化工学报 ›› 2025, Vol. 76 ›› Issue (1): 131-140.DOI: 10.11949/0438-1157.20240641
收稿日期:
2024-06-07
修回日期:
2024-08-12
出版日期:
2025-01-25
发布日期:
2025-02-08
通讯作者:
蔡畅
作者简介:
陈晗(1994—),男,博士,Hana.Chen@foxmail.com
基金资助:
Han CHEN1(), Chang CAI2(
), Hong LIU1, Hongchao YIN1
Received:
2024-06-07
Revised:
2024-08-12
Online:
2025-01-25
Published:
2025-02-08
Contact:
Chang CAI
摘要:
以纯水和低浓度正戊醇-水溶液为工质开展喷雾冷却传热性能实验研究,并探究正戊醇添加剂对喷雾场内冷却工质的液滴Sauter平均直径、液滴数量以及体积通量空间分布特性的影响规律。结果表明少量正戊醇添加剂可显著提高纯水喷雾冷却传热性能,但强化传热效果随着正戊醇浓度的提高呈现先增强后减弱的趋势。相比纯水工质,混合溶液的喷雾液滴数量增加,Sauter平均直径降低,体积通量提高,三者共同作用导致喷雾冷却换热性能的提升。然而,正戊醇较低的比定压热容、热导率和汽化潜热会对换热产生不利影响。在上述强化传热与削弱传热两种机制的共同作用下,实验结果表明体积分数为1.0%的正戊醇-水喷雾冷却传热效果最佳。
中图分类号:
陈晗, 蔡畅, 刘红, 尹洪超. 正戊醇添加剂强化喷雾冷却传热实验研究[J]. 化工学报, 2025, 76(1): 131-140.
Han CHEN, Chang CAI, Hong LIU, Hongchao YIN. Experimental investigation on spray cooling heat transfer enhancement by n-pentanol additive[J]. CIESC Journal, 2025, 76(1): 131-140.
醇类种类及浓度 | 文献 |
---|---|
混合工质喷雾冷却传热性能低于纯水 | |
10%~90%(摩尔分数)乙醇 | [ |
20%~50%(体积分数)甲醇 | [ |
25%~87.9%(质量分数)异丙醇① | [ |
50%(体积分数)丙二醇 | [ |
1%~20%(质量分数)乙二醇 | [ |
20%~80%(质量分数)乙二醇 | [ |
醇类强化喷雾冷却传热性能,并且存在最佳浓度 | |
0.01%~0.07%(质量分数)乙醇② | [ |
0.01%~0.04%(质量分数)正辛醇、2-乙基己醇 | [ |
3%~96%乙醇③ | [ |
2%~10%(体积分数)乙醇、正丙醇、异丙醇 | [ |
0.01%~0.07%(质量分数)乙醇④ | [ |
0.01%~0.05%(质量分数)正庚醇、正辛醇 0.01%~0.05%(质量分数)异辛醇、正癸醇 | [ [ |
表1 醇类添加剂对喷雾冷却传热性能影响的实验研究汇总
Table 1 Summary of experimental studies on alcohol additive effect on spray cooling heat transfer performance
醇类种类及浓度 | 文献 |
---|---|
混合工质喷雾冷却传热性能低于纯水 | |
10%~90%(摩尔分数)乙醇 | [ |
20%~50%(体积分数)甲醇 | [ |
25%~87.9%(质量分数)异丙醇① | [ |
50%(体积分数)丙二醇 | [ |
1%~20%(质量分数)乙二醇 | [ |
20%~80%(质量分数)乙二醇 | [ |
醇类强化喷雾冷却传热性能,并且存在最佳浓度 | |
0.01%~0.07%(质量分数)乙醇② | [ |
0.01%~0.04%(质量分数)正辛醇、2-乙基己醇 | [ |
3%~96%乙醇③ | [ |
2%~10%(体积分数)乙醇、正丙醇、异丙醇 | [ |
0.01%~0.07%(质量分数)乙醇④ | [ |
0.01%~0.05%(质量分数)正庚醇、正辛醇 0.01%~0.05%(质量分数)异辛醇、正癸醇 | [ [ |
设备信息 | 制造厂家 | 型号 | 铭牌值 |
---|---|---|---|
数据采集器 | Agilent | 34972A | — |
直流电源 | Keysight Technology | N5769A | 0~1500 W |
PDIA | LaVision GmbH | LPU550 | — |
实心喷嘴 | Spraying Systems | TG 0.3 | — |
流量计 | Asmik | LFT-MIK-2 | 2.1~90 L·h-1 |
压力传感器 | Asmik | MIK-P300 | 0~0.6 MPa |
变频离心泵 | Taiwan Sanmiao Pump | SMI 5-6T | 0~0.5 MPa |
热电偶 | Omega | GG-K-30 | -200~800℃ |
表2 主要实验装置信息
Table 2 Detailed information of experimental devices
设备信息 | 制造厂家 | 型号 | 铭牌值 |
---|---|---|---|
数据采集器 | Agilent | 34972A | — |
直流电源 | Keysight Technology | N5769A | 0~1500 W |
PDIA | LaVision GmbH | LPU550 | — |
实心喷嘴 | Spraying Systems | TG 0.3 | — |
流量计 | Asmik | LFT-MIK-2 | 2.1~90 L·h-1 |
压力传感器 | Asmik | MIK-P300 | 0~0.6 MPa |
变频离心泵 | Taiwan Sanmiao Pump | SMI 5-6T | 0~0.5 MPa |
热电偶 | Omega | GG-K-30 | -200~800℃ |
实验条件 | 数值 |
---|---|
环境温度/℃ | 30 |
工质温度/℃ | 25 |
喷雾高度/mm | 32 |
喷雾压力/MPa | 0.3 |
体积流量/(L·h-1) | 15.78 |
喷孔直径/mm | 0.51 |
喷雾锥角/(°) | 60 |
表3 喷雾冷却实验工况
Table 3 Experimental conditions of spray cooling
实验条件 | 数值 |
---|---|
环境温度/℃ | 30 |
工质温度/℃ | 25 |
喷雾高度/mm | 32 |
喷雾压力/MPa | 0.3 |
体积流量/(L·h-1) | 15.78 |
喷孔直径/mm | 0.51 |
喷雾锥角/(°) | 60 |
参数 | 不确定度计算公式 | 数值 |
---|---|---|
热通量 | Max. 4.64% | |
壁面温度 | Max. 3.81% | |
传热系数 | Max. 7.16% | |
体积通量 | Max. 6.72% |
表4 主要实验参数的不确定度分析
Table 4 Uncertainty analysis of involved parameters
参数 | 不确定度计算公式 | 数值 |
---|---|---|
热通量 | Max. 4.64% | |
壁面温度 | Max. 3.81% | |
传热系数 | Max. 7.16% | |
体积通量 | Max. 6.72% |
工质 | ρ/(kg·m-3) | μ/(mPa·s) | σ/(mN·m-1) | cp /(J·kg-1·℃-1) | k/(W·m-1·℃-1) | Tsat/℃ |
---|---|---|---|---|---|---|
纯水 | 995.0 | 0.9125 | 72.74 | 4184.5 | 0.6063 | 100.0 |
1.0%(体积)正戊醇 | 993.2 | 0.9146 | 43.92 | 4169.6 | 0.5999 | 98.9 |
2.0%(体积)正戊醇 | 991.4 | 0.9167 | 32.58 | 4154.8 | 0.5936 | 97.9 |
表5 室温常压下的冷却工质物性参数
Table 5 Thermophysical properties of working liquids at room temperature and atmospheric pressure
工质 | ρ/(kg·m-3) | μ/(mPa·s) | σ/(mN·m-1) | cp /(J·kg-1·℃-1) | k/(W·m-1·℃-1) | Tsat/℃ |
---|---|---|---|---|---|---|
纯水 | 995.0 | 0.9125 | 72.74 | 4184.5 | 0.6063 | 100.0 |
1.0%(体积)正戊醇 | 993.2 | 0.9146 | 43.92 | 4169.6 | 0.5999 | 98.9 |
2.0%(体积)正戊醇 | 991.4 | 0.9167 | 32.58 | 4154.8 | 0.5936 | 97.9 |
1 | 齐文亮, 赵亮, 王婉人, 等. 高热通量电子设备液冷技术研究进展[J]. 科学技术与工程, 2022, 22(11): 4261-4270. |
Qi W L, Zhao L, Wang W R, et al. Research progress of high heat flux electronic devices liquid cooling technology[J]. Science Technology and Engineering, 2022, 22(11): 4261-4270. | |
2 | Chen H, Ruan X H, Peng Y H, et al. Application status and prospect of spray cooling in electronics and energy conversion industries[J]. Sustainable Energy Technologies and Assessments, 2022, 52: 102181. |
3 | Yin J, Wang S M, Sang X H, et al. Spray cooling as a high-efficient thermal management solution: a review[J]. Energies, 2022, 15(22): 8547. |
4 | Zhang Z, Li J, Jiang P X. Experimental investigation of spray cooling on flat and enhanced surfaces[J]. Applied Thermal Engineering, 2013, 51(1/2): 102-111. |
5 | Cheng W L, Zhang W W, Jiang L J, et al. Experimental investigation of large area spray cooling with compact chamber in the non-boiling regime[J]. Applied Thermal Engineering, 2015, 80: 160-167. |
6 | Wang X S, Chen B, Zhou Z F. Atomization and surface heat transfer characteristics of cryogen spray cooling with expansion-chambered nozzles[J]. International Journal of Heat and Mass Transfer, 2018, 121: 15-27. |
7 | Lamini O, Wu R, Zhao C Y, et al. Enhanced heat spray cooling with a moving nozzle[J]. Applied Thermal Engineering, 2018, 141: 921-927. |
8 | Bandaru S V R, Villanueva W, Thakre S, et al. Multi-nozzle spray cooling of a reactor pressure vessel steel plate for the application of ex-vessel cooling[J]. Nuclear Engineering and Design, 2021, 375: 111101. |
9 | Xu R N, Cao L, Wang G Y, et al. Experimental investigation of closed loop spray cooling with micro- and hybrid micro-/ nano-engineered surfaces[J]. Applied Thermal Engineering, 2020, 180: 115697. |
10 | Kim J H, You S M, Choi S U S. Evaporative spray cooling of plain and microporous coated surfaces[J]. International Journal of Heat and Mass Transfer, 2004, 47(14/15/16): 3307-3315. |
11 | Huang J L, Zhou Q, Yuan L L, et al. Experimental investigation of spray cooling performance in non-boiling zone on rough superhydrophilic/hydrophobic surfaces[J]. International Journal of Energy Research, 2022, 46(14): 19566-19573. |
12 | Costa T, Martins J, Brito F P, et al. The effect of ambient pressure on the heat transfer of a water spray[J]. Applied Thermal Engineering, 2019, 152: 490-498. |
13 | Yoshida K I, Abe Y, Oka T, et al. Spray cooling under reduced gravity condition[J]. Journal of Heat Transfer, 2001, 123(2): 309-318. |
14 | Riaz Siddiqui F, Tso C Y, Qiu H H, et al. Hybrid nanofluid spray cooling performance and its residue surface effects: toward thermal management of high heat flux devices[J]. Applied Thermal Engineering, 2022, 211: 118454. |
15 | Cheng W L, Xie B, Han F Y, et al. An experimental investigation of heat transfer enhancement by addition of high-alcohol surfactant (HAS) and dissolving salt additive (DSA) in spray cooling[J]. Experimental Thermal and Fluid Science, 2013, 45: 198-202. |
16 | 许浩洁, 王军锋, 田加猛, 等. 不同雾化模式下乙醇静电喷雾冷却换热特性[J]. 工程热物理学报, 2021, 42(10): 2559-2565. |
Xu H J, Wang J F, Tian J M, et al. Effects of spray mode on electrospray cooling heat transfer of ethanol[J]. Journal of Engineering Thermophysics, 2021, 42(10): 2559-2565. | |
17 | Kim Y, Jung S, Kim S, et al. Heat transfer performance of water-based electrospray cooling[J]. International Communications in Heat and Mass Transfer, 2020, 118: 104861. |
18 | 李俊, 黎仕华, 孙志高, 等. 超声对无沸腾区浸液式喷雾冷却的影响研究[J]. 化工学报, 2022, 73(4): 1566-1574. |
Li J, Li S H, Sun Z G, et al. Study on effect of ultrasound for immersed spray cooling in non-boiling regime[J]. CIESC Journal, 2022, 73(4): 1566-1574. | |
19 | Wang J X, Li Y Z, Li J X, et al. Enhanced heat transfer by an original immersed spray cooling system integrated with an ejector[J]. Energy, 2018, 158: 512-523. |
20 | 陈东芳. 微槽群表面的喷雾冷却研究[D]. 北京: 中国科学院工程热物理研究所, 2010. |
Chen D F. Investigation of microgrooved surface spray cooling[D]. Beijing: Institute of Engineering Thermophysics, Chinese Academy of Sciences, 2010. | |
21 | Lin L C, Harris R, Lawson J, et al. Spray cooling with methanol and water mixtures[C]//9th AIAA/ASME Joint Thermophysics and Heat Transfer Conference. AIAA, 2006: 3410. |
22 | Obuladinne S S, Bostanci H. Two-phase spray cooling with water/2-propanol binary mixture: investigation of mass diffusion resistance[C]//ASME 2016 International Mechanical Engineering Congress and Exposition. Phoenix, Arizona, USA, 2017. |
23 | Turek L J, Rini D P, Saarloos B A, et al. Enabling much higher power densities in aerospace power electronics with high temperature evaporative spray cooling[C]//SAE Technical Paper Series. SAE International, 2008: 01-2919. |
24 | Wang Y, Zhou N Y, Yang Z, et al. Experimental investigation of aircraft spray cooling system with different heating surfaces and different additives[J]. Applied Thermal Engineering, 2016, 103: 510-521. |
25 | Zhou N Y, Feng H, Guo Y X, et al. Experimental study on the spray cooling heat transfer performance and dimensionless correlations for ethylene glycol water solution[J]. Applied Thermal Engineering, 2022, 214: 118824. |
26 | Bhatt N H, Lily, Raj R, et al. Enhancement of heat transfer rate of high mass flux spray cooling by ethanol-water and ethanol-tween20-water solution at very high initial surface temperature[J]. International Journal of Heat and Mass Transfer, 2017, 110: 330-347. |
27 | Karpov P N, Nazarov A D, Serov A F, et al. Evaporative cooling by a pulsed jet spray of binary ethanol-water mixture[J]. Technical Physics Letters, 2015, 41(7): 668-671. |
28 | Liu H, Cai C, Yin H C, et al. Experimental investigation on heat transfer of spray cooling with the mixture of ethanol and water[J]. International Journal of Thermal Sciences, 2018, 133: 62-68. |
29 | Liu H, Cai C, Jia M, et al. Experimental investigation on spray cooling with low-alcohol additives[J]. Applied Thermal Engineering, 2019, 146: 921-930. |
30 | Ravikumar S V, Jha J M, Sarkar I, et al. Enhancement of heat transfer rate in air-atomized spray cooling of a hot steel plate by using an aqueous solution of non-ionic surfactant and ethanol[J]. Applied Thermal Engineering, 2014, 64(1/2): 64-75. |
31 | Zhang W W, Li Y Y, Long W J, et al. Enhancement mechanism of high alcohol surfactant on spray cooling: experimental study[J]. International Journal of Heat and Mass Transfer, 2018, 126: 363-376. |
32 | Chen R H, Chow L C, Navedo J E. Optimal spray characteristics in water spray cooling[J]. International Journal of Heat and Mass Transfer, 2004, 47(23): 5095-5099. |
33 | Li Y Y, Zhao R, Long W J, et al. Theoretical study of heat transfer enhancement mechanism of high alcohol surfactant in spray cooling[J]. International Journal of Thermal Sciences, 2021, 163: 106816. |
34 | Li H, Zhang F Y, Zhang Q L, et al. Measurement and correlation of the liquid-liquid equilibrium for the quaternary system n-butanol + n-pentanol + n-hexanol + water at 313.15, 323.15, and 333.15 K[J]. Journal of Chemical & Engineering Data, 2022, 67(9): 2556-2562. |
35 | 张伟. 微槽表面喷雾冷却换热特性研究[D]. 青岛: 中国石油大学(华东), 2013. |
Zhang W. Investigation of heat transfer characteristics of spray cooling on micro-grooved surfaces[D]. Qingdao: China University of Petroleum, 2013. |
[1] | 黄娜, 蒋云龙, 王东涵, 吴明婷, 蒋雪莉, 钟豫. 通道振动频率对超临界正癸烷裂解流动换热影响的数值研究[J]. 化工学报, 2025, 76(1): 173-183. |
[2] | 刘萍, 邱雨生, 李世婧, 孙瑞奇, 申晨. 微通道内纳米流体传热流动特性[J]. 化工学报, 2025, 76(1): 184-197. |
[3] | 李彦, 郭红利, 苏国庆, 张建文. 加氢装置空冷器气液两相流动与冲刷腐蚀问题[J]. 化工学报, 2025, 76(1): 141-150. |
[4] | 高羡明, 杨汶轩, 卢少辉, 任晓松, 卢方财. 双槽道结构对超疏水表面液滴合并弹跳的影响[J]. 化工学报, 2025, 76(1): 208-220. |
[5] | 李海东, 张奇琪, 杨路, AKRAM Naeem, 常承林, 莫文龙, 申威峰. 采用智能进化算法的管壳式换热器详细设计[J]. 化工学报, 2025, 76(1): 241-255. |
[6] | 任冠宇, 张义飞, 李新泽, 杜文静. 翼型印刷电路板式换热器流动传热特性数值研究[J]. 化工学报, 2024, 75(S1): 108-117. |
[7] | 李焱, 郑利军, 张恩勇, 王云飞. 深水海底管道软管内部流体渗透特性模型与试验研究[J]. 化工学报, 2024, 75(S1): 118-125. |
[8] | 李新泽, 张双星, 任冠宇, 洪瑞, 杜文静. 大功率LED热管理用脉动热管热性能[J]. 化工学报, 2024, 75(S1): 126-134. |
[9] | 董新宇, 边龙飞, 杨怡怡, 张宇轩, 刘璐, 王腾. 冷却条件下倾斜上升管S-CO2流动与传热特性研究[J]. 化工学报, 2024, 75(S1): 195-205. |
[10] | 赵振刚, 周梦瑶, 金典, 张大骋. 基于泡沫碳扩散层的直接甲醇燃料电池改性研究[J]. 化工学报, 2024, 75(S1): 259-266. |
[11] | 徐英宇, 杨国强, 彭璟, 孙海宁, 张志炳. 微界面高级氧化处理煤化工废水的研究[J]. 化工学报, 2024, 75(S1): 283-291. |
[12] | 唐溯, 郑子鏖, 魏翰泽, 许晓玲, 翟晓强. PMMA/PEG600/CNT复合定型相变材料制备与导热强化[J]. 化工学报, 2024, 75(S1): 309-320. |
[13] | 秦思宇, 刘艺佳, 杨佳成, 佟薇, 金立文, 孟祥兆. 受限蒸汽腔内气液两相传热特性研究[J]. 化工学报, 2024, 75(S1): 47-55. |
[14] | 李雨霜, 王兴成, 温伯尧, 骆政园, 白博峰. 多孔介质中乳状液驱油的两相流动过程及其影响因素[J]. 化工学报, 2024, 75(S1): 56-66. |
[15] | 刘律, 刘洁茹, 范亮亮, 赵亮. 基于层流效应的被动式颗粒分离微流控方法研究[J]. 化工学报, 2024, 75(S1): 67-75. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 410
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 108
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||