化工学报 ›› 2025, Vol. 76 ›› Issue (4): 1680-1692.DOI: 10.11949/0438-1157.20241022
产文1,2(
), 余万1,2, 王岗1,2, 苏华山1,2, 黄芬霞1,2, 胡涛1,2(
)
收稿日期:2024-09-11
修回日期:2025-01-06
出版日期:2025-04-25
发布日期:2025-05-12
通讯作者:
胡涛
作者简介:产文(1990—),男,博士,校聘副教授,chanwen@ctgu.edu.cn
基金资助:
Wen CHAN1,2(
), Wan YU1,2, Gang WANG1,2, Huashan SU1,2, Fenxia HUANG1,2, Tao HU1,2(
)
Received:2024-09-11
Revised:2025-01-06
Online:2025-04-25
Published:2025-05-12
Contact:
Tao HU
摘要:
Allam循环是一种以CO2为工质的高度回热的纯氧燃烧动力循环,被认为有望实现化石燃料的零碳发电。为准确评估Allam循环的热力经济性能,提出了一种全新的包含4个换热器的改进回热布局,对改进后的Allam循环开展了详细的热力经济分析,分析了主要操作参数和经济参数对循环热力经济性能的影响,以热效率(ηtot)和平准化度电成本(LCOE)为目标开展了双目标优化。结果表明,在燃烧温度为1150℃、透平进出口压力分别为30 MPa和3.4 MPa条件下,循环的ηtot和LCOE分别为51.9%和107.5 USD/MWh。回热器1和回热器3具有较高的投资成本,使得整个回热单元的总成本率位于第二位。燃烧温度对ηtot和LCOE均有较大影响,循环最大压力和透平排气压力具有相似影响,且主要影响循环的LCOE。容量因子对LCOE影响最大,其次为利率的影响。LCOE随着天然气价格的下降而线性降低,天然气价格每下降10%,LCOE降低约4 USD/MWh。ηtot和LCOE无法同时达到最优,在给定范围内,最优的ηtot和LCOE分别为52.3%和95.7 USD/MWh。
中图分类号:
产文, 余万, 王岗, 苏华山, 黄芬霞, 胡涛. 改进回热布局的Allam循环热力、经济性能分析和双目标优化[J]. 化工学报, 2025, 76(4): 1680-1692.
Wen CHAN, Wan YU, Gang WANG, Huashan SU, Fenxia HUANG, Tao HU. Thermodynamic and economic analyses and dual-objective optimization of Allam cycle with improved regenerator layout[J]. CIESC Journal, 2025, 76(4): 1680-1692.
| 参数 | 数值/% |
|---|---|
| 机械效率 | 98 |
| CO2透平等熵效率 | 90 |
| 压缩机多变效率 | 85 |
| 泵效率 | 85 |
| 发电机效率 | 99.5 |
表1 流体机械效率[20]
Table 1 Efficiencies of fluid machinery[20]
| 参数 | 数值/% |
|---|---|
| 机械效率 | 98 |
| CO2透平等熵效率 | 90 |
| 压缩机多变效率 | 85 |
| 泵效率 | 85 |
| 发电机效率 | 99.5 |
| 设备 | 系数/% |
|---|---|
| 燃烧室 | 1 |
| 回热器高压侧 | 1 |
| 回热器低压侧 | 3 |
| 分离器 | 2 |
| 其他换热器 | 2 |
表2 压力损失系数[20]
Table 2 Pressure drop coefficients of fluids in components[20]
| 设备 | 系数/% |
|---|---|
| 燃烧室 | 1 |
| 回热器高压侧 | 1 |
| 回热器低压侧 | 3 |
| 分离器 | 2 |
| 其他换热器 | 2 |
| 设备 | 燃料㶲和产品㶲 |
|---|---|
| 燃烧室和透平 | |
| CO2压缩机 | |
| 泵1 | |
| 泵2 | |
| 氧化剂压缩机 | |
| 天然气压缩机 | |
| 回热器1 | |
| 回热器2 | |
| 回热器3 | |
| 回热器4 |
表3 设备燃料㶲和产品㶲的定义
Table 3 Definitions of fuel and product exergy
| 设备 | 燃料㶲和产品㶲 |
|---|---|
| 燃烧室和透平 | |
| CO2压缩机 | |
| 泵1 | |
| 泵2 | |
| 氧化剂压缩机 | |
| 天然气压缩机 | |
| 回热器1 | |
| 回热器2 | |
| 回热器3 | |
| 回热器4 |
| 项目 | 公式或数值 | 文献 |
|---|---|---|
| 燃烧室透平组件/USD | [ | |
回热器/USD | [ | |
| 冷却器、中冷器/USD | [ | |
| CO2压缩机/USD | [ | |
| 燃料压缩机/USD | [ | |
| 泵/USD | [ | |
| 空分单元/USD | [ | |
| 发电机/USD | [ | |
| 系统运行寿命n/年 | 25 | [ |
| 全年当量运行小时数 | 7446 | [ |
| 有效利率ieff/% | 10 | [ |
| 资本回收系数 | [ | |
| 平准化上涨因子CELF | [ | |
| 名义上涨率 | rn,FC=3.4%; rn,OMC=2.5% | [ |
| 首年运行和维护成本OMC0/USD | [ | |
| 天然气价格/(USD/GJ) | 4.26 | [ |
表4 设备投资成本公式和经济参数
Table 4 Cost equations of purchased components and economic parameters
| 项目 | 公式或数值 | 文献 |
|---|---|---|
| 燃烧室透平组件/USD | [ | |
回热器/USD | [ | |
| 冷却器、中冷器/USD | [ | |
| CO2压缩机/USD | [ | |
| 燃料压缩机/USD | [ | |
| 泵/USD | [ | |
| 空分单元/USD | [ | |
| 发电机/USD | [ | |
| 系统运行寿命n/年 | 25 | [ |
| 全年当量运行小时数 | 7446 | [ |
| 有效利率ieff/% | 10 | [ |
| 资本回收系数 | [ | |
| 平准化上涨因子CELF | [ | |
| 名义上涨率 | rn,FC=3.4%; rn,OMC=2.5% | [ |
| 首年运行和维护成本OMC0/USD | [ | |
| 天然气价格/(USD/GJ) | 4.26 | [ |
| 参数 | 本文模型计算结果 | 文献结果[ |
|---|---|---|
| 透平出口温度/℃ | 724.3 | 727 |
| 透平流量/(kg/s) | 939.7 | 923 |
| 冷却器2出口流量/(kg/s) | 889.5 | 881 |
| 循环热效率/% | 58.04 | 59 |
表5 模型验证的计算结果对比
Table 5 Comparison of results for model validation
| 参数 | 本文模型计算结果 | 文献结果[ |
|---|---|---|
| 透平出口温度/℃ | 724.3 | 727 |
| 透平流量/(kg/s) | 939.7 | 923 |
| 冷却器2出口流量/(kg/s) | 889.5 | 881 |
| 循环热效率/% | 58.04 | 59 |
| 参数 | 数值 |
|---|---|
| 输入系统的燃料能量(LHV)/MW | 100 |
| 环境温度/℃ | 15 |
| 环境压力/MPa | 0.1013 |
| 燃烧温度/℃ | 1150 |
| 透平入口压力/MPa | 30 |
| 透平出口压力/MPa | 3.4 |
| 回热器热端最小温差/K | 10 |
| 回热器夹点温差/K | 5 |
| 循环最低温度/℃ | 25 |
| 热空气流量/(kg/s) | 36.2 |
| 热空气压力/MPa | 0.6 |
| 热空气温度/℃ | 238 |
| 流股2分流比例 | 0.537 |
| 回热器2热流体入口温度/℃ | 238 |
| 回热器4热流体入口温度/℃ | 500 |
表6 基本工况条件下系统的输入参数
Table 6 Input parameters at basic case
| 参数 | 数值 |
|---|---|
| 输入系统的燃料能量(LHV)/MW | 100 |
| 环境温度/℃ | 15 |
| 环境压力/MPa | 0.1013 |
| 燃烧温度/℃ | 1150 |
| 透平入口压力/MPa | 30 |
| 透平出口压力/MPa | 3.4 |
| 回热器热端最小温差/K | 10 |
| 回热器夹点温差/K | 5 |
| 循环最低温度/℃ | 25 |
| 热空气流量/(kg/s) | 36.2 |
| 热空气压力/MPa | 0.6 |
| 热空气温度/℃ | 238 |
| 流股2分流比例 | 0.537 |
| 回热器2热流体入口温度/℃ | 238 |
| 回热器4热流体入口温度/℃ | 500 |
| 参数 | Allam基准循环 | 改进Allam循环 |
|---|---|---|
| 透平出口流量/(kg/s) | 174.92 | 174.89 |
| 透平出口温度/℃ | 737.7 | 737.7 |
| 透平输出功率/MW | 80.11 | 80.10 |
| 回热器总热负荷/MW | 152.42 | 152.37 |
| 回热器总成本/(106 USD) | 42.55 | 30.95 |
| CCL/(106 USD) | 29.54 | 25.59 |
| FCL/(106 USD) | 15.52 | 15.52 |
| OMCL/(106 USD) | 0.54 | 0.46 |
| 51.94 | 51.93 | |
| 51.94 | 51.93 | |
| 49.51 | 49.50 | |
| LCOE/(USD/MWh) | 117.92 | 107.52 |
表7 基本工况条件下Allam循环的计算结果
Table 7 Results of Allam cycles at basic case
| 参数 | Allam基准循环 | 改进Allam循环 |
|---|---|---|
| 透平出口流量/(kg/s) | 174.92 | 174.89 |
| 透平出口温度/℃ | 737.7 | 737.7 |
| 透平输出功率/MW | 80.11 | 80.10 |
| 回热器总热负荷/MW | 152.42 | 152.37 |
| 回热器总成本/(106 USD) | 42.55 | 30.95 |
| CCL/(106 USD) | 29.54 | 25.59 |
| FCL/(106 USD) | 15.52 | 15.52 |
| OMCL/(106 USD) | 0.54 | 0.46 |
| 51.94 | 51.93 | |
| 51.94 | 51.93 | |
| 49.51 | 49.50 | |
| LCOE/(USD/MWh) | 117.92 | 107.52 |
| 设备 | ||||
|---|---|---|---|---|
| 燃烧室透平组件 | 109.78 | 80.10 | 29.68 | 72.96 |
| CO2压缩机 | 7.53 | 4.11 | 3.43 | 54.52 |
| 泵1 | 1.18 | 0.97 | 0.21 | 82.20 |
| 泵2 | 3.38 | 2.38 | 1.00 | 70.41 |
| 氧化剂压缩机 | 2.13 | 1.83 | 0.30 | 85.81 |
| 天然气压缩机 | 0.53 | 0.47 | 0.06 | 88.01 |
| 回热器1 | 34.01 | 32.54 | 1.47 | 95.67 |
| 回热器2 | 8.71 | 7.78 | 0.94 | 89.27 |
| 回热器3 | 16.07 | 15.75 | 0.32 | 98.00 |
| 回热器4 | 19.03 | 17.61 | 1.42 | 92.55 |
| 冷却器1 | — | — | 1.00 | — |
| 冷却器2 | — | — | 0.19 | — |
表8 基本工况条件下主要设备的㶲计算结果
Table 8 Exergy results of main components at basic case
| 设备 | ||||
|---|---|---|---|---|
| 燃烧室透平组件 | 109.78 | 80.10 | 29.68 | 72.96 |
| CO2压缩机 | 7.53 | 4.11 | 3.43 | 54.52 |
| 泵1 | 1.18 | 0.97 | 0.21 | 82.20 |
| 泵2 | 3.38 | 2.38 | 1.00 | 70.41 |
| 氧化剂压缩机 | 2.13 | 1.83 | 0.30 | 85.81 |
| 天然气压缩机 | 0.53 | 0.47 | 0.06 | 88.01 |
| 回热器1 | 34.01 | 32.54 | 1.47 | 95.67 |
| 回热器2 | 8.71 | 7.78 | 0.94 | 89.27 |
| 回热器3 | 16.07 | 15.75 | 0.32 | 98.00 |
| 回热器4 | 19.03 | 17.61 | 1.42 | 92.55 |
| 冷却器1 | — | — | 1.00 | — |
| 冷却器2 | — | — | 0.19 | — |
| 参数 | 结果A | 结果B | 结果C |
|---|---|---|---|
| 决策变量 | |||
| 158.7 | 150.0 | 150.0 | |
| pmax | 34.9 | 32.5 | 36.0 |
| pout,GT | 3.7 | 2.8 | 2.6 |
| T6 | 73.7 | 71.4 | 80.7 |
| T7 | 68.9 | 66.6 | 79.3 |
| 目标函数 | |||
| ηtot/% | 52.30 | 51.03 | 46.82 |
| LCOE/(USD/MWh) | 112.09 | 98.55 | 95.67 |
表9 双目标优化的3个代表性结果
Table 9 Three representative results of the dual-objective optimization
| 参数 | 结果A | 结果B | 结果C |
|---|---|---|---|
| 决策变量 | |||
| 158.7 | 150.0 | 150.0 | |
| pmax | 34.9 | 32.5 | 36.0 |
| pout,GT | 3.7 | 2.8 | 2.6 |
| T6 | 73.7 | 71.4 | 80.7 |
| T7 | 68.9 | 66.6 | 79.3 |
| 目标函数 | |||
| ηtot/% | 52.30 | 51.03 | 46.82 |
| LCOE/(USD/MWh) | 112.09 | 98.55 | 95.67 |
| 1 | Kindra V, Rogalev A, Lisin E, et al. Techno-economic analysis of the oxy-fuel combustion power cycles with near-zero emissions[J]. Energies, 2021, 14(17): 5358. |
| 2 | Nemitallah M A, Habib M A, Badr H M, et al. Oxy-fuel combustion technology: current status, applications, and trends[J]. Int. J. Energy Res., 2017, 41(12): 1670-1708. |
| 3 | Fernando C B, Guillermo M S, Blanca S S, et al. A technical evaluation, performance analysis and risk assessment of multiple novel oxy-turbine power cycles with complete CO2 capture[J]. J. Clean. Prod., 2016, 133: 971-985. |
| 4 | Mitchell C, Avagyan V, Chalmers H, et al. An initial assessment of the value of Allam cycle power plants with liquid oxygen storage in future GB electricity system[J]. Int. J. Greenh. Gas Con., 2019, 87: 1-18. |
| 5 | Luo J, Emelogu O, Morosuk T, et al. Exergy-based investigation of a coal-fired Allam cycle[J]. Energy, 2021, 218: 119471. |
| 6 | Allam R, Martin S, Forrest B, et al. Demonstration of the Allam cycle: an update on the development status of a high efficiency supercritical carbon dioxide power process employing full carbon capture[C]//Proceedings of the 13th International Conference on Greenhouse Gas Control Technologies. Lausanne, Switzerland, 2017. |
| 7 | Allam R J, Palmer M R, Brown G W, et al. High efficiency and low cost of electricity generation from fossil fuels while eliminating atmospheric emissions, including carbon dioxide[J]. Energy Procedia, 2013, 37: 1135-1149. |
| 8 | Sifat N S, Haseli Y. A critical review of CO2 capture technologies and prospects for clean power generation[J]. Energies, 2019, 12(21): 4143. |
| 9 | 章建徽, 张子君, 胡羽, 等. 关于超临界CO2-Allam循环及燃烧的研究进展[J]. 中国电机工程学报, 2019, 39(14): 4172-4189. |
| Zhang J H, Zhang Z J, Hu Y, et al. Review on supercritical CO2-Allam cycle and combustion research[J]. Proceedings of the CSEE, 2019, 39(14): 4172-4189. | |
| 10 | 产文, 李会雄, 李熙. 集成有机朗肯循环的Allam-LNG冷电联产系统的热力学分析[J]. 中国电机工程学报, 2023, 43(17): 6688-6698. |
| Chan W, Li H X, Li X. Thermodynamic analysis for the combined cooling and power system of the Allam-LNG cycle integrated with organic Rankine cycle[J]. Proceedings of the CSEE, 2023, 43(17): 6688-6698. | |
| 11 | Xin T T, Xu C, Liu Y H, et al. Thermodynamic analysis of a novel zero carbon emission coal-based polygeneration system incorporating methanol synthesis and Allam power cycle[J]. Energ. Convers. Manage., 2021, 244: 114441. |
| 12 | Zhou Y R, Xu Z F, Zhang J F, et al. Development and techno-economic evaluation of coal to ethylene glycol process and Allam power cycle and carbon capture and storage and integration process[J]. Fuel, 2023, 332: 126121. |
| 13 | Scaccabarozzi R, Gatti M, Martelli E. Thermodynamic analysis and numerical optimization of the NET Power oxy-combustion cycle[J]. Appl. Energ., 2016, 178: 505-526. |
| 14 | Haseli Y, Sifat N S. Performance modeling of Allam cycle integrated with a cryogenic air separation process[J]. Comput. Chem. Eng., 2021, 148: 107263. |
| 15 | Hervás G R, Petrakopoulou F. Exergoeconomic analysis of the Allam cycle[J]. Energy Fuels, 2019, 33(8): 7561-7568. |
| 16 | Xin T T, Zhang Y F, Li X K, et al. A novel coal-based Allam cycle coupled to CO2 gasification with improved thermodynamic and economic performance[J]. Energy, 2024, 293: 130704. |
| 17 | Xie M N, Zhou M X, Chen L X, et al. Techno-economic assessment of the modified Allam cycle configurations with multi-stage pump/compressor for efficient operation in hot regions[J]. Energ. Convers. Manage., 2024, 306: 118291. |
| 18 | Rogalev A, Rogalev N, Kindra V, et al. Multi-stream heat exchanger for oxy-fuel combustion power cycle[C]//Proceedings of the 19th Conference on Power System Engineering. Pilsen, Czech Republic, 2020. |
| 19 | Bejan A, Tsatsaronis G, Moran M. Thermal Design and Optimization[M]. New York: John Wiley & Sons, 1995. |
| 20 | Chan W, Li H X, Li X, et al. Exergoeconomic analysis and optimization of the Allam cycle with liquefied natural gas cold exergy utilization[J]. Energ. Convers. Manage., 2021, 235: 113972. |
| 21 | Zhao P, Wang J F, Dai Y P, et al. Thermodynamic analysis of a hybrid energy system based on CAES system and CO2 transcritical power cycle with LNG cold energy utilization[J]. Appl. Therm. Eng., 2015, 91: 718-730. |
| 22 | Iwai Y, Itoh M, Morisawa Y, et al. Development approach to the combustor of gas turbine for oxyfuel, supercritical CO2 cycle[C]//Proceedings of the ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. Montreal, Canada, 2015. |
| 23 | Weiland N T, White C W. Techno-economic analysis of an integrated gasification direct-fired supercritical CO2 power cycle[J]. Fuel, 2018, 212: 613-625. |
| 24 | Weiland N T, Lance B W, Pidaparti S R. SCO2 power cycle component cost correlations from DOE data spanning multiple scales and applications[C]//Proceedings of the ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. Phoenix, USA, 2019. |
| 25 | Brun K, Friedman P, Dennis R. Fundamentals and Applications of Supercritical Carbon Dioxide (sCO2) Based Power Cycles[M]. Cambridge, UK: Woodhead Publishing, 2017. |
| 26 | Lee Y D, Ahn K Y, Morosuk T, et al. Exergetic and exergoeconomic evaluation of a solid-oxide fuel-cell-based combined heat and power generation system[J]. Energ. Convers. Manage., 2014, 85: 154-164. |
| 27 | Dorj P. Thermoeconomic analysis of a new geothermal utilization CHP plant in Tsetserleg, Mongolia [D]. Reykjavík, Iceland: United Nations University, 2005. |
| 28 | Campanari S, Chiesa P, Manzolini G, et al. Economic analysis of CO2 capture from natural gas combined cycles using molten carbonate fuel cells[J]. Appl. Energ., 2014, 130: 562-573. |
| 29 | BP p.l.c. BP Statistical Review of World Energy[R]. London: BP p.l.c., 2022. |
| 30 | Lazzaretto A, Tsatsaronis G. SPECO: a systematic and general methodology for calculating efficiencies and costs in thermal systems[J]. Energy, 2006, 31(8): 1257-1289. |
| 31 | Chan W, Morosuk T, Li X, et al. Exergoeconomic analysis and tri-objective optimization of the Allam cycle co-fired by biomass and natural gas[J]. J. Energy Resour. Technol., 2023, 145(12): 122101. |
| [1] | 吴罗长, 杨泽宇, 颜建国, 朱旭涛, 陈阳, 王子辰. 微小方形通道内近超临界压力二氧化碳流动换热特性实验研究[J]. 化工学报, 2025, 76(4): 1583-1594. |
| [2] | 戴文智, 沈雄健, 宋晓博, 杨新乐. 生物质双级蒸发双回热有机朗肯循环系统环境分析[J]. 化工学报, 2025, 76(3): 1230-1242. |
| [3] | 李京润, 杨思宇, 刘庆辉, 潘安, 王嘉岳, 符小贵, 余皓. 大规模风电耦合火电制氢多情景下不同运行策略分析[J]. 化工学报, 2025, 76(3): 1191-1206. |
| [4] | 宫政, 高秀鲁, 赵玲, 胡冬冬. 超临界CO2发泡PBAT/PLA复合材料及其形状记忆性能[J]. 化工学报, 2025, 76(2): 888-896. |
| [5] | 刘萍, 邱雨生, 李世婧, 孙瑞奇, 申晨. 微通道内纳米流体传热流动特性[J]. 化工学报, 2025, 76(1): 184-197. |
| [6] | 董新宇, 边龙飞, 杨怡怡, 张宇轩, 刘璐, 王腾. 冷却条件下倾斜上升管S-CO2流动与传热特性研究[J]. 化工学报, 2024, 75(S1): 195-205. |
| [7] | 任冠宇, 张义飞, 李新泽, 杜文静. 翼型印刷电路板式换热器流动传热特性数值研究[J]. 化工学报, 2024, 75(S1): 108-117. |
| [8] | 曾港, 陈林, 杨董, 袁海专, 黄彦平. 矩形通道内超临界CO2局部热流场可视化实验[J]. 化工学报, 2024, 75(8): 2831-2839. |
| [9] | 李子扬, 郑楠, 方嘉宾, 魏进家. 再压缩S-CO2布雷顿循环性能分析及多目标优化[J]. 化工学报, 2024, 75(6): 2143-2156. |
| [10] | 江洋, 彭长宏, 陈伟, 周豪, 马忠彬, 李洪博, 邱在容, 张国鹏, 周康根. 废旧磷酸铁锂粉料综合回收中试研究[J]. 化工学报, 2024, 75(6): 2353-2361. |
| [11] | 朱芝, 许恒杰, 陈维, 毛文元, 邓强国, 孙雪剑. 超临界二氧化碳螺旋槽干气密封热流耦合润滑临界阻塞特性研究[J]. 化工学报, 2024, 75(2): 604-615. |
| [12] | 江澳翔, 陈源, 李运堂, 江锦波, 彭旭东, 章聪, 王冰清. 微间隙高速流体效应对箔片柱面气膜密封性能的影响[J]. 化工学报, 2024, 75(10): 3691-3704. |
| [13] | 王迪, 崔颖晗, 孙灵芳, 周云龙. 超临界二氧化碳混合工质储能系统热力学分析[J]. 化工学报, 2024, 75(10): 3414-3423. |
| [14] | 邵明成, 潘玉贵, 王增丽, 赵强. CO2/CH4混合物理论跨临界增压过程的热力性能研究[J]. 化工学报, 2024, 75(10): 3742-3751. |
| [15] | 张泽欣, 郑伟中, 徐益升, 胡冬冬, 卓欣宇, 宗原, 孙伟振, 赵玲. 超临界二氧化碳介质中晶圆清洗与选择性刻蚀研究进展[J]. 化工学报, 2024, 75(1): 110-119. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号