化工学报 ›› 2025, Vol. 76 ›› Issue (S1): 318-325.DOI: 10.11949/0438-1157.20241386
• 能源和环境工程 • 上一篇
收稿日期:2024-12-02
修回日期:2024-12-17
出版日期:2025-06-25
发布日期:2025-06-26
通讯作者:
王林
作者简介:马爱华(1973—),女,硕士,副教授,lymah73@126.com
基金资助:
Aihua MA(
), Shuai ZHAO, Lin WANG(
), Minghui CHANG
Received:2024-12-02
Revised:2024-12-17
Online:2025-06-25
Published:2025-06-26
Contact:
Lin WANG
摘要:
太阳能吸收制冷循环在额定工况下展现出高效的制冷性能,然而,其固有的缺陷在于变工况性能欠佳,甚至可能导致工作失效。作为一项几乎不依赖电能的制冷技术,太阳能吸收制冷技术面临着太阳能供应间歇性和用户侧需求波动性的双重挑战,这些因素严重影响了循环的工作效能。从系统内部参数与外部参数动态匹配的角度出发,运用现代控制理论,构建了太阳能单效LiBr-H2O吸收式制冷循环的状态空间模型。通过稳态仿真与实验数据的对比,验证了该动态模型的有效性,并进一步探究了不同扰动因素下循环的动态响应特性。研究结果显示,所建立的状态空间动态模型能够准确地描述太阳能吸收制冷循环的动态行为,清晰地揭示了循环输入变量、状态变量与输出变量之间的动态关联。
中图分类号:
马爱华, 赵帅, 王林, 常明慧. 太阳能吸收制冷循环动态特性仿真方法研究[J]. 化工学报, 2025, 76(S1): 318-325.
Aihua MA, Shuai ZHAO, Lin WANG, Minghui CHANG. Research on dynamic simulation methods for solar-powered absorption refrigeration cycles[J]. CIESC Journal, 2025, 76(S1): 318-325.
| 参数 | 工况一 | 工况二 |
|---|---|---|
| 发生器热水进口温度/℃ | 80 | 80 |
| 发生器热水流量/(kg/s) | 0.18 | 0.18 |
| 冷凝器冷却水进口温度/℃ | 30.8 | 32.0 |
| 冷凝器冷却水流量/(kg/s) | 0.24 | 0.24 |
| 蒸发器冷冻水进口温度/℃ | 26.6 | 24.5 |
| 蒸发器冷冻水流量/(kg/s) | 0.26 | 0.14 |
| 吸收器冷却水进口温度/℃ | 30.8 | 32.0 |
| 吸收器冷却水流量/(kg/s) | 0.24 | 0.24 |
表1 两种工况下输入参数
Table 1 Input parameters under two operating conditions
| 参数 | 工况一 | 工况二 |
|---|---|---|
| 发生器热水进口温度/℃ | 80 | 80 |
| 发生器热水流量/(kg/s) | 0.18 | 0.18 |
| 冷凝器冷却水进口温度/℃ | 30.8 | 32.0 |
| 冷凝器冷却水流量/(kg/s) | 0.24 | 0.24 |
| 蒸发器冷冻水进口温度/℃ | 26.6 | 24.5 |
| 蒸发器冷冻水流量/(kg/s) | 0.26 | 0.14 |
| 吸收器冷却水进口温度/℃ | 30.8 | 32.0 |
| 吸收器冷却水流量/(kg/s) | 0.24 | 0.24 |
| 工况 | 参数 | 发生器/kW | 冷凝器/kW | 蒸发器/kW | 吸收器/kW | COP(能效比) |
|---|---|---|---|---|---|---|
| 工况一 | 稳态仿真 | 10.25 | 8.89 | 8.52 | 9.93 | 0.83 |
| 动态仿真 | 10.25 | 9.54 | 9.17 | 10.22 | 0.89 | |
| 误差 | 0 | 6.8% | 7.1% | 2.8% | 6.7% | |
| 工况二 | 实验值 | 2.03 | 1.84 | 1.68 | 1.87 | 0.83 |
| 动态仿真 | 2.03 | 1.85 | 1.77 | 1.95 | 0.88 | |
| 误差 | 0 | 0.4% | 5.2% | 4.3% | 5.9% |
表2 两种工况模型验证结果
Table 2 Model verification results of two operating conditions
| 工况 | 参数 | 发生器/kW | 冷凝器/kW | 蒸发器/kW | 吸收器/kW | COP(能效比) |
|---|---|---|---|---|---|---|
| 工况一 | 稳态仿真 | 10.25 | 8.89 | 8.52 | 9.93 | 0.83 |
| 动态仿真 | 10.25 | 9.54 | 9.17 | 10.22 | 0.89 | |
| 误差 | 0 | 6.8% | 7.1% | 2.8% | 6.7% | |
| 工况二 | 实验值 | 2.03 | 1.84 | 1.68 | 1.87 | 0.83 |
| 动态仿真 | 2.03 | 1.85 | 1.77 | 1.95 | 0.88 | |
| 误差 | 0 | 0.4% | 5.2% | 4.3% | 5.9% |
| 名称 | 参数 | 名称 | 参数 |
|---|---|---|---|
| 发生器热水进口温度/℃ | 80.00 | 吸收器冷却水出口温度/℃ | 33.56 |
| 发生器热水出口温度/℃ | 65.63 | 吸收器吸收温度/℃ | 37.98 |
| 发生器发生温度/℃ | 68.84 | 吸收器换热壳管温度/℃ | 34.84 |
| 发生器换热壳管温度/℃ | 71.86 | 冷剂水流量/(kg/s) | 0.004 |
| 冷凝器冷却水进口温度/℃ | 27.72 | 发生器热水流量/(kg/s) | 0.18 |
| 冷凝器冷却水出口温度/℃ | 33.56 | 冷凝器冷却水流量/(kg/s) | 0.50 |
| 冷凝器冷凝温度/℃ | 34.29 | 蒸发器冷冻水流量/(kg/s) | 0.36 |
| 冷凝器换热壳管温度/℃ | 30.33 | 吸收器冷却水流量/(kg/s) | 0.44 |
| 蒸发器冷冻水进口温度/℃ | 23.01 | 发生器负荷/kW | 10.83 |
| 蒸发器冷冻水出口温度/℃ | 16.83 | 冷凝器负荷/kW | 9.69 |
| 蒸发器蒸发温度/℃ | 16.55 | 蒸发器制冷量/kW | 9.31 |
| 蒸发器换热壳管温度/℃ | 16.92 | 吸收器负荷/kW | 10.75 |
| 吸收器冷却水进口温度/℃ | 27.72 | COP | 0.86 |
表3 循环仿真初始状态参数
Table 3 Initial state parameters of cycle simulation
| 名称 | 参数 | 名称 | 参数 |
|---|---|---|---|
| 发生器热水进口温度/℃ | 80.00 | 吸收器冷却水出口温度/℃ | 33.56 |
| 发生器热水出口温度/℃ | 65.63 | 吸收器吸收温度/℃ | 37.98 |
| 发生器发生温度/℃ | 68.84 | 吸收器换热壳管温度/℃ | 34.84 |
| 发生器换热壳管温度/℃ | 71.86 | 冷剂水流量/(kg/s) | 0.004 |
| 冷凝器冷却水进口温度/℃ | 27.72 | 发生器热水流量/(kg/s) | 0.18 |
| 冷凝器冷却水出口温度/℃ | 33.56 | 冷凝器冷却水流量/(kg/s) | 0.50 |
| 冷凝器冷凝温度/℃ | 34.29 | 蒸发器冷冻水流量/(kg/s) | 0.36 |
| 冷凝器换热壳管温度/℃ | 30.33 | 吸收器冷却水流量/(kg/s) | 0.44 |
| 蒸发器冷冻水进口温度/℃ | 23.01 | 发生器负荷/kW | 10.83 |
| 蒸发器冷冻水出口温度/℃ | 16.83 | 冷凝器负荷/kW | 9.69 |
| 蒸发器蒸发温度/℃ | 16.55 | 蒸发器制冷量/kW | 9.31 |
| 蒸发器换热壳管温度/℃ | 16.92 | 吸收器负荷/kW | 10.75 |
| 吸收器冷却水进口温度/℃ | 27.72 | COP | 0.86 |
| 1 | International Energy Outlook, Energy Information Administration[R]. Washington DC, Department of Energy, 2023. |
| 2 | Renato Lazzarin, 王云鹏, 张晓宁, 等. 太阳能制冷的应用现状[J]. 制冷技术, 2021, 41(2): 1-10. |
| Lazzarin R, Wang Y P, Zhang X N, et al. Application progress of solar cooling[J]. Chinese Journal of Refrigeration Technology, 2021, 41(2): 1-10. | |
| 3 | 匡胜严, 侯俊杰, 谢吉平, 等. 太阳能溴化锂吸收式热泵应用分析[J]. 制冷技术, 2017, 37(6): 72-77. |
| Kuang S Y, Hou J J, Xie J P, et al. Application analysis of solar LiBr absorption heat pump[J]. Chinese Journal of Refrigeration Technology, 2017, 37(6): 72-77. | |
| 4 | 张云, 陈汝东. 提高蒸发温度对单效溴化锂吸收式制冷的影响分析[J]. 制冷技术, 2010, 30(2): 48-51. |
| Zhang Y, Chen R D. Effect of evaporating temperature on energy efficiency of LiBr absorption refrigeration system[J]. Refrigeration Technology, 2010, 30(2): 48-51. | |
| 5 | Wei H Y, Huang S F, Ma Y X, et al. Experimental investigation on solution regeneration performance and coefficients in full-open system for heat and water recovery of flue gas[J]. Journal of Thermal Science, 2024, 33(3): 1094-1108. |
| 6 | Liang A M, Yang S, Ding Y, et al. Triple effect absorption refrigeration systems for the deep recovery of low grade waste heat[J]. Applied Thermal Engineering, 2024, 250: 123500. |
| 7 | Su W, Han Y H, Liu Z Y, et al. Absorption heat pumps for low-grade heat utilization: a comprehensive review on working pairs, classification, system advances and applications[J]. Energy Conversion and Management, 2024, 315: 118760. |
| 8 | Li Z Y, Huang C, Yin J H. Effect of inter-stage pressure on performances of two-stage transcritical CO2 refrigeration cycle with dedicated absorption dual-subcooling and mechanical recooling[J]. Journal of Thermal Science, 2024, 33(6): 2179-2189. |
| 9 | Zhao T, Xu R H, Xin Y L, et al. A comprehensive study of a low-grade heat-driven cooling and power system based on heat current method[J]. Journal of Thermal Science, 2024, 33(4): 1523-1541. |
| 10 | Zhang H, Chen F P, Liu Y, et al. The performance analysis of a LCPV/T assisted absorption refrigeration system[J]. Renewable Energy, 2019, 143: 1852-1864. |
| 11 | FathiAlmas Y, Ghadamian H, Aminy M, et al. Thermo-economic analysis, energy modeling and reconstructing of components of a single effect solar–absorption lithium bromide chiller for energy performance enhancement[J]. Energy and Buildings, 2023, 285: 112894. |
| 12 | He H, Wang L, Yuan J F, et al. Performance evaluation of solar absorption-compression cascade refrigeration system with an integrated air-cooled compression cycle[J]. Energy Conversion and Management, 2019, 201: 112153. |
| 13 | Song M Y, Wang L, Yuan J F, et al. Proposal and parametric study of solar absorption/dual compression hybrid refrigeration system for temperature and humidity independent control application[J]. Energy Conversion and Management, 2020, 220: 113107. |
| 14 | Zhang S S, Yu W J, Wang D C, et al. Thermodynamic characteristics of a novel solar single and double effect absorption refrigeration cycle[J]. Energy, 2024, 308: 132674. |
| 15 | Wang Y T, Kong H Z, Zhu H P, et al. Compression-assisted absorption refrigeration cycle employing organic working pairs for ultra-low grade heat recovery[J]. International Journal of Refrigeration, 2024, 165: 485-499. |
| 16 | Liang W X, Han J T, Ge Y, et al. Investigation on combining multi-effect distillation and double-effect absorption refrigeration cycle to recover exhaust heat of SOFC-GT system[J]. Energy Conversion and Management, 2024, 301: 118054. |
| 17 | Kim B, Park J. Dynamic simulation of a single-effect ammonia-water absorption chiller[J]. International Journal of Refrigeration, 2007, 30(3): 535-545. |
| 18 | Kohlenbach P, Ziegler F. A dynamic simulation model for transient absorption chiller performance(part Ⅰ): The model[J]. International Journal of Refrigeration, 2008, 31(2): 217-225. |
| 19 | Kohlenbach P, Ziegler F. A dynamic simulation model for transient absorption chiller performance(part Ⅱ): Numerical results and experimental verification[J]. International Journal of Refrigeration, 2008, 31(2): 226-233. |
| 20 | Ochoa A A V, Dutra J C C, Henríquez J R G, et al. Dynamic study of a single effect absorption chiller using the pair LiBr/H2O[J]. Energy Conversion and Management, 2016, 108: 30-42. |
| 21 | Iranmanesh A, Mehrabian M A. Dynamic simulation of a single-effect LiBr–H2O absorption refrigeration cycle considering the effects of thermal masses[J]. Energy and Buildings, 2013, 60: 47-59. |
| 22 | Zhou Y J, Pan L, Han X, et al. Dynamic modeling and thermodynamic analysis of lithium bromide absorption refrigeration system using Modelica[J]. Applied Thermal Engineering, 2023, 225: 120106. |
| 23 | Wang J, Shang S, Li X T, et al. Dynamic performance analysis for an absorption chiller under different working conditions[J]. Applied Sciences, 2017, 7(8): 797. |
| 24 | Ochoa A A V, Dutra J C C, Henríquez J R G, et al. The influence of the overall heat transfer coefficients in the dynamic behavior of a single effect absorption chiller using the pair LiBr/H2O[J]. Energy Conversion and Management, 2017, 136: 270-282. |
| 25 | de la Calle A, Roca L, Bonilla J, et al. Dynamic modeling and simulation of a double-effect absorption heat pump[J]. International Journal of Refrigeration, 2016, 72: 171-191. |
| 26 | Evola G, Le Pierrès N, Boudehenn F, et al. Proposal and validation of a model for the dynamic simulation of a solar-assisted single-stage LiBr/water absorption chiller[J]. International Journal of Refrigeration, 2013, 36(3): 1015-1028. |
| 27 | Zinet M, Rulliere R, Haberschill P. A numerical model for the dynamic simulation of a recirculation single-effect absorption chiller[J]. Energy Conversion and Management, 2012, 62: 51-63. |
| 28 | Matsushima H, Fujii T, Komatsu T, et al. Dynamic simulation program with object-oriented formulation for absorption chillers (modelling, verification, and application to triple-effect absorption chiller)[J]. International Journal of Refrigeration, 2010, 33(2): 259-268. |
| 29 | Yao Y, Huang M W, Mo J Q, et al. State-space model for transient behavior of water-to-air surface heat exchanger[J]. International Journal of Heat and Mass Transfer, 2013, 64: 173-192. |
| 30 | Yao Y, Huang M W, Chen J. State-space model for dynamic behavior of vapor compression liquid chiller[J]. International Journal of Refrigeration, 2013, 36(8): 2128-2147. |
| 31 | Xue B Q, Cai W J, Wang X L. State-space modelling for the ejector-based refrigeration system driven by low grade energy[J]. Applied Thermal Engineering, 2015, 75: 430-444. |
| 32 | 曹艺飞. 太阳能单吸收双压缩复合制冷系统仿真研究[D]. 洛阳: 河南科技大学, 2022: 58-59. |
| Cao Y F. Simulation study on solar single-effect absorption dual-source compression hybrid refrigeration system [D]. Luoyang: Henan University of Science and Technology, 2022: 58-59. | |
| 33 | Vaisi A, Talebi S, Esmaeilpour M. Transient behavior simulation of fin-and-tube heat exchangers for the variation of the inlet temperatures of both fluids[J]. International Communications in Heat and Mass Transfer, 2011, 38(7): 951-957. |
| [1] | 臧子晴, 李修真, 谈莹莹, 刘晓庆. 分凝器对两级分离自复叠制冷循环特性影响研究[J]. 化工学报, 2025, 76(S1): 17-25. |
| [2] | 李银龙, 刘国强, 晏刚. 分馏与闪蒸分离耦合自复叠制冷循环性能分析[J]. 化工学报, 2025, 76(S1): 26-35. |
| [3] | 何婷, 黄舒阳, 黄坤, 陈利琼. 基于余热利用的天然气化学吸收脱碳-高温热泵耦合流程研究[J]. 化工学报, 2025, 76(S1): 297-308. |
| [4] | 陈建兵, 常昊, 高明, 邢兵, 张磊, 刘奇磊. 基于反应模板与分子动力学的胺基相变吸收剂分相预测方法[J]. 化工学报, 2025, 76(5): 2387-2396. |
| [5] | 马瑞洁, 黄子轩, 关雪倩, 陈光进, 刘蓓. ZIF-8/DMPU浆液分离C2H6/ CH4混合气研究[J]. 化工学报, 2025, 76(5): 2262-2269. |
| [6] | 张新梅, 张傲, 邱德华, 刘晓爽, 陈晨. 基于热响应机理的罐区池火灾动态多米诺效应评估方法[J]. 化工学报, 2025, 76(4): 1885-1897. |
| [7] | 张履胜, 王治红, 柳青, 李雪雯, 谭仁敏. 液-液相变吸收剂捕集二氧化碳研究进展[J]. 化工学报, 2025, 76(3): 933-950. |
| [8] | 肖俊兵, 钟湘宇, 任建地, 钟芳芳, 刘昌会, 贾传坤. 基于生物碳材料强化的硬脂酸相变材料储热性能研究[J]. 化工学报, 2025, 76(3): 1312-1322. |
| [9] | 齐珂, 王迪, 谢喆, 陈东升, 周云龙, 孙灵芳. 考虑多物理场耦合特性的固体氧化物燃料电池瞬态特性研究[J]. 化工学报, 2025, 76(3): 1264-1274. |
| [10] | 郭恭涵, 丁晖殿, 李强, 贾胜坤, 钱行, 苑杨, 陈海胜, 罗祎青. 间歇精馏操作过程的动态贝叶斯优化方法[J]. 化工学报, 2025, 76(2): 755-768. |
| [11] | 赵昂然, 韩永强, 王志鹏, 李鹏飞, 许亚伟, 佟会玲. 常温条件下赤泥同时脱硫脱硝实验研究[J]. 化工学报, 2024, 75(S1): 276-282. |
| [12] | 周文博, 殷姜维, 张丹, 杨越, 于佳豪, 赵冰超. 热辐射加热下NaCl水溶液液滴蒸发过程的实验研究[J]. 化工学报, 2024, 75(S1): 85-94. |
| [13] | 杨勇, 祖子轩, 李煜坤, 王东亮, 范宗良, 周怀荣. T型圆柱形微通道内CO2碱液吸收数值模拟[J]. 化工学报, 2024, 75(S1): 135-142. |
| [14] | 王倩倩, 李冰, 郑伟波, 崔国民, 赵兵涛, 明平文. 氢燃料电池局部动态特征三维模型[J]. 化工学报, 2024, 75(8): 2812-2820. |
| [15] | 王沛, 段睿明, 张广儒, 金万勤. 光热驱动的膜分离生物甲烷制氢过程建模与仿真分析[J]. 化工学报, 2024, 75(3): 967-973. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号