化工学报 ›› 2025, Vol. 76 ›› Issue (10): 5311-5321.DOI: 10.11949/0438-1157.20250123
易守鑫1(
), 于思源1, 何品晶1, 吕凡1, 顾士贞2, 邹庐泉3, 章骅1(
)
收稿日期:2025-02-10
修回日期:2025-06-06
出版日期:2025-10-25
发布日期:2025-11-25
通讯作者:
章骅
作者简介:易守鑫(1998—),女,硕士研究生,ysx377724@163.com
基金资助:
Shouxin YI1(
), Siyuan YU1, Pinjing HE1, Fan LYU1, Shizhen GU2, Luquan ZOU3, Hua ZHANG1(
)
Received:2025-02-10
Revised:2025-06-06
Online:2025-10-25
Published:2025-11-25
Contact:
Hua ZHANG
摘要:
我国生活垃圾焚烧处置的快速增长使得飞灰产生量急剧增加。潜在的重金属溶出、二
英等环境风险制约着飞灰的资源化利用。通过在水洗过程添加磷酸二氢钠,探究了磷酸二氢钠对飞灰水洗和热处理(600℃和700℃)产物污染特性的影响。结果表明,添加磷酸二氢钠可抑制飞灰水洗过程中Cl、Pb、Ba和Se的溶出,但对As和Cr的溶出存在促进作用。当药剂添加量不少于飞灰的5.0%时,加药水洗飞灰的Pb浸出浓度能够满足《生活垃圾焚烧飞灰污染控制技术规范(试行)》(HJ 1134—2020)标准限值的要求。水洗液中含量最多的重金属是Pb,添加5.0%磷酸二氢钠可使水洗液的Pb浓度降低至10 mg/L以下。水洗-热处理过程促进了飞灰中Pb、Cu、Cd等元素的挥发,但水洗-热处理飞灰的重金属浸出浓度较低,满足相应的标准限值要求。热处理温度是影响水洗飞灰中重金属挥发的重要因素,600℃热处理有利于控制重金属挥发。700℃处理后,水洗飞灰的Pb从(1700±100)mg/kg降低至(320±80) mg/kg。磷酸二氢钠的添加有利于减少热处理过程中氯盐和硫酸盐的挥发,而对水洗飞灰热处理前后的重金属浸出特性没有显著影响。研究结果为水洗飞灰在焚烧炉内原位处理提供了科学依据,有利于飞灰的源头减量、无害化和资源化。
中图分类号:
易守鑫, 于思源, 何品晶, 吕凡, 顾士贞, 邹庐泉, 章骅. 加药水洗-热处理对生活垃圾焚烧飞灰浸出和挥发特性的影响[J]. 化工学报, 2025, 76(10): 5311-5321.
Shouxin YI, Siyuan YU, Pinjing HE, Fan LYU, Shizhen GU, Luquan ZOU, Hua ZHANG. The impact of chemical-added washing and thermal treatment on the leaching and volatility characteristics of municipal solid waste incineration air pollution control residues[J]. CIESC Journal, 2025, 76(10): 5311-5321.
| [1] | 住房和城乡建设部. 2023年城市建设统计年鉴[R/OL]. (2024-10-25) [2024-11-06]. . |
| Ministry of Housing and Urban-Rural Development. 2023 urban construction statistical yearbook[R/OL]. (2024-10-25) [2024-11-06]. . | |
| [2] | Li X, Sun Y J, Li W H, et al. Solidification/stabilization pre-treatment coupled with landfill disposal of heavy metals in MSWI fly ash in China: a systematic review[J]. Journal of Hazardous Materials, 2024, 478: 135479. |
| [3] | 范程程, 王宝民, 王晓军. 生活垃圾焚烧飞灰理化特性与污染毒性研究[J]. 中国环境科学, 2023, 43(S1): 149-159. |
| Fan C C, Wang B M, Wang X J. Study on physical and chemical characteristics and heavy metal leaching behavior of MSWI fly ash[J]. China Environmental Science, 2023, 43(S1): 149-159. | |
| [4] | 章骅, 于思源, 邵立明, 等. 烟气净化工艺和焚烧炉类型对生活垃圾焚烧飞灰性质的影响[J]. 环境科学, 2018, 39(1): 467-476. |
| Zhang H, Yu S Y, Shao L M, et al. Influence of air pollution control (APC) systems and furnace type on the characteristics of APC residues from municipal solid waste incinerators[J]. Environmental Science, 2018, 39(1): 467-476. | |
| [5] | 关艳艳, 王晓娜, 赵楚峒, 等. 不同有机螯合剂对飞灰中重金属的稳定化效果及环境风险评估[J]. 环境工程, 2023, 41(12): 206-212, 130. |
| Guan Y Y, Wang X N, Zhao C T, et al. Stabilization effect and environmental risk assessment of heavy metals in MSWI fly ash by different organic chelating agents[J]. Environmental Engineering, 2023, 41(12): 206-212, 130. | |
| [6] | Jiao G Z, Wei Y M, Liao Q, et al. A systematic comparison of salt removal efficiency in washing treatment by using fly ashes from 13 MSWI plants in China[J]. Journal of Environmental Management, 2024, 358: 120831. |
| [7] | 栗博, 高蕾, 茹春云, 等. 垃圾焚烧飞灰水洗过程模拟及洗失率计算[J]. 环境卫生工程, 2023, 31(6): 80-84. |
| Li B, Gao L, Ru C Y, et al. Simulation of MSWI fly ash washing process and calculation of washing loss rate[J]. Environmental Sanitation Engineering, 2023, 31(6): 80-84. | |
| [8] | Lin S D, Lv G J, Khalid Z, et al. Process optimization and mechanism for removal of high-concentration chlorine from municipal solid waste incineration fly ash washing wastewater by Friedel's salt[J]. Journal of Environmental Management, 2024, 349: 119542. |
| [9] | Huang H G, Liu W, Zhang L, et al. A microscopic and quantitative analysis on the separation of chloride ion by fly ash washing: effect of liquid-to-solid ratio, washing time and temperature[J]. Environmental Science and Pollution Research, 2022, 29(24): 36208-36215. |
| [10] | Yan M, Jiang J H, Zheng R D, et al. Experimental study on the washing characteristics of fly ash from municipal solid waste incineration[J]. Waste Management & Research, 2022, 40(8): 1212-1219. |
| [11] | Zhao H, Yang F H, Wang Z J, et al. Chlorine and heavy metals removal from municipal solid waste incineration fly ash by electric field enhanced oxalic acid washing[J]. Journal of Environmental Management, 2023, 340: 117939. |
| [12] | Han S Y, Chen K L, Meng F Z, et al. pH-controlled sulfuric acid washing enhancing heavy metal stabilization in lightweight aggregate production from municipal solid waste incineration fly ash[J]. Journal of Cleaner Production, 2023, 430: 139774. |
| [13] | Zuo W, Zhao R, Dong G, et al. CO2-assisted water-washing process of municipal solid waste incineration fly ash for chloride removal[J]. Energy & Fuels, 2022, 36(22): 13732-13742. |
| [14] | Ferraro A, Farina I, Race M, et al. Pre-treatments of MSWI fly-ashes: a comprehensive review to determine optimal conditions for their reuse and/or environmentally sustainable disposal[J]. Reviews in Environmental Science and Bio/Technology, 2019, 18(3): 453-471. |
| [15] | 王瑞恒, 何品晶, 吕凡, 等. 垃圾焚烧飞灰水洗后三种固液分离方法参数比较及优化[J]. 化工学报, 2023, 74(4): 1712-1723. |
| Wang R H, He P J, Lyu F, et al. Parameter comparison and optimization of three solid-liquid separation methods for washed air pollution control residues from municipal solid waste incinerator[J]. CIESC Journal, 2023, 74(4): 1712-1723. | |
| [16] | Han L J, Wang P, Jiang X Q, et al. Mechanism and effectiveness of enzymatically induced phosphate precipitation (EIPP) in stabilizing coexisting lead, zinc, and cadmium in tailings[J]. Environmental Pollution, 2024, 346: 123618. |
| [17] | Ge R J, Tao E, Cheng Y, et al. NaH2PO4 synergizes with organic matter to stabilize chromium in tannery sludge[J]. Journal of Environmental Management, 2024, 351: 119843. |
| [18] | Wang X Y, van der Sloot H A, Brown K G, et al. Application and uncertainty of a geochemical speciation model for predicting oxyanion leaching from coal fly ash under different controlling mechanisms[J]. Journal of Hazardous Materials, 2022, 438: 129518. |
| [19] | Li Z, Liu Z, Wu D M, et al. Enhanced phosphorus availability and cadmium remediation using phosphate-solubilizing bacteria-loaded biochar in contaminated soils[J]. Environmental Technology & Innovation, 2024, 36: 103878. |
| [20] | 付煜恒, 张惠灵, 王宇, 等. 磷酸盐对铅镉复合污染土壤的钝化修复研究[J]. 环境工程, 2017, 35(9): 176-180, 163. |
| Fu Y H, Zhang H L, Wang Y, et al. Immobilization of soil contaminated by lead and cadmium using phosphate[J]. Environmental Engineering, 2017, 35(9): 176-180, 163. | |
| [21] | Huang J L, Jin Y Y. Fate of Cl and chlorination mechanism during municipal solid waste incineration fly ash reutilization using thermal treatment: a review[J]. Environmental Science and Pollution Research, 2023, 31(3): 3320-3342. |
| [22] | Quina M J, Bontempi E, Bogush A, et al. Technologies for the management of MSW incineration ashes from gas cleaning: new perspectives on recovery of secondary raw materials and circular economy[J]. Science of the Total Environment, 2018, 635: 526-542. |
| [23] | Ma X D, He T S, Da Y Q, et al. Improve toxicity leaching, physicochemical properties of incineration fly ash and performance as admixture by water washing[J]. Construction and Building Materials, 2023, 386: 131568. |
| [24] | Yang D K, Kow K-W, Wang W, et al. Co-treatment of municipal solid waste incineration fly ash and alumina-/silica-containing waste: a critical review[J]. Journal of Hazardous Materials, 2024, 479: 135677. |
| [25] | 孙进, 谭欣, 纪涛. 生活垃圾焚烧飞灰典型组分对其熔融特性的影响[J]. 环境卫生工程, 2021, 29(4): 59-63, 72. |
| Sun J, Tan X, Ji T. Effects of typical components of MSWI fly ash on its melting characteristics[J]. Environmental Sanitation Engineering, 2021, 29(4): 59-63, 72. | |
| [26] | Zhang H, Lan D Y, Lv F, et al. Inhibition of chlorobenzenes formation by calcium oxide during solid waste incineration[J]. Journal of Hazardous Materials, 2020, 400: 123321. |
| [27] | Gao C Q, Long J S, Yue Y, et al. Degradation and regeneration inhibition of PCDD/Fs in incineration fly ash by low-temperature thermal technology[J]. Journal of Hazardous Materials, 2024, 477: 135315. |
| [28] | Kennedy E M, Mackie J C. Mechanism of the thermal decomposition of chlorpyrifos and formation of the dioxin analog, 2,3,7,8-tetrachloro-1,4-dioxino-dipyridine (TCDDpy)[J]. Environmental Science & Technology, 2018, 52(13): 7327-7333. |
| [29] | He D Y, Hu H Y, Jiao F C, et al. Thermal separation of heavy metals from municipal solid waste incineration fly ash: a review[J]. Chemical Engineering Journal, 2023, 467: 143344. |
| [30] | Chen Z L, Lin X Q, Zhang S, et al. Thermal cotreatment of municipal solid waste incineration fly ash with sewage sludge for PCDD/Fs decomposition and reformation suppression[J]. Journal of Hazardous Materials, 2021, 416: 126216. |
| [31] | 中华人民共和国环境保护部. 固体废物 22种金属元素的测定 电感耦合等离子体发射光谱法: [S]. 北京: 中国环境科学出版社, 2016. |
| Ministry of Environmental Protection of the People's Republic of China. Solid waste—determination of 22 metal elements—inductively coupled plasma optical emission spectrometry: [S]. Beijing: China Environmental Science Press, 2016. | |
| [32] | 国家环境保护总局. 固体废物 浸出毒性浸出方法 硫酸硝酸法: [S]. 北京: 中国环境科学出版社, 2007. |
| State Environmental Protection Administration of the People's Republic of China. Solid waste—extraction procedure for leaching toxicity—sulfuric acid & nitric acid method: [S]. Beijing: China Environmental Science Press, 2007. | |
| [33] | 环境保护部. 固体废物 浸出毒性浸出方法 水平振荡法: [S]. 北京: 中国环境科学出版社, 2010. |
| Ministry of Environmental Protection of the People's Republic of China. Solid waste—extraction procedure for leaching toxicity—horizontal vibration method: [S]. Beijing: China Environmental Science Press, 2010. | |
| [34] | 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 土壤和沉积物 13个微量元素形态顺序提取程序: [S]. 北京: 中国标准出版社, 2011. |
| General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Soil and sediment—sequential extraction procedure of speciation of 13 trace elements: [S]. Beijing: Standards Press of China, 2011. | |
| [35] | 张婧, 张宏, 袁程, 等. 几种药剂对垃圾焚烧飞灰重金属稳定化的性能影响[J]. 环境工程, 2023, 41(S1): 430-434. |
| Zhang J, Zhang H, Yuan C, et al. Chelating effect of heavy metals in MSWI fly ash with several kinds of stabilizing agents[J]. Environmental Engineering, 2023, 41(S1): 430-434. | |
| [36] | Ma X D, He T S, Da Y Q, et al. Physical properties, chemical composition, and toxicity leaching of incineration fly ash by multistage water washing[J]. Environmental Science and Pollution Research, 2023, 30(33): 80978-80987. |
| [37] | Wei Y M, Liu S J, Yao R X, et al. Removal of harmful components from MSWI fly ash as a pretreatment approach to enhance waste recycling[J]. Waste Management, 2022, 150: 110-121. |
| [38] | Yuan X Y, Zhao X Y, Chen Y Z, et al. Stabilization effect of chelating agents on heavy metals in two types of municipal solid waste incineration fly ash[J]. Process Safety and Environmental Protection, 2023, 180: 169-180. |
| [39] | Tang H L, Erzat A, Liu Y S. Recovery of soluble chloride salts from the wastewater generated during the washing process of municipal solid wastes incineration fly ash[J]. Environmental Technology, 2014, 35(21/22/23/24): 2863-2869. |
| [40] | 王瑞恒, 何品晶, 吕凡, 等. 利用电渗析浓缩飞灰水洗液并回收工业盐[J]. 环境工程学报, 2022, 16(7): 2365-2373. |
| Wang R H, He P J, Lü F, et al. Concentration of fly ash eluate by electrodialysis and recovery of industrial salt[J]. Chinese Journal of Environmental Engineering, 2022, 16(7): 2365-2373. | |
| [41] | 高焕方, 曹园城, 何炉杰, 等. Tessier法和BCR法对比磷酸二氢钠处置含铅污染土壤形态分析[J]. 环境工程学报, 2017, 11(10): 5751-5756. |
| Gao H F, Cao Y C, He L J, et al. Speciation analysis of lead-contaminated soil treated with sodium dihydrogen phosphate using Tessier and BCR[J]. Chinese Journal of Environmental Engineering, 2017, 11(10): 5751-5756. | |
| [42] | Cornelis G, Johnson C A, van Gerven T, et al. Leaching mechanisms of oxyanionic metalloid and metal species in alkaline solid wastes: a review[J]. Applied Geochemistry, 2008, 23(5): 955-976. |
| [43] | Chiang K Y, Hu Y H. Water washing effects on metals emission reduction during municipal solid waste incinerator (MSWI) fly ash melting process[J]. Waste Management, 2010, 30(5): 831-838. |
| [44] | Liu Y S, Zheng L T, Li X D, et al. SEM/EDS and XRD characterization of raw and washed MSWI fly ash sintered at different temperatures[J]. Journal of Hazardous Materials, 2009, 162(1): 161-173. |
| [45] | 吕中, 夏运雪, 张健帅, 等. 水洗-热处理过程对飞灰中Pb、Zn、Cu固化和长期浸出影响研究[J]. 环境卫生工程, 2022, 30(6): 46-57. |
| Lyu Z, Xia Y X, Zhang J S, et al. Study on the influence of washing-thermal treatment on the stabilization and long-term leaching of Pb, Zn, Cu in fly ash[J]. Environmental Sanitation Engineering, 2022, 30(6): 46-57. | |
| [46] | 程翔翔, 章骅, 邵立明, 等. PVC浓度对热处理过程中Pb迁移转化的影响[J]. 中国环境科学, 2019, 39(4): 1645-1653. |
| Cheng X X, Zhang H, Shao L M, et al. Effect of PVC concentration on the transformation and migration of Pb during thermal treatment[J]. China Environmental Science, 2019, 39(4): 1645-1653. | |
| [47] | 王野, 李娜, 田书磊, 等. 垃圾焚烧飞灰热处理过程中Zn的挥发机理研究[J]. 中国环境科学, 2019, 39(2): 706-712. |
| Wang Y, Li N, Tian S L, et al. Volatilization mechanism of Zn on municipal solid waste incineration fly ash during thermal treatment[J]. China Environmental Science, 2019, 39(2): 706-712. | |
| [48] | Koleva V, Najkov K, Najdoski M, et al. Thermal behavior of acid phosphate salts Ca2MH7(PO4)4·2H2O (M=K+, N H 4 + ) and CaK3H(PO4)2 [J]. Thermochimica Acta, 2023, 724: 179518. |
| [49] | Liu F L, Liu Z, Gao Y, et al. Migration pathway and solidification mechanism of heavy metal Pb during the conversion of municipal solid waste incineration fly ash into ettringite and simultaneously purification of chloride salts solution process[J]. Environmental Pollution, 2024, 341: 122859. |
| [50] | Chen W, Kirkelund G M, Jensen P E, et al. Comparison of different MSWI fly ash treatment processes on the thermal behavior of As, Cr, Pb and Zn in the ash[J]. Waste Management, 2017, 68: 240-251. |
| [1] | 石一帆, 柯钢, 陈浩, 黄孝胜, 叶芳, 李成娇, 郭航. 大型高低温环境实验室温度控制仿真[J]. 化工学报, 2025, 76(S1): 268-280. |
| [2] | 李卫, 陈浩, 柯钢, 黄孝胜, 李成娇, 郭航, 叶芳. 高原环境适应性试验室模拟平台新风系统仿真[J]. 化工学报, 2025, 76(S1): 360-369. |
| [3] | 张茹, 朱传强, 张栋, 黄政, 肖雨果, 李明, 李长明. 采用高分子非催化还原脱硝的垃圾焚烧工艺伴生固废含氮污染物特征研究[J]. 化工学报, 2025, 76(9): 4944-4959. |
| [4] | 史松伟, 赵诚, 刘帅, 应雨轩, 严密. 富铁飞灰耦合Fe-Zn/Al2O3脱除沼气H2S研究[J]. 化工学报, 2025, 76(8): 4239-4247. |
| [5] | 李姿睿, 齐凯, 王军, 夏国栋. 基于Janus纳米通道的脱盐过程分子动力学模拟研究[J]. 化工学报, 2025, 76(7): 3531-3538. |
| [6] | 杨鹏, 尤万里, 凌忠钱, 曾宪阳, 李允超, 林佳一, 王丽建, 袁定琨. 紧凑式三室RTO系统处理乙酸乙酯废气性能的实验研究[J]. 化工学报, 2025, 76(7): 3585-3595. |
| [7] | 余嘉桐, 孟祥铠, 赵文静, 刘磊, 张力豪, 彭旭东. 热力耦合作用下涡轮泵用镶装式机械密封端面变形规律研究[J]. 化工学报, 2025, 76(6): 2900-2912. |
| [8] | 戴文智, 沈雄健, 宋晓博, 杨新乐. 生物质双级蒸发双回热有机朗肯循环系统环境分析[J]. 化工学报, 2025, 76(3): 1230-1242. |
| [9] | 常斐, 师人博, 刘士花, 高文倩, 王一飞, 郑镔, 焦怡萱, 蓝兴英, 徐春明, 韩晔华. 石化行业产品生命周期碳足迹评价研究现状及展望[J]. 化工学报, 2025, 76(2): 419-437. |
| [10] | 唐元晖, 柏元吉, 郭强, 何晓磊, 余立新, 林亚凯, 王晓琳. 高矿化度矿井水热法脱盐过程中硫酸钙的结垢趋势预测及验证[J]. 化工学报, 2025, 76(1): 81-92. |
| [11] | 邱知, 谭明. 聚离子液体膜的制备及其在低钠高钾健康酱油中的应用[J]. 化工学报, 2024, 75(S1): 244-250. |
| [12] | 赵博超, 聂一凡, 王雪婷, 田向勤, 田祎, 潘涔轩. 不同制液工艺对锰矿锰浸出回收及钙镁铁迁移影响[J]. 化工学报, 2024, 75(S1): 292-299. |
| [13] | 袁玲雅, 张滢. 中国光伏产业发展及其资源环境影响[J]. 化工学报, 2024, 75(S1): 14-24. |
| [14] | 高文芳, 崔晗, 孙一冉, 彭佳晴, 朱睿, 夏然, 张馨予, 李佳奇, 王学良, 孙峙, 吕龙义. 典型金属生产过程的环境影响评价研究进展[J]. 化工学报, 2024, 75(9): 3056-3073. |
| [15] | 胡术刚, 田国庆, 刘文娟, 徐广飞, 刘华清, 张建, 王艳龙. 纳米零价铁的制备及氧化还原技术的应用进展[J]. 化工学报, 2024, 75(9): 3041-3055. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号