化工学报 ›› 2024, Vol. 75 ›› Issue (S1): 14-24.DOI: 10.11949/0438-1157.20240473
收稿日期:
2024-04-28
修回日期:
2024-06-11
出版日期:
2024-12-25
发布日期:
2024-12-17
通讯作者:
张滢
作者简介:
袁玲雅(2000—),女,硕士研究生,230620042@fzu.edu.cn
基金资助:
Received:
2024-04-28
Revised:
2024-06-11
Online:
2024-12-25
Published:
2024-12-17
Contact:
Ying ZHANG
摘要:
双碳目标推动下,中国光伏发电规模不断扩大,因而,光伏器件的全生命周期资源环境影响亟待深刻认识。特别是,随着我国早期光伏设备陆续退役,光伏废弃物的处理和处置问题日渐凸显,已成为中国光伏产业绿色可持续发展的关键挑战。通过分析我国光伏产业的发展现状,深入探讨光伏器件生产过程中的资源能源消耗、污染物排放和环境影响,对光伏废弃物资源化利用和潜在环境影响等方面内容展开论述,综合评估我国光伏产业发展对资源环境的影响,并根据我国现有相关政策法规,对光伏产业的绿色低碳发展提出相关建议。
中图分类号:
袁玲雅, 张滢. 中国光伏产业发展及其资源环境影响[J]. 化工学报, 2024, 75(S1): 14-24.
Lingya YUAN, Ying ZHANG. The growth of PV sector in China and its implications for the resource and environmental sustainability[J]. CIESC Journal, 2024, 75(S1): 14-24.
生产环节 | 水电消耗 | 消耗量 | |
---|---|---|---|
多晶硅 | 综合电耗 | 57 kW·h/kg Si | |
水耗 | 0.08 t/kg Si | ||
蒸汽耗量 | 9.1 kg/kg Si | ||
硅片 | 拉棒电耗 | 23.4 kW·h/kg Si | |
铸锭电耗 | 7.8~8.0 kW·h/kg Si | ||
切片电耗 | 800×104 kW·h/片 | ||
水耗 | 870 t/106片 | ||
电池片 | 电耗 | p型PERC | 4.5×104 kW·h/MW |
n型TOPCon | 5.3×104 kW·h/MW | ||
n型异质结 | 4.5×104 kW·h/MW | ||
水耗 | p型PERC | 318 t/MW | |
n型TOPCon | 600 t/MW | ||
n型异质结 | 220 t/MW | ||
组件 | 电耗 | 1.35×104 kW·h/MW |
表1 晶体硅电池生产过程的水耗和能耗[1]
Table 1 Water and energy consumption during the process of crystalline silicon battery fabrication[1]
生产环节 | 水电消耗 | 消耗量 | |
---|---|---|---|
多晶硅 | 综合电耗 | 57 kW·h/kg Si | |
水耗 | 0.08 t/kg Si | ||
蒸汽耗量 | 9.1 kg/kg Si | ||
硅片 | 拉棒电耗 | 23.4 kW·h/kg Si | |
铸锭电耗 | 7.8~8.0 kW·h/kg Si | ||
切片电耗 | 800×104 kW·h/片 | ||
水耗 | 870 t/106片 | ||
电池片 | 电耗 | p型PERC | 4.5×104 kW·h/MW |
n型TOPCon | 5.3×104 kW·h/MW | ||
n型异质结 | 4.5×104 kW·h/MW | ||
水耗 | p型PERC | 318 t/MW | |
n型TOPCon | 600 t/MW | ||
n型异质结 | 220 t/MW | ||
组件 | 电耗 | 1.35×104 kW·h/MW |
回收方法 | 原理 | 优势 | 劣势 | 环境影响 |
---|---|---|---|---|
物理法 | 机械剥离金属边框、破碎玻璃 | 成本低;操作较简单;对环境友好;可以大规模进行 | 回收率和纯度较低,再处理成本高;不能有效 回收重金属;能耗高;机械设备占地面积大 | 处理后的废液收集与处理 难度大 |
化学法 | 使用有机或无机溶剂处理层压件 | 回收率高;回收材料的 完整性好 | 成本较高;反应时间长;回收效率低;存在二次 污染,不利于大规模生产 | 废液量大且难处理,易污染环境 |
热解法 | 在加热条件下,软化、剥离或分解EVA层 | 成本低;回收纯度和回收率较高;玻璃回收完整率高 | 能耗较高;分离后有EVA残留;电池的完整性 不易保证;只能处理厚度大于400 μm的电池片 | 排放大量废气,包含如铬和铅等金属颗粒以及氟化物 |
表2 光伏组件组分分离方法[87-90]
Table 2 Separation method of photovoltaic panels components[87-90]
回收方法 | 原理 | 优势 | 劣势 | 环境影响 |
---|---|---|---|---|
物理法 | 机械剥离金属边框、破碎玻璃 | 成本低;操作较简单;对环境友好;可以大规模进行 | 回收率和纯度较低,再处理成本高;不能有效 回收重金属;能耗高;机械设备占地面积大 | 处理后的废液收集与处理 难度大 |
化学法 | 使用有机或无机溶剂处理层压件 | 回收率高;回收材料的 完整性好 | 成本较高;反应时间长;回收效率低;存在二次 污染,不利于大规模生产 | 废液量大且难处理,易污染环境 |
热解法 | 在加热条件下,软化、剥离或分解EVA层 | 成本低;回收纯度和回收率较高;玻璃回收完整率高 | 能耗较高;分离后有EVA残留;电池的完整性 不易保证;只能处理厚度大于400 μm的电池片 | 排放大量废气,包含如铬和铅等金属颗粒以及氟化物 |
1 | 中国光伏行业协会, 赛迪智库集成电路研究所. 中国光伏产业发展路线图(2023—2024年)[EB/OL]. 2024 [2024-03-31]. . |
China Photovoltaic Industry Association, Integrated Circuit Research Institute, Sidi Think Tank. China PV industry development roadmap 2023—2024[EB/OL]. 2024 [2024-03-31]. . | |
2 | Lincot D. The new paradigm of photovoltaics: from powering satellites to powering humanity[J]. Comptes Rendus Physique, 2017, 18(7/8): 381-390. |
3 | International Renewable Energy Agency. Renewable capacity statistics 2024[EB/OL]. 2024 [2024-04-10]. . |
4 | 傅丽芝. 我国光伏组件报废量预测及回收网络规划研究[D]. 南京: 南京航空航天大学, 2020. |
Fu L Z. Research on forecasting and recycling network planning of PV modules waste in China[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020. | |
5 | 王晨. 中国光伏废弃物回收的潜力预测及资源、环境和经济效益评估研究[D]. 济南: 山东大学, 2023. |
Wang C. Potential forecast resource, environmental, and economic benefits evaluation of photovoltaic waste recycling in China[D]. Jinan: Shandong University, 2023. | |
6 | 央视网. 焦点访谈: 废弃光伏组件流向何处[EB/OL]. 2023 [2024-04-27]. . |
China Network Television. Topics in focus: where are the discarded photovoltaic modules going?[EB/OL]. 2023 [2024-04-27]. . | |
7 | 国家发展改革委. 国家发展改革委等部门关于促进退役风电、光伏设备循环利用的指导意见[EB/OL]. 2023 [2024-04-05]. . |
National Development and Reform Commission. Guidance on promoting the recycling of retired wind power and photovoltaic equipment[EB/OL]. 2023 [2024-04-05]. . | |
8 | Shockley W, Queisser H J. Detailed balance limit of efficiency of p-n junction solar cells[J]. Journal of Applied Physics, 1961, 32(3): 510-519. |
9 | National Renewable Energy Laboratory. Best research cell efficiency chart[EB/OL]. 2023 [2024-03-31]. . |
10 | 王文静, 王斯成. 我国分布式光伏发电的现状与展望[J]. 中国科学院院刊, 2016, 31(2): 165-172. |
Wang W J, Wang S C. Status and prospect of Chinese distributed photovoltaic power generation system[J]. Bulletin of Chinese Academy of Sciences, 2016, 31(2): 165-172. | |
11 | 周凡宇, 曾晋珏, 王学斌. 碳中和目标下电化学储能技术进展及展望[J]. 动力工程学报, 2024, 44(3): 396-405. |
Zhou F Y, Zeng J J, Wang X B. Progress and prospect of electrochemical energy storage for carbon neutralization[J]. Journal of Chinese Society of Power Engineering, 2024, 44(3): 396-405. | |
12 | 张颖业. 新能源电力系统中储能技术的应用[J]. 低碳世界, 2023, 13(5): 73-75. |
Zhang Y Y. Application of energy storage technology in new energy power system[J]. Low Carbon World, 2023, 13(5): 73-75. | |
13 | International Renewable Energy Agency. Renewable energy capacity statistics 2015[EB/OL]. [2024-04-10]. . |
14 | Lin M, Wu Y, Qin B, et al. Response to the upcoming emerging waste: necessity and feasibility analysis of photovoltaic waste recovery in China[J]. Environmental Science & Technology, 2022, 56(23): 17396-17409. |
15 | Zhou Y, Wen J, Zheng Y, et al. Status quo on recycling of waste crystalline silicon for photovoltaic modules and its implications for China's photovoltaic industry[J]. Frontiers in Energy, 2024: 1-14. |
16 | 中国光伏行业协会, 赛迪智库集成电路研究所. 中国光伏产业发展路线图2019[EB/OL]. [2024-03-31]. . |
China Photovoltaic Industry Association, Integrated Circuit Research Institute, Sidi Think Tank. China PV industry development roadmap 2019[EB/OL]. [2024-03-31]. . | |
17 | 中国光伏行业协会, 赛迪智库集成电路研究所. 中国光伏产业发展路线图2015[EB/OL]. [2024-03-31]. . |
China Photovoltaic Industry Association, Integrated Circuit Research Institute, Sidi Think Tank. China PV industry development roadmap 2015[EB/OL]. [2024-03-31]. . | |
18 | BP. BP statistical review of world energy 2023.[EB/OL]. 2023 [2024-03-31]. . |
19 | 刘宝章, 刘泽顺. 光伏项目环境影响评价的要点分析[J]. 资源节约与环保, 2016(9): 145,166. |
Liu B Z, Liu Z S. Key points of environmental impact assessment of photovoltaic projets[J]. Resources Economization & Environmental Protection, 2016(9): 145,166. | |
20 | 赵彦军. 光伏电站对生态环境的影响与相关对策[J]. 环境与发展, 2020, 32(11): 25-26. |
Zhao Y J. Impact of photovoltaic power stations on ecological environment and relevant countermeasures[J]. Environment and Development, 2020, 32(11): 25-26. | |
21 | 何兴, 王旭, 许野, 等. 光伏产业与环境支撑体系的耦合协调研究[J]. 太阳能学报, 2023, 44(9): 194-203. |
He X, Wang X, Xu Y, et al. Study on coupling coordination between photovoltaic industry and environmental support system[J]. Acta Energiae Solaris Sinica, 2023, 44(9): 194-203. | |
22 | 杨栋. 太阳能光伏产业的污染与有效防治分析[J]. 资源节约与环保, 2021(4): 103-104. |
Yang D. Analysis on pollution and effective prevention of solar photovoltaic industry[J]. Resources Economization & Environmental Protection, 2021(4): 103-104. | |
23 | 田政卿, 张勇, 刘向, 等. 光伏电站建设对陆地生态环境的影响: 研究进展与展望[J]. 环境科学, 2024, 45(1): 239-247. |
Tian Z Q, Zhang Y, Liu X, et al. Effects of photovoltaic power station construction on terrestrial environment: retrospect and prospect[J]. Environmental Science, 2024, 45(1): 239-247. | |
24 | 李培都, 高晓清. 光伏电站对生态环境气候的影响综述[J]. 高原气象, 2021, 40(3): 702-710. |
Li P D, Gao X Q. The impact of photovoltaic power plants on ecological environment and climate: a literature review[J]. Plateau Meteorology, 2021, 40(3): 702-710. | |
25 | 林沛圳. 光伏电站对生态环境的影响控制研究[J]. 中国资源综合利用, 2022, 40(7): 146-148. |
Lin P Z. Research on the impact control of photovoltaic power stations on ecological environment[J]. China Resources Comprehensive Utilization, 2022, 40(7): 146-148. | |
26 | Brito M C. Assessing the impact of photovoltaics on rooftops and facades in the urban micro-climate[J]. Energies, 2020, 13(11): 2717. |
27 | 崔杨, 陈正洪. 光伏电站对局地气候的影响研究进展[J]. 气候变化研究进展, 2018, 14(6): 593-601. |
Cui Y, Chen Z H. Research progresses of the impacts of photovoltaic power plants on local climate[J]. Climate Change Research, 2018, 14(6): 593-601. | |
28 | 王涛, 王得祥, 郭廷栋, 等. 光伏电站建设对土壤和植被的影响[J]. 水土保持研究, 2016, 23(3): 90-94. |
Wang T, Wang D X, Guo T D, et al. The impact of photovoltaic power construction on soil and vegetation[J]. Research of Soil and Water Conservation, 2016, 23(3): 90-94. | |
29 | Bai Z Y, Jia A M, Bai Z J, et al. Photovoltaic panels have altered grassland plant biodiversity and soil microbial diversity[J]. Frontiers in Microbiology, 2022, 13: 1065899. |
30 | 吴巍, 袁博, 邹鹏辉, 等. 太阳能发电对生态环境影响的研究动态与展望[J]. 能源与环境, 2023(2): 4-7, 19. |
Wu W, Yuan B, Zou P H, et al. Research trends and prospects of the impact of solar power generation on ecological environment[J]. Energy and Environment, 2023(2): 4-7, 19. | |
31 | 王世江. 当代多晶硅产业发展概论[M]. 北京: 人民邮电出版社, 2017: 310. |
Wang S J. Survey of Contemporary Polysilicon Industry Development[M]. Beijing: Posts & Telecom Press, 2017: 310. | |
32 | 贾晓洁, 郑璐, 吕芳, 等. 晶硅光伏组件回收技术环境影响分析[J]. 山西电力, 2023(5): 40-43. |
Jia X J, Zheng L, Lv F, et al. Environmental impact analysis of crystalline silicon photovoltaic module recycling technology[J]. Shanxi Electric Power, 2023(5): 40-43. | |
33 | 傅银银. 中国多晶硅光伏系统生命周期评价[D]. 南京: 南京大学, 2013. |
Fu Y Y. Life cycle assessment of multi-crystalline silicon photovoltaic system in China[D]. Nanjing: Nanjing University, 2013. | |
34 | Jungbluth N. Life cycle assessment of crystalline photovoltaics in the Swiss ecoinvent database[J]. Progress in Photovoltaics: Research and Applications, 2005, 13(5): 429-446. |
35 | 赵若楠, 董莉, 白璐, 等. 光伏行业生命周期碳排放清单分析[J]. 中国环境科学, 2020, 40(6): 2751-2757. |
Zhao R N, Dong L, Bai L, et al. Inventoryanalysis on carbon emissions of photovoltaicindustry[J]. China Environmental Science, 2020, 40(6): 2751-2757. | |
36 | Xie M H, Ruan J L, Bai W N, et al. Pollutant payback time and environmental impact of Chinese multi-crystalline photovoltaic production based on life cycle assessment[J]. Journal of Cleaner Production, 2018, 184: 648-659. |
37 | 谢明辉, 白璐, 阮久莉, 等. 以晶体硅太阳能电池产业为例的产业生命周期评价初探[J]. 环境科学研究, 2017, 30(12): 1970-1978. |
Xie M H, Bai L, Ruan J L, et al. Exploratory research on industrial life cycle assessment illustrated by case study of crystalline silicon photovoltaic cell industry[J]. Research of Environmental Sciences, 2017, 30(12): 1970-1978. | |
38 | 杨俊峰, 李博洋, 霍婧, 等. “十四五”中国光伏行业绿色低碳发展关键问题分析[J]. 有色金属(冶炼部分), 2021(12): 57-62. |
Yang J F, Li B Y, Huo J, et al. Analysis on key issues of green and low-carbon development in Chinese photovoltaic industry during the 14th five-year plan period[J]. Nonferrous Metals (Extractive Metallurgy), 2021(12): 57-62. | |
39 | International Energy Agency. Special report on solar PV global supply chains[EB/OL]. [2024-03-31]. . |
40 | 中国可再生能源学会光伏专业委员会. 2023年中国光伏技术发展报告[EB/OL]. [2024-03-31]. . |
CPVC. China PV technology development report 2023[EB/OL]. [2024-03-31]. . | |
41 | 刁周玮, 石磊. 中国光伏电池组件的生命周期评价[J]. 环境科学研究, 2011, 24(5): 571-579. |
Diao Z W, Shi L. Life cycle assessment of photovoltaic panels in China[J]. Research of Environmental Sciences, 2011, 24(5): 571-579. | |
42 | Ravikumar D, Seager T P, Chester M V, et al. Intertemporal cumulative radiative forcing effects of photovoltaic deployments[J]. Environmental Science & Technology, 2014, 48(17): 10010-10018. |
43 | Dale M, Benson S M. Energy balance of the global photovoltaic (PV) industry: is the PV industry a net electricity producer?[J]. Environmental Science & Technology, 2013, 47(7): 3482-3489. |
44 | Kawajiri K, Gutowski T G, Gershwin S B. Net CO2 emissions from global photovoltaic development[J]. RSC Advances, 2014, 4(102): 58652-58659. |
45 | 付宏祥, 汪诚文, 赵雪锋. 太阳能电池板生产废水污染与处理技术[J]. 节能, 2015, 34(10): 56-60, 3. |
Fu H X, Wang C W, Zhao X F. Solar cell industrial wastewater pollution and treatment technologies[J]. Energy Conservation, 2015, 34(10): 56-60, 3. | |
46 | 刘增军, 李永勤. MBR+臭氧催化氧化工艺处理光伏电池废水工程实例[J]. 中国给水排水, 2020, 36(6): 88-90, 96. |
Liu Z J, Li Y Q. Project case of MBR and ozone catalytic oxidation process for treating photovoltaic cell wastewater[J]. China Water & Wastewater, 2020, 36(6): 88-90, 96. | |
47 | 汪智飞. 太阳能电池生产废水处理工艺探讨[J]. 资源节约与环保, 2016(11): 41, 61. |
Wang Z F. Discussion on treatment technology of wastewater from solar cell production[J]. Resources Economization & Environmental Protection, 2016(11): 41, 61. | |
48 | 仝义. 厌氧-接触氧化工艺处理聚乙二醇废水的研究[D]. 成都: 西南交通大学, 2013. |
Tong Y. Investigation on processing of ethyleneglycol waste water by anaerobic-catalytic oxidation technology[D]. Chengdu: Southwest Jiaotong University, 2013. | |
49 | 周建民, 张国岭, 端木合顺, 等. 光伏电池单晶硅生产废水处理工程实例[J]. 水处理技术, 2009, 35(4): 116-119. |
Zhou J M, Zhang G L, Duanmu H S, et al. The single crystal silicon wastewater treatment project: example of PV cells[J]. Technology of Water Treatment, 2009, 35(4): 116-119. | |
50 | 李潭. 多晶硅行业废水处理工程技术研究[D]. 徐州: 中国矿业大学, 2020. |
Li T. Study on wastewater treatment engineering technology of polysilicon industry[D]. Xuzhou: China University of Mining and Technology, 2020. | |
51 | 栗勇田. 太阳能电池有机废水处理技术研究[D]. 石家庄: 河北科技大学, 2011. |
Li Y T. Studay on organic wastewater treatment of solar cell[D]. Shijiazhuang: Hebei University of Science and Technology, 2011. | |
52 | 冀世锋, 邢云青, 高春梅, 等. MBR用于光伏硅电池有机废水处理及回用[J]. 中国给水排水, 2013, 29(4): 75-79. |
Ji S F, Xing Y Q, Gao C M, et al. Application of MBR to treatment and reuse of organic wastewater from photovoltaic cell industry[J]. China Water & Wastewater, 2013, 29(4): 75-79. | |
53 | 韩燕旭, 张玲, 冯琪宇, 等. 光伏企业废水处理工艺研究[J]. 能源技术与管理, 2019, 44(5): 157-158. |
Han Y X, Zhang L, Feng Q Y, et al. Study on wastewater treatment technology of photovoltaic enterprises[J]. Energy Technology and Management, 2019, 44(5): 157-158. | |
54 | 张国庆. 光伏太阳能电池生产废水处理技术研究进展[J]. 广州化工, 2022, 50(22): 42-44, 49. |
Zhang G Q. Research progress on wastewater treatment in photovoltaic solar panels production[J]. Guangzhou Chemical Industry, 2022, 50(22): 42-44, 49. | |
55 | 周东. 硅太阳能电池板生产废水处理工艺研究[D]. 西安: 长安大学, 2013. |
Zhou D. Silicon solar panels production wastewater treatment process study[D]. Xi'an: Changan University, 2013. | |
56 | 史敬军, 王立峰, 杨国伟, 等. 太阳能光伏产业的污染及其防治[J]. 广东化工, 2014, 41(19): 123-124. |
Shi J J, Wang L F, Yang G W, et al. Pollution control measures of solar energy photovoltaic industry[J]. Guangdong Chemical Industry, 2014, 41(19): 123-124. | |
57 | 刘浩, 梁清华. 太阳能电池片生产过程大气污染排放分析[J]. 山东工业技术, 2016(10): 39-40. |
Liu H, Liang Q H. Analysis of air pollution emission in solar cell production process[J]. Shandong Industrial Technology, 2016(10): 39-40. | |
58 | 瞿露, 付宏祥, 汪诚文, 等. 我国太阳能电池板生产中的环境污染问题[J]. 环境工程, 2013, 31(S1): 398-400, 628. |
Qu L, Fu H X, Wang C W, et al. Environmental pollution of solar panel production in our country[J]. Environmental Engineering, 2013, 31(S1): 398-400, 628. | |
59 | Ngagoum Ndalloka Z, Vijayakumar Nair H, Alpert S, et al. Solar photovoltaic recycling strategies[J]. Solar Energy, 2024, 270: 112379. |
60 | 邢鹏飞, 郭菁, 刘燕, 等. 单晶硅和多晶硅切割废料浆的回收[J]. 材料与冶金学报, 2010, 9(2): 148-153. |
Xing P F, Guo J, Liu Y, et al. Recovery of slurry produced in cutting mono-/poly-silicon[J]. Journal of Materials and Metallurgy, 2010, 9(2): 148-153. | |
61 | 朱云阳. 晶硅切割废料氧化精炼-真空定向凝固回收和提纯硅的研究[D]. 昆明: 昆明理工大学, 2023. |
Zhu Y Y. Study on recovery and purification of silicon from crystalline silicon cutting waste by oxidation refining-vacuum directional solidification[D]. Kunming: Kunming University of Science and Technology, 2023. | |
62 | 丁亚九. 多晶硅废渣蒸压砖的制备及其性能研究[D]. 南京: 东南大学, 2016. |
Ding Y J. Study on preparation and performance of autoclaved brick using polysilicon residue[D]. Nanjing: Southeast University, 2016. | |
63 | 侯思懿. 硅片切割废料回收碳化硅粉体的研究[D]. 西宁: 青海大学, 2014. |
Hou S Y. Research on recycling silicon carbide powder from the cutting waste of silicon wafer[D]. Xining: Qinghai University, 2014. | |
64 | Ferrara C, Philipp D. Why do PV modules fail[J]. Energy Procedia, 2012, 15: 379-387. |
65 | 陈琛, 焦芬, 刘维, 等. 废旧晶体硅光伏组件资源化回收研究进展[J]. 化工环保, 2022, 42(5): 511-517. |
Chen C, Jiao F, Liu W, et al. Research progress on resource recycling of end-of-life spent crystalline silicon photovoltaic module[J]. Environmental Protection of Chemical Industry, 2022, 42(5): 511-517. | |
66 | 中国低碳网. 再生资源产业技术创新战略联盟清洁能源固废资源化专委会成立[EB/OL]. [2024-04-11]. . |
Low Carbon of China. Technical innovation strategic alliance of renewable resources industry special committee on clean energy solid waste recycling[EB/OL]. [2024-04-11]. . | |
67 | 张钦, 傅丽芝. 中国光伏组件报废量的预测[J]. 环境工程, 2020, 38(6): 214-220. |
Zhang Q, Fu L Z. Research on photovoltaic modules waste prediction in China[J]. Environmental Engineering, 2020, 38(6): 214-220. | |
68 | Sica D, Malandrino O, Supino S, et al. Management of end-of-life photovoltaic panels as a step towards a circular economy[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 2934-2945. |
69 | 陈斯伟. 退役光伏组件回收市场广阔[J]. 环境经济, 2023(8): 64-65. |
Chen S W. The recycling market of retired photovoltaic modules is broad[J]. Environmental Economy, 2023(8): 64-65. | |
70 | 李林, 张英婷, 李龙, 等. 报废晶硅光伏组件回收研究进展浅析[J]. 广州化工, 2023, 51(9): 10-12. |
Li L, Zhang Y T, Li L, et al. Research progress on recycling of discarded crystalline silicon PV modules[J]. Guangzhou Chemical Industry, 2023, 51(9): 10-12. | |
71 | Tawalbeh M, Al-Othman A, Kafiah F, et al. Environmental impacts of solar photovoltaic systems: a critical review of recent progress and future outlook[J]. Science of the Total Environment, 2021, 759: 143528. |
72 | 黄进, 程刚齐, 邓毅, 等. 《废弃光伏发电设备拆除及循环利用环境管理规范》标准研究探析[J]. 标准科学, 2023(8): 62-69. |
Huang J, Cheng G Q, Deng Y, et al. Research and analysis on the Environmental Management Specification for Dismantling and Recycling of Waste Photovoltaic Equipments [J]. Standard Science, 2023(8): 62-69. | |
73 | International Renewable Energy Agency. End-of-life management: solar photovoltaic panels[EB/OL]. [2024-04-11]. . |
74 | Goe M, Gaustad G. Strengthening the case for recycling photovoltaics: an energy payback analysis[J]. Applied Energy, 2014, 120: 41-48. |
75 | 吴智朋, 高德东, 王珊, 等. 废旧晶体硅光伏组件回收技术研究进展[J]. 机械工程学报, 2023, 59(7): 307-329. |
Wu Z P, Gao D D, Wang S, et al. A review on recycling technology of end-of-life crystalline silicon photovoltaic modules[J]. Journal of Mechanical Engineering, 2023, 59(7): 307-329. | |
76 | 上官炫烁, 何梓瑜, 唐梓彭, 等. 退役晶体硅光伏组件的回收技术综述[J]. 太阳能, 2021(3): 14-19. |
Shangguan X S, He Z Y, Tang Z P, et al. Overview of recycling technologies for end-of-life crystalline silicon PV modules[J]. Solar Energy, 2021(3): 14-19. | |
77 | Gönen Ç, Kaplanoğlu E. Environmental and economic evaluation of solar panel wastes recycling[J]. Waste Management & Research, 2019, 37(4): 412-418. |
78 | David S, Josef H, Jiri V, et al. Methods for recycling photovoltaic modules and their impact on environment and raw material extraction[J]. Acta Montanistica Slovaca, 2017, 22(3): 257-269. |
79 | Fiandra V, Sannino L, Andreozzi C, et al. Silicon photovoltaic modules at end-of-life: removal of polymeric layers and separation of materials[J]. Waste Management, 2019, 87: 97-107. |
80 | Preet S, Thor Smith S. A comprehensive review on the recycling technology of silicon based photovoltaic solar panels: challenges and future outlook[J]. Journal of Cleaner Production, 2024, 448: 141661. |
81 | Fiandra V, Sannino L, Andreozzi C, et al. End-of-life of silicon PV panels: a sustainable materials recovery process[J]. Waste Management, 2019, 84: 91-101. |
82 | Dobra T, Vollprecht D, Pomberger R. Thermal delamination of end-of-life crystalline silicon photovoltaic modules[J]. Waste Management and Research, 2022, 40(1): 96-103. |
83 | Xu X H, Lai D G, Wang G, et al. Nondestructive silicon wafer recovery by a novel method of solvothermal swelling coupled with thermal decomposition[J]. Chemical Engineering Journal, 2021, 418: 129457. |
84 | Pereira M B, Botelho Meireles de Souza G, Romano Espinosa D C, et al. Simultaneous recycling of waste solar panels and treatment of persistent organic compounds via supercritical water technology[J]. Environmental Pollution, 2023, 335: 122331. |
85 | Xu Y, Li J H, Tan Q Y, et al. Global status of recycling waste solar panels: a review[J]. Waste Management, 2018, 75: 450-458. |
86 | 殷爱鸣. 废弃光伏组件回收现状与趋势[J]. 分布式能源, 2021, 6(3): 76-80. |
Yin A M. Status and trend of recycling of waste photovoltaic modules[J]. Distributed Energy, 2021, 6(3): 76-80. | |
87 | 李旭东, 刘丁璞, 焦福强, 等. 晶硅光伏组件回收技术现状研究及展望[J]. 再生资源与循环经济, 2023, 16(6): 40-43. |
Li X D, Liu D P, Jiao F Q, et al. Research and prospect of the technology status of silicon photovoltaic component recovery technology[J]. Recyclable Resources and Circular Economy, 2023, 16(6): 40-43. | |
88 | 李颖雯, 邓鑫, 罗多, 等. 光伏组件回收处理国内外现状调研[J]. 绿色建筑, 2021, 13(6): 21-23, 32. |
Li Y W, Deng X, Luo D, et al. China and oversea photovoltaic module recycling treatment industry investigation[J]. Green Building, 2021, 13(6): 21-23, 32. | |
89 | 杨迪菲, 王景伟, 黄庆, 等. 废旧晶体硅太阳能电池资源化现状[J]. 环境工程, 2019, 37(5): 191-195. |
Yang D F, Wang J W, Huang Q, et al. Recycling status of waste crystalline silicon solar cells[J]. Environmental Engineering, 2019, 37(5): 191-195. | |
90 | Tammaro M, Rimauro J, Fiandra V, et al. Thermal treatment of waste photovoltaic module for recovery and recycling: experimental assessment of the presence of metals in the gas emissions and in the ashes[J]. Renewable Energy, 2015, 81: 103-112. |
91 | Nain P, Kumar A. A state-of-art review on end-of-life solar photovoltaics[J]. Journal of Cleaner Production, 2022, 343: 130978. |
92 | Latunussa C E L, Ardente F, Blengini G A, et al. Life cycle assessment of an innovative recycling process for crystalline silicon photovoltaic panels[J]. Solar Energy Materials and Solar Cells, 2016, 156: 101-111. |
93 | Rocchetti L, Beolchini F. Recovery of valuable materials from end-of-life thin-film photovoltaic panels: environmental impact assessment of different management options[J]. Journal of Cleaner Production, 2015, 89: 59-64. |
94 | Held M, Ilg R. Update of environmental indicators and energy payback time of CdTe PV systems in Europe[J]. Progress in Photovoltaics: Research and Applications, 2011, 19(5): 614-626. |
95 | Yashas S R, Ruck E B, Demissie H, et al. Catalytic recovery of metals from end-of-life polycrystalline silicon photovoltaic cells: experimental insights into silver recovery[J]. Waste Management, 2023, 171: 184-194. |
96 | 刘波, 李佳怡, 丁云集, 等. 报废光伏板回收利用的研究现状[J]. 稀有金属, 2019, 43(9): 987-996. |
Liu B, Li J Y, Ding Y J, et al. Recycling status of scrap photovoltaic panels[J]. Chinese Journal of Rare Metals, 2019, 43(9): 987-996. | |
97 | Moskowitz P, Zweibel K. Recycling of cadmium and selenium from photovoltaic modules and manufacturing wastes[R]. Brookhaven National Lab., Upton, NY (United States), 1992. |
98 | Danz P, Aryan V, Möhle E, et al. Experimental study on fluorine release from photovoltaic backsheet materials containing PVF and PVDF during pyrolysis and incineration in a technical lab-scale reactor at various temperatures[J]. Toxics, 2019, 7(3): 47. |
99 | 杨小进, 罗鑫, 刘东亮. 光伏组件封装用背板概述及发展趋势[J]. 太阳能, 2017(11): 25-29. |
Yang X J, Luo X, Liu D L. Overview and development trend of backplane for photovoltaic module packaging[J]. Solar Energy, 2017(11): 25-29. | |
100 | 新特能源股份有限公司. 2019年度报告[EB/OL]. [2024-04-27]. . |
Xinte Energy Co., Ltd. Annual report 2019[EB/OL]. [2024-04-27]. . | |
101 | 光明网. 光伏组件“退役”后,何去何从[EB/OL]. [2024-04-03]. . |
Net Guangming. Where to go after the decommissioning of photovoltaic modules[EB/OL]. [2024-04-03]. . | |
102 | Ali A, Malik S A, Shafiullah M, et al. Policies and regulations for solar photovoltaic end-of-life waste management: insights from China and the USA[J]. Chemosphere, 2023, 340: 139840. |
[1] | 李诗浩, 吴振华, 赵展烽, 吴洪, 杨冬, 石家福, 姜忠义. 化工过程中的电子传递、质子传递和分子传递[J]. 化工学报, 2024, 75(3): 1052-1064. |
[2] | 王沛, 段睿明, 张广儒, 金万勤. 光热驱动的膜分离生物甲烷制氢过程建模与仿真分析[J]. 化工学报, 2024, 75(3): 967-973. |
[3] | 曹宇, 张国辉, 高昂, 杜心宇, 周静, 蔡永茂, 余璇, 于晓明. 二维MXene材料在太阳能电池和金属离子电池中的研究进展[J]. 化工学报, 2024, 75(2): 412-428. |
[4] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[5] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[6] | 傅予, 刘兴翀, 王瀚雨, 李海敏, 倪亚飞, 邹文静, 雷月, 彭永姗. F3EACl修饰层对钙钛矿太阳能电池性能提升的研究[J]. 化工学报, 2023, 74(8): 3554-3563. |
[7] | 张生安, 刘桂莲. 高效太阳能电解水制氢系统及其性能的多目标优化[J]. 化工学报, 2023, 74(3): 1260-1274. |
[8] | 彭梦琦, 张涛, 李茂胜, 施正荣, 蔡靖雍. 光谱分频水基ZnO纳米流体制备及其热电性能调控[J]. 化工学报, 2023, 74(12): 5027-5037. |
[9] | 陈哲文, 魏俊杰, 张玉明, 张炜, 李家州. CO2近零排放的光煤互补耦合SOFC发电系统热力学分析[J]. 化工学报, 2023, 74(11): 4688-4701. |
[10] | 党迎喜, 谈朋, 刘晓勤, 孙林兵. 辐射冷却和太阳能加热驱动的CO2变温捕获[J]. 化工学报, 2023, 74(1): 469-478. |
[11] | 王峰, 张顺鑫, 余方博, 刘亚, 郭烈锦. 光催化CO2还原制碳氢燃料系统优化策略研究[J]. 化工学报, 2023, 74(1): 29-44. |
[12] | 张鑫, 许蕊, 路馨语, 牛永安. SiO2@BiOCl-Bi24O31Cl10核壳微球的合成及光催化[J]. 化工学报, 2022, 73(8): 3636-3646. |
[13] | 钱宇, 陈耀熙, 史晓斐, 杨思宇. 太阳能波动特性大数据分析与风光互补耦合制氢系统集成[J]. 化工学报, 2022, 73(5): 2101-2110. |
[14] | 马荣, 孙杰, 李东辉, 魏进家. 基于Cu/TiO2/C-Wood复合材料的聚光太阳能驱动自漂浮高效海水汽化催化分解制氢体系[J]. 化工学报, 2022, 73(4): 1695-1703. |
[15] | 陈子禾, 赵呈志, 冒文莉, 盛楠, 朱春宇. 定向生物质多孔碳复合相变材料的制备及其热性能研究[J]. 化工学报, 2022, 73(4): 1817-1825. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 155
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 221
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||