化工学报 ›› 2025, Vol. 76 ›› Issue (11): 5865-5876.DOI: 10.11949/0438-1157.20250279
• 流体力学与传递现象 • 上一篇
收稿日期:2025-03-21
修回日期:2025-07-08
出版日期:2025-11-25
发布日期:2025-12-19
通讯作者:
刘国强
作者简介:董佩文(1995—),女,博士研究生,dongpeiwen1995@outlook.com
Peiwen DONG(
), Guoqiang LIU(
), Gang YAN
Received:2025-03-21
Revised:2025-07-08
Online:2025-11-25
Published:2025-12-19
Contact:
Guoqiang LIU
摘要:
气液同轴离心喷嘴利用气体剪切作用获得良好的雾化效果,广泛应用于工业生产当中。实验研究了气体剪切作用(有无空气助力)以及运行条件对气液同轴喷嘴雾化特性的影响,明确了稳定运行工况,解决运行压力波动导致雾化效果恶化的问题。结果表明,与旋流喷嘴的单峰分布不同,气液同轴离心喷嘴的雾化粒径分布具有双峰分布的特点,气体剪切作用显著提高了喷嘴的雾化效果。当气液出口面积比为48,气体压力为0.25 MPa,液体压力为0.6 MPa时,索特平均直径(SMD)最小可达到36.5 μm,比没有空气助力的情况降低了84.3%。此外,当气体压力超过0.1 MPa,气液比超过0.28时,SMD不随液体压力变化,可以减少雾化效果对运行压力的依赖。最后通过量纲分析,建立了旋流喷嘴和气液同轴离心喷嘴雾化粒径的经验关联式,对雾化效果实现精准预测。
中图分类号:
董佩文, 刘国强, 晏刚. 气液同轴离心喷嘴雾化特性实验研究及粒径预测[J]. 化工学报, 2025, 76(11): 5865-5876.
Peiwen DONG, Guoqiang LIU, Gang YAN. Experimental study on atomization characteristics and particle size prediction of gas-liquid coaxial swirl injector[J]. CIESC Journal, 2025, 76(11): 5865-5876.
| 设备 | 品牌型号 | 参数 | 不确定度 |
|---|---|---|---|
| 水泵 | CNP CDL(F)2-15 | 最大扬程:134 m;额定流量: 2 t·h-1 | — |
| 空压机 | 芝浦ZP-KYJ-002 | 压力范围:0.05~0.25 MPa;排量: 0.27 m3·min-1 | — |
| 气体流量计 | 美控LUGB-C-DN15 | 测量范围:3~10 m3·h-1 | ±1.5%FS |
| 激光粒度仪 | NKT PW180-B | 测量范围:0.1~1000 μm | ±0.5%FS |
表1 设备参数
Table 1 Equipment parameters
| 设备 | 品牌型号 | 参数 | 不确定度 |
|---|---|---|---|
| 水泵 | CNP CDL(F)2-15 | 最大扬程:134 m;额定流量: 2 t·h-1 | — |
| 空压机 | 芝浦ZP-KYJ-002 | 压力范围:0.05~0.25 MPa;排量: 0.27 m3·min-1 | — |
| 气体流量计 | 美控LUGB-C-DN15 | 测量范围:3~10 m3·h-1 | ±1.5%FS |
| 激光粒度仪 | NKT PW180-B | 测量范围:0.1~1000 μm | ±0.5%FS |
| 喷嘴标号 | 气体出口环形内直径 | 气体出口环形外直径 | 液体出口直径 | |
|---|---|---|---|---|
| W8-0.5 A4-1 | 2.0 | 4.0 | 0.5 | 48 |
| W8-0.5 A4-0.5 | 2.5 | 3.5 | 0.5 | 24 |
| W8-1 A4-1 | 2.0 | 4.0 | 1.0 | 12 |
| W8-1 A4-0.5 | 2.5 | 3.5 | 1.0 | 6 |
| W8-1.5 A4-1 | 2.0 | 4.0 | 1.5 | 5.33 |
| W8-1.5 A4-0.5 | 2.5 | 3.5 | 1.5 | 2.67 |
表2 喷嘴结构参数
Table 2 Nozzle structure parameters
| 喷嘴标号 | 气体出口环形内直径 | 气体出口环形外直径 | 液体出口直径 | |
|---|---|---|---|---|
| W8-0.5 A4-1 | 2.0 | 4.0 | 0.5 | 48 |
| W8-0.5 A4-0.5 | 2.5 | 3.5 | 0.5 | 24 |
| W8-1 A4-1 | 2.0 | 4.0 | 1.0 | 12 |
| W8-1 A4-0.5 | 2.5 | 3.5 | 1.0 | 6 |
| W8-1.5 A4-1 | 2.0 | 4.0 | 1.5 | 5.33 |
| W8-1.5 A4-0.5 | 2.5 | 3.5 | 1.5 | 2.67 |
| 喷嘴 | 样品 | 索特平均粒径SMD/μm | 气体流量/(L·min-1) | 液体流量/(L·min-1) |
|---|---|---|---|---|
| W8-1.5 A4-1 | 1 | 78.98 | 300 | 2.13 |
| 2 | 80.97 | 294 | 2.16 | |
| 3 | 77.56 | 298 | 2.08 | |
| 标准偏差 | 0.80 | 4.29 | 0.045 | |
表3 喷嘴准确性测试
Table 3 Accuracy testing of nozzles
| 喷嘴 | 样品 | 索特平均粒径SMD/μm | 气体流量/(L·min-1) | 液体流量/(L·min-1) |
|---|---|---|---|---|
| W8-1.5 A4-1 | 1 | 78.98 | 300 | 2.13 |
| 2 | 80.97 | 294 | 2.16 | |
| 3 | 77.56 | 298 | 2.08 | |
| 标准偏差 | 0.80 | 4.29 | 0.045 | |
| 变量 | 基本物理量 | ||
|---|---|---|---|
| 质量 | 长度 | 时间 | |
| 气体质量流量 | 1 | 0 | -1 |
| 液体质量流量 | 1 | 0 | -1 |
| 气体出口面积 | 0 | 2 | 0 |
| 液体出口面积 | 0 | 2 | 0 |
| 气体密度 | 1 | -3 | 0 |
| 液体密度 | 1 | -3 | 0 |
| 液体表面张力 | 1 | 0 | -2 |
| 液体黏度 | 1 | -1 | -1 |
| 液体压力 | 1 | -1 | -2 |
表4 量纲分析变量
Table 4 Dimensional analysis variables
| 变量 | 基本物理量 | ||
|---|---|---|---|
| 质量 | 长度 | 时间 | |
| 气体质量流量 | 1 | 0 | -1 |
| 液体质量流量 | 1 | 0 | -1 |
| 气体出口面积 | 0 | 2 | 0 |
| 液体出口面积 | 0 | 2 | 0 |
| 气体密度 | 1 | -3 | 0 |
| 液体密度 | 1 | -3 | 0 |
| 液体表面张力 | 1 | 0 | -2 |
| 液体黏度 | 1 | -1 | -1 |
| 液体压力 | 1 | -1 | -2 |
| 模型系数 | 单流体喷嘴 | 气液同轴喷嘴 | |||||
|---|---|---|---|---|---|---|---|
| -15.48 | 5.93×104 | 3.06×104 | 70.85 | 7.37×107 | 2.38×104 | 0.046 | |
| — | -0.19 | 1.56 | 8.39 | -23.39 | 0.84 | 48.61 | |
| — | 0.060 | 0.39 | 3.75 | 9.54 | 1.10 | -4.20 | |
| — | -0.035 | -0.19 | -1.43 | -1.37 | -0.28 | 0.63 | |
| -2.49 | 0.91 | 0.040 | -0.21 | -42.63 | -0.12 | 18.02 | |
| 2.73×107 | 1.75×108 | 3.33×104 | 1.19×105 | 695.27 | 8.57×1010 | 3.65×105 | |
| — | -5.29 | -2.76 | -1.52 | -1.50 | -26.32 | -3.33 | |
| — | 2.26 | 1.36 | 0.47 | 4.96 | 9.96 | 2.19 | |
| — | -1.35 | -0.64 | -0.18 | -0.089 | -2.61 | -0.33 | |
| -0.61 | -1.12 | -0.13 | 0.0033 | 0.88 | 5.32 | -0.10 | |
| 0.83 | 0.026 | -0.32 | -2.16 | 1.39 | -0.33 | -1.24 | |
| -0.43 | -2.38 | -0.69 | -0.24 | -0.51 | -5.45 | -0.52 | |
表5 式(7)的系数值
Table 5 The coefficient values of Eq. (7)
| 模型系数 | 单流体喷嘴 | 气液同轴喷嘴 | |||||
|---|---|---|---|---|---|---|---|
| -15.48 | 5.93×104 | 3.06×104 | 70.85 | 7.37×107 | 2.38×104 | 0.046 | |
| — | -0.19 | 1.56 | 8.39 | -23.39 | 0.84 | 48.61 | |
| — | 0.060 | 0.39 | 3.75 | 9.54 | 1.10 | -4.20 | |
| — | -0.035 | -0.19 | -1.43 | -1.37 | -0.28 | 0.63 | |
| -2.49 | 0.91 | 0.040 | -0.21 | -42.63 | -0.12 | 18.02 | |
| 2.73×107 | 1.75×108 | 3.33×104 | 1.19×105 | 695.27 | 8.57×1010 | 3.65×105 | |
| — | -5.29 | -2.76 | -1.52 | -1.50 | -26.32 | -3.33 | |
| — | 2.26 | 1.36 | 0.47 | 4.96 | 9.96 | 2.19 | |
| — | -1.35 | -0.64 | -0.18 | -0.089 | -2.61 | -0.33 | |
| -0.61 | -1.12 | -0.13 | 0.0033 | 0.88 | 5.32 | -0.10 | |
| 0.83 | 0.026 | -0.32 | -2.16 | 1.39 | -0.33 | -1.24 | |
| -0.43 | -2.38 | -0.69 | -0.24 | -0.51 | -5.45 | -0.52 | |
| 喷嘴编号 | 液体压力 | 液体流量/(L·min-1) | 液体速度/(m·s-1) | 气体压力 | 气体流量/(L·min-1) |
|---|---|---|---|---|---|
| 喷嘴Ⅰ | 0.6 | 0.33 | 28.01 | 0.05 | 100 |
| 0.8 | 0.35 | 30.05 | 0.10 | 150 | |
| 1.0 | 0.45 | 38.20 | 0.15 | 200 | |
| 1.2 | 0.47 | 40.23 | 0.20 | 250 | |
| 1.4 | 0.50 | 42.27 | 0.25 | 300 | |
| 喷嘴Ⅱ | 0.6 | 0.33 | 28.01 | 0.05 | 45 |
| 0.8 | 0.35 | 30.05 | 0.10 | 90 | |
| 1.0 | 0.45 | 38.20 | 0.15 | 130 | |
| 1.2 | 0.47 | 40.23 | 0.20 | 180 | |
| 1.4 | 0.50 | 42.27 | 0.25 | 215 | |
| 喷嘴Ⅲ | 0.6 | 0.72 | 15.28 | 0.05 | 100 |
| 0.8 | 0.78 | 16.55 | 0.10 | 150 | |
| 1.0 | 0.85 | 17.95 | 0.15 | 200 | |
| 1.2 | 0.94 | 19.99 | 0.20 | 250 | |
| 1.4 | 1.03 | 21.90 | 0.25 | 300 | |
| 喷嘴Ⅳ | 0.6 | 0.72 | 15.28 | 0.05 | 45 |
| 0.8 | 0.78 | 16.55 | 0.10 | 90 | |
| 1.0 | 0.85 | 17.95 | 0.15 | 130 | |
| 1.2 | 0.94 | 19.99 | 0.20 | 180 | |
| 1.4 | 1.03 | 21.90 | 0.25 | 215 | |
| 喷嘴Ⅴ | 0.6 | 1.38 | 13.02 | 0.05 | 100 |
| 0.8 | 1.57 | 14.77 | 0.10 | 150 | |
| 1.0 | 1.76 | 16.58 | 0.15 | 200 | |
| 1.2 | 1.95 | 18.39 | 0.20 | 250 | |
| 1.4 | 2.13 | 20.09 | 0.25 | 300 | |
| 喷嘴Ⅵ | 0.6 | 1.38 | 13.02 | 0.05 | 45 |
| 0.8 | 1.57 | 14.77 | 0.10 | 90 | |
| 1.0 | 1.76 | 16.58 | 0.15 | 130 | |
| 1.2 | 1.95 | 18.39 | 0.20 | 180 | |
| 1.4 | 2.13 | 20.09 | 0.25 | 215 |
表A1 气液同轴喷嘴实验结果
Table A1 Experimental results of gas-liquid coaxial nozzle
| 喷嘴编号 | 液体压力 | 液体流量/(L·min-1) | 液体速度/(m·s-1) | 气体压力 | 气体流量/(L·min-1) |
|---|---|---|---|---|---|
| 喷嘴Ⅰ | 0.6 | 0.33 | 28.01 | 0.05 | 100 |
| 0.8 | 0.35 | 30.05 | 0.10 | 150 | |
| 1.0 | 0.45 | 38.20 | 0.15 | 200 | |
| 1.2 | 0.47 | 40.23 | 0.20 | 250 | |
| 1.4 | 0.50 | 42.27 | 0.25 | 300 | |
| 喷嘴Ⅱ | 0.6 | 0.33 | 28.01 | 0.05 | 45 |
| 0.8 | 0.35 | 30.05 | 0.10 | 90 | |
| 1.0 | 0.45 | 38.20 | 0.15 | 130 | |
| 1.2 | 0.47 | 40.23 | 0.20 | 180 | |
| 1.4 | 0.50 | 42.27 | 0.25 | 215 | |
| 喷嘴Ⅲ | 0.6 | 0.72 | 15.28 | 0.05 | 100 |
| 0.8 | 0.78 | 16.55 | 0.10 | 150 | |
| 1.0 | 0.85 | 17.95 | 0.15 | 200 | |
| 1.2 | 0.94 | 19.99 | 0.20 | 250 | |
| 1.4 | 1.03 | 21.90 | 0.25 | 300 | |
| 喷嘴Ⅳ | 0.6 | 0.72 | 15.28 | 0.05 | 45 |
| 0.8 | 0.78 | 16.55 | 0.10 | 90 | |
| 1.0 | 0.85 | 17.95 | 0.15 | 130 | |
| 1.2 | 0.94 | 19.99 | 0.20 | 180 | |
| 1.4 | 1.03 | 21.90 | 0.25 | 215 | |
| 喷嘴Ⅴ | 0.6 | 1.38 | 13.02 | 0.05 | 100 |
| 0.8 | 1.57 | 14.77 | 0.10 | 150 | |
| 1.0 | 1.76 | 16.58 | 0.15 | 200 | |
| 1.2 | 1.95 | 18.39 | 0.20 | 250 | |
| 1.4 | 2.13 | 20.09 | 0.25 | 300 | |
| 喷嘴Ⅵ | 0.6 | 1.38 | 13.02 | 0.05 | 45 |
| 0.8 | 1.57 | 14.77 | 0.10 | 90 | |
| 1.0 | 1.76 | 16.58 | 0.15 | 130 | |
| 1.2 | 1.95 | 18.39 | 0.20 | 180 | |
| 1.4 | 2.13 | 20.09 | 0.25 | 215 |
| [1] | Dong P W, Li Y L, Liu G Q, et al. Numerical analysis of crystallization and freezing of flying droplet in artificial snowmaking[J]. International Communications in Heat and Mass Transfer, 2025, 163: 108740. |
| [2] | 游云霞, 侯力, 易宗礼, 等. 气液同轴离心式喷嘴雾化性能及优化设计研究[J]. 机械工程学报, 2022, 58(1): 201-211. |
| You Y X, Hou L, Yi Z L, et al. Study on spray performance and optimization design of gas-liquid coaxial swirl nozzle[J]. Journal of Mechanical Engineering, 2022, 58(1): 201-211. | |
| [3] | 王永堂, 陈明, 吴少华, 等. 增压环境下旋流式气液同轴喷油器的雾化特性[J]. 化工学报, 2011, 62(7): 1860-1865. |
| Wang Y T, Chen M, Wu S H, et al. Atomization characteristics of gas/liquid coaxial swirling nozzle in pressurized space[J]. CIESC Journal, 2011, 62(7): 1860-1865. | |
| [4] | Kannaiyan K, Banda M V K, Vaidyanathan A. Planar Sauter mean diameter measurements in liquid centered swirl coaxial injector using laser induced fluorescence, Mie scattering and laser diffraction techniques[J]. Acta Astronautica, 2016, 123: 257-270. |
| [5] | Liu L H, Fu Q F, Yang L J. Theoretical atomization model of liquid sheet generated by coaxial swirl injectors[J]. International Journal of Multiphase Flow, 2021, 142: 103725. |
| [6] | 田章福, 吴继平, 陶玉静, 等. 气液同轴式喷嘴雾化特性的试验[J]. 国防科技大学学报, 2006, 28(4): 10-13. |
| Tian Z F, Wu J P, Tao Y J, et al. Experimental study on spray characteristic of gas-liquid coaxial injectors[J]. Journal of National University of Defense Technology, 2006, 28(4): 10-13. | |
| [7] | 陈晨, 晏至辉, 唐志共, 等. 气液同轴离心式喷嘴雾化特性试验研究[J]. 江苏科技大学学报(自然科学版). 2020, 34(6): 50-55. |
| Chen C, Yan Z H, Tang Z G, et al. Experimental study on spray characteristic of gas-iquidcoaxial swirling injectors[J]. Journal of Jiangsu University of Seienee and Technology(Natural Seienee Edition). 2020, 34(6): 50-55. | |
| [8] | Im J H, Cho S, Yoon Y, et al. Comparative study of spray characteristics of gas-centered and liquid-centered swirl coaxial injectors[J]. Journal of Propulsion and Power, 2010, 26(6): 1196-1204. |
| [9] | Yang L J, Fu Q F. Theoretical investigation on the dynamics of a gas-liquid coaxial swirl injector[J]. Journal of Propulsion and Power, 2011, 27(1): 144-150. |
| [10] | Bai X, Li Q L, Cheng P, et al. Investigation of self-pulsation characteristics for a liquid-centered swirl coaxial injector with recess[J]. Acta Astronautica, 2018, 151: 511-521. |
| [11] | Bai X, Cheng P, Sheng L Y, et al. Effects of backpressure on self-pulsation characteristics of liquid-centered swirl coaxial injectors[J]. International Journal of Multiphase Flow, 2019, 116: 239-249. |
| [12] | Bai X, Cao P J, Li Q L, et al. The break phenomenon of self-pulsation for liquid-centered swirl coaxial injectors[J]. International Journal of Multiphase Flow, 2021, 142: 103708. |
| [13] | Li Q L, Kang Z T, Zhang X Q, et al. Effect of recess length on the spray characteristics of liquid-centered swirl coaxial injectors[J]. Atomization and Sprays, 2016, 26(6): 535-550. |
| [14] | Chu W, Li X Q, Tong Y H, et al. Numerical investigation of the effects of gas-liquid ratio on the spray characteristics of liquid-centered swirl coaxial injectors[J]. Acta Astronautica, 2020, 175: 204-215. |
| [15] | Ren Y J, Chu W, Tong Y H, et al. Numerical investigation on spray self-pulsation characteristics of a liquid-centered swirl coaxial injector[J]. Aerospace Science and Technology, 2021, 112: 106593. |
| [16] | Chen C, He X J, Liu C Z, et al. Experimental study on the flow field distribution characteristics of a gas-liquid swirl coaxial injector under ambient pressure[J]. Aerospace Science and Technology, 2021, 114: 106757. |
| [17] | Amini G. Liquid flow in a simplex swirl nozzle[J]. International Journal of Multiphase Flow, 2016, 79: 225-235. |
| [18] | Kang Z T, Wang Z G, Li Q L, et al. Review on pressure swirl injector in liquid rocket engine[J]. Acta Astronautica, 2018, 145: 174-198. |
| [19] | 王晓琦, 尹俊连, 张海平, 等. 中空压力旋流喷嘴内流场特性研究[J]. 流体机械, 2008, 36(3): 5-10. |
| Wang X Q, Yin J L, Zhang H P, et al. Research on the inner flow field of a hollow cone pressure swirl nozzle[J]. Fluid Machinery, 2008, 36(3): 5-10. | |
| [20] | Shao C X, Luo K, Chai M, et al. Sheet, ligament and droplet formation in swirling primary atomization[J]. AIP Advances, 2018, 8(4): 045211. |
| [21] | Shao C X, Luo K, Yang Y, et al. Detailed numerical simulation of swirling primary atomization using a mass conservative level set method[J]. International Journal of Multiphase Flow, 2017, 89: 57-68. |
| [22] | Yu H M, Jin Y C, Cheng W M, et al. Multiscale simulation of atomization process and droplet particles diffusion of pressure-swirl nozzle[J]. Powder Technology, 2021, 379: 127-143. |
| [23] | Zhang B W, Wang R X, Wu H F, et al. Atomization characteristics of twin nozzles for outdoor snow-makers application[J]. International Journal of Refrigeration, 2022, 139: 60-69. |
| [24] | Dong P W, Chen Q, Liu G Q, et al. Effects of geometric parameters on flow and atomization characteristics of swirl nozzles for artificial snowmaking[J]. International Journal of Refrigeration, 2023, 154: 56-65. |
| [25] | Dong P W, Zhang B W, Liu G Q, et al. Swirling flow and breakup characteristics at high Reynolds number in a pressure-swirl atomizer for artificial snowmaking[J]. Atomization and Sprays, 2023, 33(6): 41-61. |
| [26] | Chin L P, Switzer G, Tan Kin R S, et al. BI-modal size distributions predicted by maximum entropy are compared with experiments in sprays[J]. Combustion Science and Technology, 1995, 109(1/2/3/4/5/6): 35-52. |
| [27] | Babinsky E, Sojka P E. Modeling drop size distributions[J]. Progress in Energy and Combustion Science, 2002, 28(4): 303-329. |
| [28] | Ade S S, Chandrala L D, Sahu K C. Size distribution of a drop undergoing breakup at moderate Weber numbers[J]. Journal of Fluid Mechanics, 2023, 959: A38. |
| [29] | Mandato S, Rondet E, Delaplace G, et al. Liquids' atomization with two different nozzles: modeling of the effects of some processing and formulation conditions by dimensional analysis[J]. Powder Technology, 2012, 224: 323-330. |
| [30] | Urbn A, Zaremba M, Malý M, et al. Droplet dynamics and size characterization of high-velocity airblast atomization[J]. International Journal of Multiphase Flow, 2017, 95: 1-11. |
| [31] | Roudini M, Wozniak G. Experimental investigation of spray characteristics of pre-filming air-blast atomizers (Ⅱ):Influence of liquid properties[J]. Journal of Applied Fluid Mechanics, 2020, 13(2): 679-691. |
| [32] | Miragliotta G. The power of dimensional analysis in production systems design[J]. International Journal of Production Economics, 2011, 131(1): 175-182. |
| [33] | Rizk N K, Lefebvre A H. Spray characteristics of plain-jet airblast atomizers[J]. Journal of Engineering for Gas Turbines and Power, 1984, 106(3): 634-638. |
| [1] | 杨越, 张丹, 郑巨淦, 涂茂萍, 杨庆忠. NaCl水溶液喷射闪蒸-掺混蒸发的实验研究[J]. 化工学报, 2023, 74(8): 3279-3291. |
| [2] | 侯晓松, 刘晨星, 任爱玲, 郭斌, 郭渊明. 超声雾化/表面活性剂强化吸收耦合生物洗涤净化甲苯废气[J]. 化工学报, 2022, 73(10): 4692-4706. |
| [3] | 毛桃嫣, 邹敏婷, 郑成, 曾昭文, 伍旭贤, 肖润辉, 彭思玉. 微波化学反应的无量纲准数动力学模型研究:以偶氮二异丁脒盐酸盐(AIBA)分解反应为例[J]. 化工学报, 2021, 72(3): 1364-1371. |
| [4] | 陈怡沁, 许于, 周静红, 隋志军, 周兴贵. 锂离子电池异构建模及内部传质机理探究:粒径分布的影响[J]. 化工学报, 2021, 72(2): 1078-1088. |
| [5] | 霍小倩,徐英,汪晶晗,张涛,艾克拜尔·麦麦提,王锡钢. 气液螺旋环状流压降特性研究[J]. 化工学报, 2020, 71(12): 5506-5514. |
| [6] | 刘作华, 王闯, 孙伟, 陶长元, 王运东. 弹性搅拌桨强化液-液两相混沌混合及液滴分散特性的研究[J]. 化工学报, 2020, 71(10): 4611-4620. |
| [7] | 牛照程, 张丹, 王辉辉, 王珍珍, 邓才智. 有限截面通道内喷雾顺流掺混动力学特征的实验研究[J]. 化工学报, 2019, 70(S2): 117-122. |
| [8] | 赵京, 张玉锋, 魏小林, 李腾, 宾峰. 高碱煤燃烧过程中亚微米颗粒物PM1的生成特性[J]. 化工学报, 2019, 70(8): 3113-3120. |
| [9] | 孙占朋, 孙国刚, 独岩. 进料位置与风速对旋风分级器颗粒分级效果的影响[J]. 化工学报, 2018, 69(4): 1324-1331. |
| [10] | 袁雪梅, 邓仕槐, 杨悦锁, 杨新瑶. 纳米银在饱和多孔介质含水层中迁移主控机理和影响特征[J]. 化工学报, 2017, 68(11): 4154-4160. |
| [11] | 赵志锋, 杜谦, 董鹤鸣, 苏利鹏, 赵广播, 吕东辉, 王敏, 高建民, 郭馨, 徐力, 赵来福. 湿法脱硫装置对燃煤锅炉PM2.5排放特征的影响[J]. 化工学报, 2017, 68(11): 4261-4271. |
| [12] | 宿程远, 李伟光, 黄智, 陈孟林. 活性艳蓝经多相类芬顿预处理前后对厌氧污泥性能的影响[J]. 化工学报, 2016, 67(4): 1512-1519. |
| [13] | 赵志锋, 杜谦, 赵广播, 高建民, 董鹤鸣, 曹阳, 韩强, 苏利鹏, 苑鹏飞. 燃煤电厂煤粉炉及CFB锅炉PM2.5产生及排放特性的现场实验研究[J]. 化工学报, 2015, 66(3): 1163-1170. |
| [14] | 宿程远, 刘兴哲, 王恺尧, 李伟光. EGSB处理中药废水过程中厌氧颗粒污泥特性变化[J]. 化工学报, 2014, 65(9): 3647-3653. |
| [15] | 宿程远, 刘兴哲, 王恺尧, 李伟光. EGSB处理中药废水过程中厌氧颗粒污泥特性变化[J]. 化工学报, 2014, 65(9): 0-0. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号