[1] |
FENG F, ZHOU W B, WAN J B. Optimization of Fenton-SBR treatment process for the treatment of aqueous dye solution[J]. Desalination and Water Treatment, 2013, 51: 5776-5784.
|
[2] |
SANCHIS S, POLO A M, TOBAJAS M, et al. Coupling Fenton and biological oxidation for the removal of nitrochlorinated herbicides from water[J]. Water Research, 2014, 49: 197-206.
|
[3] |
LI W C, CHEN H, JIN Y, et al. Treatment of 3,4,5-trimethoxybenzaldehyde and di-bromo-aldehyde manufacturing wastewater by the coupled Fenton pretreatment and UASB reactor with emphasis on optimization and chemicals analysis[J]. Separation and Purification Technology, 2015, 142: 40-47.
|
[4] |
PI Y R, ZHENG Z H, BAO M T, et al. Treatment of partially hydrolyzed polyacrylamide wastewater by combined Fenton oxidation and anaerobic biological processes[J]. Chemical Engineering Journal, 2015, 273: 1-6.
|
[5] |
POURAN S R, RAMAN A A A, DAUD W M A W. Review on the application of modified iron oxides as heterogeneous catalysts in Fenton reactions[J]. Journal of Cleaner Production, 2014, 64: 24-35.
|
[6] |
KHAN E, WIROJANAGUD W, SERMSAI N. Effects of iron type in Fenton reaction on mineralization and biodegradability enhancement of hazardous organic compounds[J]. Journal of Hazardous Materials, 2009, 161: 1024-1034.
|
[7] |
QIAN W, ZHANG J L, XIONG Y, et al. Construction and performance of a novel integrative Fenton-like and upward flow biological filter bed[J]. Chemical Engineering Journal, 2015, 273: 166-172.
|
[8] |
丛岩, 黄晓丽, 王小龙, 等. 厌氧氨氧化颗粒污泥的快速形成[J]. 化工学报, 2014, 65 (2): 664-671. CONG Y, HUANG X L, WANG X L, et al. Faster formation of anammox granular sludge[J]. CIESC Journal, 2014, 65 (2): 664-671.
|
[9] |
曾国敏. 常温下IC厌氧反应器处理废纸造纸废水的厌氧颗粒污泥性能研究[D]. 广州: 华南理工大学, 2010. ZENG G M. Study on characteristics of anaerobic granular sludge during IC reactor treatment of regenerated papermaking wastewater at normal temperature[D]. Guangzhou: South China University of Technology, 2010.
|
[10] |
佘宗莲. 废水中硝基酚类化合物生物降解研究[D]. 青岛: 中国海洋大学, 2006. SHE Z L. The biodegradation of nitropenols in wastewater[D]. Qingdao: Ocean University of China, 2006.
|
[11] |
穆春芳. 制药废水处理技术研究和难降解污染物的溯源分析[D]. 长春: 东北师范大学, 2010. MU C F. Research on pharmaceutical wastewater treatment technologies and tracing refractory pollutants[D]. Changchun: Northeast Normal University, 2010.
|
[12] |
宿程远, 刘兴哲, 王恺尧, 等. EGSB处理中药废水过程中厌氧颗粒污泥特性变化[J]. 化工学报, 2014, 65 (9): 3647-3653. SU C Y, LIU X Z, WANG K Y, et al. Characteristics of anaerobic granular sludge in EGSB reactor treating traditional Chinese medicine wastewater[J]. CIESC Journal, 2014, 65 (9): 3647-3653.
|
[13] |
SANTOSA A B, BISSCHOPS I A E, CERVANTES F J, et al. The transformation and toxicity of anthraquinone dyes during thermophilic (55℃) and mesophilic (30℃) anaerobic treatments[J]. Journal of Biotechnology, 2005, 115: 345-353.
|
[14] |
刘永红, 赵蕾, 邹磊, 等. 抗压实验法厌氧颗粒污泥机械强度的测定及影响因素分析[J]. 环境工程学报, 2012, 6 (11): 4197-4202. LIU Y H, ZHAO L, ZOU L, et al. Measurement on mechanic strength of anaerobic granular sludge by compression test method and analysis of its influencing factors[J]. Chinese Journal of Environmental Engineering, 2012, 6 (11): 4197-4202.
|
[15] |
肖本益, 王瑞明, 贾士儒. 二价金属离子对UASB颗粒污泥的影响[J]. 中国给水排水, 2002, 18 (6): 26-28. XIAO B Y, WANG R M, JIA S R. Study on the effects of divalent metal ions on UASB granular sludge[J]. China Water and Wastewater, 2002, 18 (6): 26-28.
|
[16] |
ZHU L, QI H Y, LV M L, et al. Component analysis of extracellular polymeric substances (EPS) during aerobic sludge granulation using FTIR and 3D-EEM technologies[J]. Bioresource Technology, 2012, 124: 455-459.
|
[17] |
王喜全, 胡筱敏, 马英群, 等. 内电解-Fenton氧化法降解活性艳蓝X-BR机理[J]. 化工环保, 2012, 30 (6): 482-486. WANG X Q, HU X M, MA Y Q, et al. Mechanism of reactive brilliant blue X-BR degradation by internal electrolysis-Fenton reagent oxidation process[J]. Environmental Protection of Chemical Industry, 2012, 30 (6): 482-486.
|
[18] |
LIU L X, ZHANG J, TAN Y, et al. Rapid decolorization of anthraquinone and triphenylmethane dye using chloroperoxidase: catalytic mechanism, analysis of products and degradation route[J]. Chemical Engineering Journal, 2014, 244: 9-18.
|