化工学报 ›› 2025, Vol. 76 ›› Issue (8): 4017-4029.DOI: 10.11949/0438-1157.20250135
佘海龙1,2(
), 胡光忠1(
), 崔晓钰3, 柳忠彬1, 彭帝1, 李航1
收稿日期:2025-02-14
修回日期:2025-03-16
出版日期:2025-08-25
发布日期:2025-09-17
通讯作者:
胡光忠
作者简介:佘海龙(1993—),男,博士,讲师,804777808@qq.com
基金资助:
Hailong SHE1,2(
), Guangzhong HU1(
), Xiaoyu CUI3, Zhongbin LIU1, Di PENG1, Hang LI1
Received:2025-02-14
Revised:2025-03-16
Online:2025-08-25
Published:2025-09-17
Contact:
Guangzhong HU
摘要:
针对目前微通道节流制冷器通道数量少、制冷量小的特点,研究开发了一款多层、多流道并行印刷电路板式微通道节流制冷器。该制冷器内不同截面尺寸的微槽道相搭配以实现不同功能,在当量直径为0.46 mm的换热通道内回热预冷,在当量直径0.12 mm的节流通道内分布式节流降温与回热预冷耦合。以氩气为工质,分析2.01~8.02 MPa不同入口压力下制冷器的制冷性能。结果表明,各工况下,回热装置换热较充分,分布式节流部件具有显著的降温能力。当入口压力为8.02 MPa时,可达到158.5 K的最低温度,回热段与节流段温降梯度分别达到0.79和1.04 K/mm;当入口压力为6.00 MPa时,冷端温度为196.7 K,并伴随有2.73 W的寄生制冷量;在219.8 K的冷端温度下具有6.08 W的总制冷量,相较于相似特征尺寸的节流制冷器,有了显著提高。对比氩气和氮气在微通道节流制冷器中的实验结果,氩气所能达到的冷端温度总是低于相似工况下的氮气;但在相同出口压力下,氮气具有达到更低极限温度的潜力。另外,通过J-T效应分析分布式节流的运行特征,换热与J-T效应的耦合作用,热力和传热过程有不同规律,相较于绝热节流,节流过程系统完成度更高,J-T效率增加,可以缓解节流前预冷机构的换热压力。
中图分类号:
佘海龙, 胡光忠, 崔晓钰, 柳忠彬, 彭帝, 李航. 不同节流工质下叠层微通道分布式节流制冷器性能研究[J]. 化工学报, 2025, 76(8): 4017-4029.
Hailong SHE, Guangzhong HU, Xiaoyu CUI, Zhongbin LIU, Di PENG, Hang LI. Performance study on layered microchannel distributed throttling cryocooler with different working fluids[J]. CIESC Journal, 2025, 76(8): 4017-4029.
| 位置 | 尺寸 |
|---|---|
| 入/出口段 | 10 mm |
| 高压回热段 | 0.55 mm × 0.40 mm × 105 mm |
| 高压节流段 | 0.15 mm × 0.10 mm × 40 mm |
| 低压回热段 | 0.55 mm × 0.40 mm × 145 mm |
| 膨胀腔 | 10 mm, 150° |
| 整体长度 | 165 mm |
表1 微通道节流制冷器结构参数
Table 1 Structural parameters of microchannel throttling cryocooler
| 位置 | 尺寸 |
|---|---|
| 入/出口段 | 10 mm |
| 高压回热段 | 0.55 mm × 0.40 mm × 105 mm |
| 高压节流段 | 0.15 mm × 0.10 mm × 40 mm |
| 低压回热段 | 0.55 mm × 0.40 mm × 145 mm |
| 膨胀腔 | 10 mm, 150° |
| 整体长度 | 165 mm |
| 测量设备 | 精度 | 量程 |
|---|---|---|
| 入/出口热电偶(T1/T9) | ± 0.5 K | 73~573 K |
| T型热电偶(T2~T8) | ± 0.2 K | 113~373 K |
| 入口压力传感器 | ± 0.5% | 0~10 MPa |
| 出口压力传感器 | ± 0.5% | 0~1.5 MPa |
| 质量流量计 | ± 1.0% | 0~300 SLPM |
表2 测量仪器精度及量程
Table 2 Accuracy and range of instruments
| 测量设备 | 精度 | 量程 |
|---|---|---|
| 入/出口热电偶(T1/T9) | ± 0.5 K | 73~573 K |
| T型热电偶(T2~T8) | ± 0.2 K | 113~373 K |
| 入口压力传感器 | ± 0.5% | 0~10 MPa |
| 出口压力传感器 | ± 0.5% | 0~1.5 MPa |
| 质量流量计 | ± 1.0% | 0~300 SLPM |
| [1] | 赵帮健, 张涛, 谭军, 等. 2 K温区两级节流JT制冷机热力学分析[J]. 工程热物理学报, 2023, 44(5): 1147-1153. |
| Zhao B J, Zhang T, Tan J, et al. Thermodynamic analysis and experimental study of the two-stage throttling JT cryocooler at 2 K temperature zone[J]. Journal of Engineering Thermophysics, 2023, 44(5): 1147-1153. | |
| [2] | Fredrickson K, Nellis G, Klein S. A design method for mixed gas Joule–Thomson refrigeration cryosurgical probes[J]. International Journal of Refrigeration, 2006, 29(5): 700-715. |
| [3] | Sugita H, Sato Y, Nakagawa T, et al. Cryogenic system design of the next generation infrared space telescope SPICA[J]. Cryogenics, 2010, 50(9): 566-571. |
| [4] | Lee C, Baek S, Lee J, et al. Development of a closed-loop J-T cryoablation device with a long cooling area and multiple expansion parts[J]. Medical Engineering & Physics, 2014, 36(11): 1464-1472. |
| [5] | 张永壮, 韩蓬磊, 饶启超, 等. 制冷工质压力对红外用波纹管J-T制冷器制冷性能的影响研究[J]. 红外, 2024, 45(7): 35-41. |
| Zhang Y Z, Han P L, Rao Q C, et al. Research on the influence of refrigerant pressure on the refrigeration performance of corrugated tube J-T cooler for infrared application[J]. Infrared, 2024, 45(7): 35-41. | |
| [6] | 姜博仁, 武卫东. 低温冷冻刀降温方法综述及展望[J]. 低温与超导, 2012, 40(12): 13-17. |
| Jiang B R, Wu W D. Summary and prospect of crygenic knife's cooling methods[J]. Cryogenics & Superconductivity, 2012, 40(12): 13-17. | |
| [7] | Little W A. Microminiature refrigeration: small is better[J]. Physica B+C, 1982, 109: 2001-2009. |
| [8] | Lerou P P P M, Jansen H, Venhorst G C F, et al. Progress in micro Joule-Thomson cooling at twente university[C]//Cryocoolers 13. Boston, MA: Springer US, 2005: 489-496. |
| [9] | Cao H S, Mudaliar A V, Derking J H, et al. Design and optimization of a two-stage 28 K Joule–Thomson microcooler[J]. Cryogenics, 2012, 52(1): 51-57. |
| [10] | Cao H S, Vanapalli S, Holland H J, et al. A micromachined Joule-Thomson cryogenic cooler with parallel two-stage expansion[J]. International Journal of Refrigeration, 2016, 69: 223-231. |
| [11] | 杜艳君, 陈双涛, 李家鹏, 等. 微通道节流制冷器热力学仿真及结构优化[J]. 低温工程, 2018(6): 8-13. |
| Du Y J, Chen S T, Li J P, et al. Thermodynamic simulation and structure optimization of microchannel throttling cooler[J]. Cryogenics, 2018(6): 8-13. | |
| [12] | 佘海龙, 崔晓钰, 耿晖, 等. 微小型焦-汤效应节流制冷器发展与研究[J]. 制冷学报, 2019, 40(3): 8-23. |
| She H L, Cui X Y, Geng H, et al. Review on micro-sized Joule-Thomson effect throttle cryocooler[J]. Journal of Refrigeration, 2019, 40(3): 8-23. | |
| [13] | Mikulin E, Shevich J, Danilenko T, et al. The miniature Joule-Thomson refrigerator[J]. Cryogenics, 1992, 32: 17-19. |
| [14] | 王文卿, 崔晓钰, 耿晖, 等. 氩气微槽道焦-汤效应制冷器实验研究[J]. 低温工程, 2016(5): 46-50. |
| Wang W Q, Cui X Y, Geng H, et al. Experimental study of rectangle micro channel Joule-Thomson cryocooler with argon[J]. Cryogenics, 2016(5): 46-50. | |
| [15] | Narayanan S P, Venkatarathnam G. Analysis of performance of heat exchangers used in practical micro miniature refrigerators[J]. Cryogenics, 1999, 39(6): 517-527. |
| [16] | Gong M Q, Wu J F, Yan B, et al. Study on a miniature mixed-gases Joule-Thomson cooler driven by an oil-lubricated mini-compressor for 120 K temperature ranges[J]. Physics Procedia, 2015, 67: 405-410. |
| [17] | Xiong L Y, Kaiser G, Binneberg A. Theoretical study on a miniature Joule-Thomson & bernoulli cryocooler[J]. Cryogenics, 2004, 44(11): 801-807. |
| [18] | Baik Y J, Jeon S, Kim B, et al. Heat transfer performance of wavy-channeled PCHEs and the effects of waviness factors[J]. International Journal of Heat and Mass Transfer, 2017, 114: 809-815. |
| [19] | Tsuzuki N, Kato Y, Ishiduka T. High performance printed circuit heat exchanger[J]. Applied Thermal Engineering, 2007, 27(10): 1702-1707. |
| [20] | Tsuzuki N, KATOY, NIKITIN K, et al. Advanced microchannel heat exchanger with S-shaped fins[J]. Journal of Nuclear Science and Technology, 2009, 46(5): 403-412. |
| [21] | Kim D E, Kim M H, Cha J E, et al. Numerical investigation on thermal–hydraulic performance of new printed circuit heat exchanger model[J]. Nuclear Engineering and Design, 2008, 238(12): 3269-3276. |
| [22] | Maytal B Z. Hampson's type cryocoolers with distributed Joule–Thomson effect for mixed refrigerants closed cycle[J]. Cryogenics, 2014, 61: 92-96. |
| [23] | Jeong S, Park C, Kim K. Design of distributed JT (Joule-Thomson) effect heat exchanger for superfluid 2 K cooling device[J]. Journal of Physics: Conference Series, 2018, 969: 012084. |
| [24] | Geng H, Cui X Y, She H L, et al. Characterization of a distributed Joule-Thomson effect cooler with pillars[J]. International Journal of Energy Research, 2021, 45(9): 13965-13977. |
| [25] | Derek J, Jinoop A N, Paul C P, et al. Investigating the effect of geometry on micro-channel heat exchangers using CFD analysis[C]// Advances in Fluid and Thermal Engineering. Singapore: Springer Singapore, 2019: 401-408. |
| [26] | Lee S M, Kim K Y. Comparative study on performance of a zigzag printed circuit heat exchanger with various channel shapes and configurations[J]. Heat and Mass Transfer, 2013, 49(7): 1021-1028. |
| [27] | Aneesh A M, Sharma A, Srivastava A, et al. Effects of wavy channel configurations on thermal-hydraulic characteristics of Printed Circuit Heat Exchanger (PCHE)[J]. International Journal of Heat and Mass Transfer, 2018, 118: 304-315. |
| [28] | Gupta R, Geyer P E, Fletcher D F, et al. Thermohydraulic performance of a periodic trapezoidal channel with a triangular cross-section[J]. International Journal of Heat and Mass Transfer, 2008, 51(11/12): 2925-2929. |
| [29] | Oh C H, Kim E S, Patterson M. Design option of heat exchanger for the next generation nuclear plant[J]. Journal of Engineering for Gas Turbines and Power, 2010, 132(3): 032903. |
| [30] | 胡芳. 印刷电路板式换热器流动与传热特性研究[D]. 南京: 南京航空航天大学, 2012. |
| Hu F. Study on flow and heat transfer characteristics of printed circuit plate heat exchanger[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012. | |
| [31] | Krasnoshchekov E A, Kuraeva I V, Protopopov V S. Local heat transfer of carbon dioxide at supercritical pressure under cooling conditions[J]. Teplofizika Vysokikh Temperatur, 1970, 7(5): 922-930. |
| [1] | 任现超, 谷雅秀, 段少斌, 贾文竹, 李汉林. 翅片式椭圆套管蒸发式冷凝器传热传质性能实验研究[J]. 化工学报, 2025, 76(S1): 75-83. |
| [2] | 袁琳慧, 王瑜. 单服务器浸没射流式液冷系统散热性能[J]. 化工学报, 2025, 76(S1): 160-169. |
| [3] | 赵子祥, 段钟弟, 孙浩然, 薛鸿祥. 大温差两相流动诱导水锤冲击的数值模型[J]. 化工学报, 2025, 76(S1): 170-180. |
| [4] | 黄博, 黄灏, 王文, 贺隆坤. 薄膜型LNG船液货舱温度场计算分析[J]. 化工学报, 2025, 76(S1): 195-204. |
| [5] | 汪思远, 刘国强, 熊通, 晏刚. 窗式空调器轴流风机的风速非均匀分布特性及其对冷凝器流路优化设计的影响规律[J]. 化工学报, 2025, 76(S1): 205-216. |
| [6] | 曹庆泰, 郭松源, 李建强, 蒋赞, 汪彬, 耑锐, 吴静怡, 杨光. 负过载下多孔隔板对液氧贮箱蓄液性能的影响研究[J]. 化工学报, 2025, 76(S1): 217-229. |
| [7] | 孔俊龙, 毕扬, 赵耀, 代彦军. 储能电池直冷热管理系统的模拟实验[J]. 化工学报, 2025, 76(S1): 289-296. |
| [8] | 吴林凯, 林志敏, 王良璧. 基于热质传递效应的准稳态结霜模型改进及数值验证[J]. 化工学报, 2025, 76(8): 4004-4016. |
| [9] | 龚路远, 果正龙, 赵登辉, 郭亚丽, 周健, 韩倩倩, 沈胜强. 不同疏水性表面冷凝传热性能及动力学特征研究[J]. 化工学报, 2025, 76(8): 3932-3943. |
| [10] | 陈科拯, 高蓬辉, 焉富春, 程博. 考虑液滴动态行为的亲-疏水复合结构表面冷凝特性影响因素分析[J]. 化工学报, 2025, 76(8): 3976-3989. |
| [11] | 周航, 张斯婧, 刘剑, 张小松. 小通道内非共沸工质流动沸腾换热数值分析[J]. 化工学报, 2025, 76(8): 3864-3872. |
| [12] | 王孝宇, 戴贵龙, 邓树坤, 龚凌诸. Laguerre-Voronoi开孔泡沫流动-传热综合性能孔隙尺度模拟[J]. 化工学报, 2025, 76(7): 3259-3273. |
| [13] | 夏天炜, 王谙词, 句子涵, 孙晓霞, 胡定华. 基于三周期极小曲面结构的高密度储热器蓄放热特性研究[J]. 化工学报, 2025, 76(7): 3605-3614. |
| [14] | 刘纹佳, 杜如雪, 王思齐, 李廷贤. 电-热转换功能型相变储热材料的研究进展及应用[J]. 化工学报, 2025, 76(7): 3185-3196. |
| [15] | 朱先宇, 孙钱行, 周守军, 田永生, 孙钦鹏. 复合相变材料耦合微槽平板热管的电池热管理实验研究[J]. 化工学报, 2025, 76(6): 2652-2666. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号