]. Science, 2012, 338(6109): 893-894. |
4 | Razzaq M Y, Behl M, Lendlein A. Memory-effects of magnetic nanocomposites[J]. Nanoscale, 2012, 4(20): 6181-6195. |
5 | Feng Y Y, Qin M M, Guo H Q, et al. Infrared-actuated recovery of polyurethane filled by reduced graphene oxide/carbon nanotube hybrids with high energy density[J]. ACS Applied Materials & Interfaces, 2013, 5(21): 10882-10888. |
6 | Kong D Y, Li J, Guo A R, et al. Self-healing high temperature shape memory polymer[J]. European Polymer Journal, 2019, 120: 109279. |
7 | Kong D Y, Xiao X L. High cycle-life shape memory polymer at high temperature[J]. Scientific Reports, 2016, 6: 33610. |
8 | Kuang X, Chen K J, Dunn C K, et al. 3D printing of highly stretchable, shape-memory, and self-healing elastomer toward novel 4D printing[J]. ACS Applied Materials & Interfaces, 2018, 10(8): 7381-7388. |
9 | Samuel C, Barrau S, Lefebvre J M, et al. Designing multiple-shape memory polymers with miscible polymer blends: evidence and origins of a triple-shape memory effect for miscible PLLA/PMMA blends[J]. Macromolecules, 2014, 47(19): 6791-6803. |
10 | Jing X, Mi H Y, Huang H X, et al. Shape memory thermoplastic polyurethane (TPU)/poly(ε-caprolactone) (PCL) blends as self-knotting sutures[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 64: 94-103. |
11 | Hearon K, Singhal P, Horn J, et al. Porous shape-memory polymers[J]. Polymer Reviews, 2013, 53(1): 41-75. |
12 | Wang H M, You J G, Tian M, et al. Preparing flame-retardant poly(phenylene oxide)/polyurea nanocomposite foam with excellent heat-resistance and shape memory performance[J]. Composites Communications, 2023, 40: 101589. |
13 | Gong Z, Li W J, Chen Y C, et al. Effect of long-chain branching structures on supercritical CO2 foaming behavior of iPB-1 with different crystalline form ratios[J]. Journal of Applied Polymer Science, 2024, 141(25): e55525. |
14 | 宫政, 李为杰, 赵玲, 等. 等规聚丁烯-1扩链改性及其超临界CO2发泡行为研究[J]. 中国塑料, 2023, 37(12): 1-6. |
Gong Z, Li W J, Zhao L, et al. Chain-extended modification of isotactic polybutene-1 and its supercritical CO2 foaming behavior[J]. China Plastics, 2023, 37(12): 1-6. | |
15 | 赵玲, 刘涛. 超临界CO2辅助聚合物加工[J]. 化工学报, 2013, 64(2): 436-442. |
Zhao L, Liu T. Supercritical CO2 assisted polymer processing[J]. CIESC Journal, 2013, 64(2): 436-442. | |
16 | Wei S L, Xie J H, Zhang J M, et al. Green preparation of poly (butylene succinate-co-butylene terephthalate) foam with tunable degradability and mechanical properties by supercritical CO2 [J]. Polymer Degradation and Stability, 2024, 223: 110732. |
17 | Zhong W Y, Hu D D, Chen Y C, et al. Second cell growth optimized by heating mode during two-step supercritical CO2 foaming polymer process[J]. Chemical Engineering Science, 2023, 281: 119110. |
18 | 蒋瑞, 胡冬冬, 刘涛, 等. 热塑性聚醚酯弹性体硬段含量对其超临界CO2发泡行为的影响[J]. 化工学报, 2020, 71(2): 871-878. |
Jiang R, Hu D D, Liu T, et al. Effect of hard segment content on microcellular foaming process of thermoplastic polyether ester elastomer using supercritical CO2 as blowing agent[J]. CIESC Journal, 2020, 71(2): 871-878. | |
19 | Zhang Z X, Wang S, Yu L L, et al. Shape memory function of trans-1, 4-polyisoprene prepared by radiation crosslinking with a supercritical CO2 foaming[J]. Radiation Physics and Chemistry, 2021, 189: 109707. |
20 | Gong Z, Yue P Y, Chen Y C, et al. Structure-tunable polyether block amide/polylactic acid foams with shape memory performance using supercritical CO2 foaming[J]. The Journal of Supercritical Fluids, 2023, 203: 106090. |
21 | Zheng J W, Lu J W, Yang Z X, et al. Fabrication of recyclable and biodegradable PBAT vitrimer via construction of highly dynamic cross-linked network[J]. Polymer Degradation and Stability, 2024, 219: 110602. |
22 | 焦洋, 王龙震, 蔡卓瑞, 等. 高发泡倍率PBAT泡沫的制备及回弹性能的探究[J]. 中国塑料, 2023, 37(9): 19-27. |
Jiao Y, Wang L Z, Cai Z R, et al. Study on preparation and resilience of PBAT foams with high volume expansion ratio[J]. China Plastics, 2023, 37(9): 19-27. | |
23 | Meng Q H, Hu J L. A review of shape memory polymer composites and blends[J]. Composites Part A: Applied Science and Manufacturing, 2009, 40(11): 1661-1672. |
24 | 赵萌萌, 杨红娟, 沈思宇, 等. 聚乙二醇二缩水甘油醚对PLA/PBAT共混材料相容性及性能的影响[J]. 中国塑料, 2023, 37(8): 20-27. |
Zhao M M, Yang H J, Shen S Y, et al. Effect of poly(ethylene glycol diglycidyl ether) on compatibility and properties of PLA/PBAT blends[J]. China Plastics, 2023, 37(8): 20-27. | |
25 | Wang W, Liao X, Guo F M, et al. Facile fabrication of lightweight shape memory thermoplastic polyurethane/polylactide foams by supercritical carbon dioxide foaming[J]. Industrial & Engineering Chemistry Research, 2020, 59(16): 7611-7623. |
26 | Boyacioglu S, Kodal M, Ozkoc G. A comprehensive study on shape memory behavior of PEG plasticized PLA/TPU bio-blends[J]. European Polymer Journal, 2020, 122: 109372. |
27 | 顾勇, 刘涛, 许志美, 等. 聚苯砜微孔材料的制备及其力学性能[J]. 塑料, 2018, 47(1): 18-21. |
Gu Y, Liu T, Xu Z M, et al. Preparation and mechanical properties of polyphenylene sulfone foams[J]. Plastics, 2018, 47(1): 18-21. | |
28 | Chen P, Gao X L, Zhao L, et al. Preparation of biodegradable PBST/PLA microcellular foams under supercritical CO2: heterogeneous nucleation and anti-shrinkage effect of PLA[J]. Polymer Degradation and Stability, 2022, 197: 109844. |
29 | Yu P, Mi H Y, Huang A, et al. Effect of poly(butylenes succinate) on poly(lactic acid) foaming behavior: formation of open cell structure[J]. Industrial & Engineering Chemistry Research, 2015, 54(23): 6199-6207. |
30 | Peón J, Vega J F, Del Amo B, et al. Phase morphology and melt viscoelastic properties in blends of ethylene/vinyl acetate copolymer and metallocene-catalysed linear polyethylene[J]. Polymer, 2003, 44(10): 2911-2918. |
31 | Shi X T, Wang L, Kang Y, et al. Effect of poly(butylenes succinate) on the microcellular foaming of polylactide using supercritical carbon dioxide[J]. Journal of Polymer Research, 2018, 25(11): 229. |
[1] | 董新宇, 边龙飞, 杨怡怡, 张宇轩, 刘璐, 王腾. 冷却条件下倾斜上升管S-CO2流动与传热特性研究[J]. 化工学报, 2024, 75(S1): 195-205. |
[2] | 赵振刚, 周梦瑶, 金典, 张大骋. 基于泡沫碳扩散层的直接甲醇燃料电池改性研究[J]. 化工学报, 2024, 75(S1): 259-266. |
[3] | 任冠宇, 张义飞, 李新泽, 杜文静. 翼型印刷电路板式换热器流动传热特性数值研究[J]. 化工学报, 2024, 75(S1): 108-117. |
[4] | 徐宏标, 杨亮, 李子栋, 刘道平. 盐水微滴/泡沫铜复合体系中甲烷水合物生成动力学研究[J]. 化工学报, 2024, 75(9): 3287-3296. |
[5] | 曾港, 陈林, 杨董, 袁海专, 黄彦平. 矩形通道内超临界CO2局部热流场可视化实验[J]. 化工学报, 2024, 75(8): 2831-2839. |
[6] | 李子扬, 郑楠, 方嘉宾, 魏进家. 再压缩S-CO2布雷顿循环性能分析及多目标优化[J]. 化工学报, 2024, 75(6): 2143-2156. |
[7] | 关朝阳, 黄国庆, 张一喃, 陈宏霞, 杜小泽. 泡沫铜导离气泡强化流动沸腾换热实验研究[J]. 化工学报, 2024, 75(5): 1765-1776. |
[8] | 周康, 王建新, 于海, 魏朝良, 范丰奇, 车昕昊, 张磊. 基于分子动力学模拟的矿物基础油泡沫破裂性能研究[J]. 化工学报, 2024, 75(4): 1668-1678. |
[9] | 朱芝, 许恒杰, 陈维, 毛文元, 邓强国, 孙雪剑. 超临界二氧化碳螺旋槽干气密封热流耦合润滑临界阻塞特性研究[J]. 化工学报, 2024, 75(2): 604-615. |
[10] | 江澳翔, 陈源, 李运堂, 江锦波, 彭旭东, 章聪, 王冰清. 微间隙高速流体效应对箔片柱面气膜密封性能的影响[J]. 化工学报, 2024, 75(10): 3691-3704. |
[11] | 王迪, 崔颖晗, 孙灵芳, 周云龙. 超临界二氧化碳混合工质储能系统热力学分析[J]. 化工学报, 2024, 75(10): 3414-3423. |
[12] | 邵明成, 潘玉贵, 王增丽, 赵强. CO2/CH4混合物理论跨临界增压过程的热力性能研究[J]. 化工学报, 2024, 75(10): 3742-3751. |
[13] | 贾海林, 曾锦祥, 潘荣锟, 潘仕利, 周凯旋. 无氟泡沫灭火剂真火实验与分子动力学模拟[J]. 化工学报, 2024, 75(10): 3825-3834. |
[14] | 张泽欣, 郑伟中, 徐益升, 胡冬冬, 卓欣宇, 宗原, 孙伟振, 赵玲. 超临界二氧化碳介质中晶圆清洗与选择性刻蚀研究进展[J]. 化工学报, 2024, 75(1): 110-119. |
[15] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
阅读次数 | ||||||
全文 298
|
|
|||||
摘要 |
|
|||||