• •
收稿日期:
2024-06-07
修回日期:
2024-08-12
出版日期:
2024-09-02
通讯作者:
蔡畅
作者简介:
陈晗(1994—),男,博士研究生,dldlch@mail.dlut.edu.cn
基金资助:
Han CHEN1(), Chang CAI2(), Hong LIU1, Hongchao YIN1
Received:
2024-06-07
Revised:
2024-08-12
Online:
2024-09-02
Contact:
Chang CAI
摘要:
以纯水和低浓度正戊醇-水溶液为工质开展喷雾冷却传热性能实验研究,并探究正戊醇添加剂对喷雾场内冷却工质的液滴Sauter平均直径、液滴数量以及体积通量空间分布特性的影响规律。结果表明少量正戊醇添加剂可显著提高纯水喷雾冷却传热性能,但强化传热效果随着正戊醇浓度的提高呈现先增强后减弱的趋势。相比纯水工质,混合溶液的喷雾液滴数量增加,Sauter平均直径降低,体积通量提高,三者共同作用导致喷雾冷却换热性能的提升。然而,正戊醇较低的比定压热容、热导率和汽化潜热会对换热产生不利影响。在上述强化传热与削弱传热两种机制的共同作用下,本文实验结果表明体积分数为1.0%的正戊醇-水喷雾冷却传热效果最佳。
中图分类号:
陈晗, 蔡畅, 刘红, 尹洪超. 正戊醇添加剂强化喷雾冷却传热实验研究[J]. 化工学报, DOI: 10.11949/0438-1157.20240641.
Han CHEN, Chang CAI, Hong LIU, Hongchao YIN. Experimental investigation on spray cooling heat transfer enhancement by n-pentanol additive[J]. CIESC Journal, DOI: 10.11949/0438-1157.20240641.
研究者 | 醇类种类及浓度 |
---|---|
混和工质喷雾冷却传热性能低于纯水 | |
陈东芳[ | 10~90 mol.%乙醇 |
Lin等[ | 20~50 vol.%甲醇 |
Obuladinne和Bostanci[ | 25~87.9 wt.%异丙醇① |
Turek等[ | 50 vol%丙二醇 |
Wang等[ | 1~20 wt.%乙二醇 |
Zhou等[ | 20~80 wt.%乙二醇 |
醇类强化喷雾冷却传热性能,并且存在最佳浓度 | |
Bhatt等[ | 0.01~0.07 wt.%乙醇② |
Cheng等[ | 0.01~0.04 wt.%正辛醇、2-乙基己醇 |
Karpov等[ | 3~96%乙醇③ |
Liu等[ | 2~10 vol.%乙醇、正丙醇、异丙醇 |
Ravikumar等[ | 0.01~0.07 wt.%乙醇④ |
Zhang等[ | 0.01~0.05 wt.%正庚醇、正辛醇 0.01~0.05 wt.%异辛醇、正癸醇 |
表1 醇类添加剂对喷雾冷却传热性能影响的实验研究汇总
Table 1 Summary of experimental studies on alcohol additive effect on spray cooling heat transfer performance
研究者 | 醇类种类及浓度 |
---|---|
混和工质喷雾冷却传热性能低于纯水 | |
陈东芳[ | 10~90 mol.%乙醇 |
Lin等[ | 20~50 vol.%甲醇 |
Obuladinne和Bostanci[ | 25~87.9 wt.%异丙醇① |
Turek等[ | 50 vol%丙二醇 |
Wang等[ | 1~20 wt.%乙二醇 |
Zhou等[ | 20~80 wt.%乙二醇 |
醇类强化喷雾冷却传热性能,并且存在最佳浓度 | |
Bhatt等[ | 0.01~0.07 wt.%乙醇② |
Cheng等[ | 0.01~0.04 wt.%正辛醇、2-乙基己醇 |
Karpov等[ | 3~96%乙醇③ |
Liu等[ | 2~10 vol.%乙醇、正丙醇、异丙醇 |
Ravikumar等[ | 0.01~0.07 wt.%乙醇④ |
Zhang等[ | 0.01~0.05 wt.%正庚醇、正辛醇 0.01~0.05 wt.%异辛醇、正癸醇 |
设备信息 | 制造厂家 | 型号 | 铭牌值 |
---|---|---|---|
数据采集器 | Agilent | 34972A | - |
直流电源 | Keysight Technology | N5769A | 0~1500 W |
PDIA | LaVision GmbH | LPU550 | - |
实心喷嘴 | Spraying Systems | TG 0.3 | - |
流量计 | Asmik | LFT-MIK-2 | 2.1~90 L/h |
压力传感器 | Asmik | MIK-P300 | 0~0.6 MPa |
变频离心泵 | Taiwan Sanmiao Pump | SMI 5-6T | 0~0.5 MPa |
热电偶 | Omega | GG-K-30 | -200~800 °C |
表2 主要实验装置信息
Table 2 Detailed information of experimental devices
设备信息 | 制造厂家 | 型号 | 铭牌值 |
---|---|---|---|
数据采集器 | Agilent | 34972A | - |
直流电源 | Keysight Technology | N5769A | 0~1500 W |
PDIA | LaVision GmbH | LPU550 | - |
实心喷嘴 | Spraying Systems | TG 0.3 | - |
流量计 | Asmik | LFT-MIK-2 | 2.1~90 L/h |
压力传感器 | Asmik | MIK-P300 | 0~0.6 MPa |
变频离心泵 | Taiwan Sanmiao Pump | SMI 5-6T | 0~0.5 MPa |
热电偶 | Omega | GG-K-30 | -200~800 °C |
实验条件 | 数值 |
---|---|
环境温度/℃ | 30 |
工质温度/℃ | 25 |
喷雾高度/mm | 32 |
喷雾压力/MPa | 0.3 |
体积流量/L·h-1 | 15.78 |
喷孔直径/mm | 0.51 |
喷雾锥角/° | 60 |
表3 喷雾冷却实验工况
Table 3 Experimental conditions of spray cooling
实验条件 | 数值 |
---|---|
环境温度/℃ | 30 |
工质温度/℃ | 25 |
喷雾高度/mm | 32 |
喷雾压力/MPa | 0.3 |
体积流量/L·h-1 | 15.78 |
喷孔直径/mm | 0.51 |
喷雾锥角/° | 60 |
参数 | 不确定度计算公式 | 数值 |
---|---|---|
热通量 | Max. 4.64% | |
壁面温度 | Max. 3.81% | |
传热系数 | Max. 7.16% | |
体积通量 | Max. 6.72% |
表4 主要实验参数的不确定度分析
Table 4 Uncertainty analysis of involved parameters
参数 | 不确定度计算公式 | 数值 |
---|---|---|
热通量 | Max. 4.64% | |
壁面温度 | Max. 3.81% | |
传热系数 | Max. 7.16% | |
体积通量 | Max. 6.72% |
物性参数 | 纯水 | 1.0 vol.% | 2.0 vol.% |
---|---|---|---|
ρ/kg·m-3 | 995.0 | 993.2 | 991.4 |
μ/mPa·s | 0.9125 | 0.9146 | 0.9167 |
σ/mN·m-1 | 72.74 | 43.92 | 32.58 |
cp /J·kg-1·℃-1 | 4184.5 | 4169.6 | 4154.8 |
k/W·m-1·℃-1 | 0.6063 | 0.5999 | 0.5936 |
Tsat/℃ | 100.0 | 98.9 | 97.9 |
表5 室温常压下的冷却工质物性参数
Table 5 Thermophysical properties of working liquids at room temperature and atmospheric pressure
物性参数 | 纯水 | 1.0 vol.% | 2.0 vol.% |
---|---|---|---|
ρ/kg·m-3 | 995.0 | 993.2 | 991.4 |
μ/mPa·s | 0.9125 | 0.9146 | 0.9167 |
σ/mN·m-1 | 72.74 | 43.92 | 32.58 |
cp /J·kg-1·℃-1 | 4184.5 | 4169.6 | 4154.8 |
k/W·m-1·℃-1 | 0.6063 | 0.5999 | 0.5936 |
Tsat/℃ | 100.0 | 98.9 | 97.9 |
1 | 齐文亮, 赵亮, 王婉人, 等. 高热通量电子设备液冷技术研究进展[J]. 科学技术与工程, 2022, 22(11): 4261-4270. |
Qi W L, Zhao L, Wang W R, et al. Research progress of high heat flux electronic devices liquid cooling technology[J]. Science Technology and Engineering, 2022, 22(11): 4261-4270. | |
2 | Chen H, Ruan X H, Peng Y H, et al. Application status and prospect of spray cooling in electronics and energy conversion industries[J]. Sustainable Energy Technologies and Assessments, 2022, 52: 102181. |
3 | Yin J, Wang S M, Sang X H, et al. Spray cooling as a high-efficient thermal management solution: a review[J]. Energies, 2022, 15(22): 8547. |
4 | Zhang Z, Li J, Jiang P X. Experimental investigation of spray cooling on flat and enhanced surfaces[J]. Applied Thermal Engineering, 2013, 51(1/2): 102-111. |
5 | Cheng W L, Zhang W W, Jiang L J, et al. Experimental investigation of large area spray cooling with compact chamber in the non-boiling regime[J]. Applied Thermal Engineering, 2015, 80: 160-167. |
6 | Wang X S, Chen B, Zhou Z F. Atomization and surface heat transfer characteristics of cryogen spray cooling with expansion-chambered nozzles[J]. International Journal of Heat and Mass Transfer, 2018, 121: 15-27. |
7 | Lamini O, Wu R, Zhao C Y, et al. Enhanced heat spray cooling with a moving nozzle[J]. Applied Thermal Engineering, 2018, 141: 921-927. |
8 | Bandaru S V R, Villanueva W, Thakre S, et al. Multi-nozzle spray cooling of a reactor pressure vessel steel plate for the application of ex-vessel cooling[J]. Nuclear Engineering and Design, 2021, 375: 111101. |
9 | Xu R N, Cao L, Wang G Y, et al. Experimental investigation of closed loop spray cooling with micro- and hybrid micro-/ nano-engineered surfaces[J]. Applied Thermal Engineering, 2020, 180: 115697. |
10 | Kim J H, You S M, Choi S U S. Evaporative spray cooling of plain and microporous coated surfaces[J]. International Journal of Heat and Mass Transfer, 2004, 47(14/15/16): 3307-3315. |
11 | Huang J L, Zhou Q, Yuan L L, et al. Experimental investigation of spray cooling performance in non-boiling zone on rough superhydrophilic/hydrophobic surfaces[J]. International Journal of Energy Research, 2022, 46(14): 19566-19573. |
12 | Costa T, Martins J, Brito F P, et al. The effect of ambient pressure on the heat transfer of a water spray[J]. Applied Thermal Engineering, 2019, 152: 490-498. |
13 | Yoshida K I, Abe Y, Oka T, et al. Spray cooling under reduced gravity condition[J]. Journal of Heat Transfer, 2001, 123(2): 309-318. |
14 | Riaz Siddiqui F, Tso C Y, Qiu H H, et al. Hybrid nanofluid spray cooling performance and its residue surface effects: Toward thermal management of high heat flux devices[J]. Applied Thermal Engineering, 2022, 211: 118454. |
15 | Cheng W L, Xie B, Han F Y, et al. An experimental investigation of heat transfer enhancement by addition of high-alcohol surfactant (HAS) and dissolving salt additive (DSA) in spray cooling[J]. Experimental Thermal and Fluid Science, 2013, 45: 198-202. |
16 | 许浩洁, 王军锋, 田加猛, 等. 不同雾化模式下乙醇静电喷雾冷却换热特性[J]. 工程热物理学报, 2021, 42(10): 2559-2565. |
Xu H J, Wang J F, Tian J M, et al. Effects of spray mode on electrospray cooling heat transfer of ethanol[J]. Journal of Engineering Thermophysics, 2021, 42(10): 2559-2565. | |
17 | Kim Y, Jung S, Kim S, et al. Heat transfer performance of water-based electrospray cooling[J]. International Communications in Heat and Mass Transfer, 2020, 118: 104861. |
18 | 李俊, 黎仕华, 孙志高, 等. 超声对无沸腾区浸液式喷雾冷却的影响研究[J]. 化工学报, 2022, 73(4): 1566-1574. |
Li J, Li S H, Sun Z G, et al. Study on effect of ultrasound for immersed spray cooling in non-boiling regime[J]. CIESC Journal, 2022, 73(4): 1566-1574. | |
19 | Wang J X, Li Y Z, Li J X, et al. Enhanced heat transfer by an original immersed spray cooling system integrated with an ejector[J]. Energy, 2018, 158: 512-523. |
20 | 陈东芳. 微槽群表面的喷雾冷却研究[D]. 北京: 中国科学院工程热物理研究所, 2010. |
Chen D F. Investigation of microgrooved surface spray cooling[D]. Beijing: Institute of Engineering Thermophysics, Chinese Academy of Sciences, 2010. | |
21 | Lin L C, Harris R, Lawson J, et al. Spray cooling with methanol and water mixtures[C]//9th AIAA/ASME Joint Thermophysics and Heat Transfer Conference. 05 June 2006 - 08 June 2006, San Francisco, California. Reston, Virginia: AIAA, 2006: 3410. |
22 | Obuladinne S S, Bostanci H. Two-phase spray cooling with water/2-propanol binary mixture: investigation of mass diffusion resistance[C]//ASME 2016 International Mechanical Engineering Congress and Exposition, November 11–17, 2016, Phoenix, Arizona, USA. 2017 |
23 | Turek L J, Rini D P, Saarloos B A, et al. Enabling much higher power densities in aerospace power electronics with high temperature evaporative spray cooling[C]//SAE Technical Paper Series. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2008: 01-2919. |
24 | Wang Y, Zhou N Y, Yang Z, et al. Experimental investigation of aircraft spray cooling system with different heating surfaces and different additives[J]. Applied Thermal Engineering, 2016, 103: 510-521. |
25 | Zhou N Y, Feng H, Guo Y X, et al. Experimental study on the spray cooling heat transfer performance and dimensionless correlations for ethylene glycol water solution[J]. Applied Thermal Engineering, 2022, 214: 118824. |
26 | Bhatt N H, Lily, Raj R, et al. Enhancement of heat transfer rate of high mass flux spray cooling by ethanol-water and ethanol-tween20-water solution at very high initial surface temperature[J]. International Journal of Heat and Mass Transfer, 2017, 110: 330-347. |
27 | Karpov P N, Nazarov A D, Serov A F, et al. Evaporative cooling by a pulsed jet spray of binary ethanol-water mixture[J]. Technical Physics Letters, 2015, 41(7): 668-671. |
28 | Liu H, Cai C, Yin H C, et al. Experimental investigation on heat transfer of spray cooling with the mixture of ethanol and water[J]. International Journal of Thermal Sciences, 2018, 133: 62-68. |
29 | Liu H, Cai C, Jia M, et al. Experimental investigation on spray cooling with low-alcohol additives[J]. Applied Thermal Engineering, 2019, 146: 921-930. |
30 | Ravikumar S V, Jha J M, Sarkar I, et al. Enhancement of heat transfer rate in air-atomized spray cooling of a hot steel plate by using an aqueous solution of non-ionic surfactant and ethanol[J]. Applied Thermal Engineering, 2014, 64(1/2): 64-75. |
31 | Zhang W W, Li Y Y, Long W J, et al. Enhancement mechanism of high alcohol surfactant on spray cooling: Experimental study[J]. International Journal of Heat and Mass Transfer, 2018, 126: 363-376. |
32 | Chen R H, Chow L C, Navedo J E. Optimal spray characteristics in water spray cooling[J]. International Journal of Heat and Mass Transfer, 2004, 47(23): 5095-5099. |
33 | Li Y Y, Zhao R, Long W J, et al. Theoretical study of heat transfer enhancement mechanism of high alcohol surfactant in spray cooling[J]. International Journal of Thermal Sciences, 2021, 163: 106816. |
34 | Li H, Zhang F Y, Zhang Q L, et al. Measurement and correlation of the liquid–liquid equilibrium for the quaternary system n-butanol + n-pentanol + n-hexanol + water at 313.15, 323.15, and 333.15 K[J]. Journal of Chemical & Engineering Data, 2022, 67(9): 2556-2562. |
35 | 张伟. 微槽表面喷雾冷却换热特性研究[D]. 山东: 中国石油大学(华东), 2013. |
Zhang W. Investigation of heat transfer characteristics of spray cooling on micro-grooved surfaces[D]. Shandong: China University of Petroleum (East China), 2013. |
[1] | 陈引, 赵霄, 杜王芳, 杨竹强, 李凯, 赵建福. 喷雾冷却液膜流动特性测试方案优化及传热规律分析[J]. 化工学报, 2024, 75(8): 2734-2743. |
[2] | 王皓宇, 杨杨, 荆文婕, 杨斌, 唐雨, 刘毅. 不同旋流器作用下气液螺旋环状流动特性研究[J]. 化工学报, 2024, 75(8): 2744-2755. |
[3] | 朱子良, 王爽, 姜宇昂, 林梅, 王秋旺. 欧拉-拉格朗日迭代固-液相变算法[J]. 化工学报, 2024, 75(8): 2763-2776. |
[4] | 赵亮, 李雨桥, 张德, 沈胜强. 螺旋喷嘴内外流场特性的实验研究[J]. 化工学报, 2024, 75(8): 2777-2786. |
[5] | 罗正航, 李敬宇, 陈伟雄, 种道彤, 严俊杰. 摇摆运动下低流率蒸汽冷凝换热特性和气泡受力数值模拟[J]. 化工学报, 2024, 75(8): 2800-2811. |
[6] | 王倩倩, 李冰, 郑伟波, 崔国民, 赵兵涛, 明平文. 氢燃料电池局部动态特征三维模型[J]. 化工学报, 2024, 75(8): 2812-2820. |
[7] | 毛宇飞, 曹飞, 上官燕琴. 超临界压力流体管内湍流对流传热的计算方法[J]. 化工学报, 2024, 75(8): 2821-2830. |
[8] | 曾港, 陈林, 杨董, 袁海专, 黄彦平. 矩形通道内超临界CO2局部热流场可视化实验[J]. 化工学报, 2024, 75(8): 2831-2839. |
[9] | 曲玖哲, 杨鹏, 杨绪飞, 张伟, 宇波, 孙东亮, 王晓东. 硅基微柱簇阵列微通道流动沸腾实验研究[J]. 化工学报, 2024, 75(8): 2840-2851. |
[10] | 李倩, 张蓉民, 林子杰, 战琪, 蔡伟华. 基于机器学习的印刷电路板式换热器流动换热预测与仿真[J]. 化工学报, 2024, 75(8): 2852-2864. |
[11] | 李彦熹, 王晔春, 谢向东, 王进芝, 王江, 周煜, 潘盈秀, 丁文涛, 郭烈锦. 蜗壳式多通道气液旋流分离器结构优化及分离特性研究[J]. 化工学报, 2024, 75(8): 2875-2885. |
[12] | 吕方明, 包志铭, 王博文, 焦魁. 气体扩散层侵入流道对燃料电池水管理影响研究[J]. 化工学报, 2024, 75(8): 2929-2938. |
[13] | 罗小平, 侯云天, 范一杰. 逆流相分离结构微细通道流动沸腾传热与均温性[J]. 化工学报, 2024, 75(7): 2474-2485. |
[14] | 杨锦蕊, 郑宏飞, 马兴龙, 金日辉, 梁深. 两级叠置式加湿除湿海水淡化装置性能研究[J]. 化工学报, 2024, 75(7): 2446-2454. |
[15] | 余清杰, 杨洪海, 刘玉浩, 方海洲, 何伟琪, 王军, 卢心诚. 脉动热管温度信号的小波分析及流型识别[J]. 化工学报, 2024, 75(7): 2497-2504. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 216
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 39
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||