化工学报 ›› 2020, Vol. 71 ›› Issue (12): 5506-5514.DOI: 10.11949/0438-1157.20200124
霍小倩1,2(),徐英1,2(),汪晶晗1,2,张涛1,2,艾克拜尔·麦麦提3,王锡钢4
收稿日期:
2020-02-10
修回日期:
2020-09-26
出版日期:
2020-12-05
发布日期:
2020-12-05
通讯作者:
徐英
作者简介:
霍小倩(1995—),女,硕士研究生,基金资助:
HUO Xiaoqian1,2(),XU Ying1,2(),WANG Jinghan1,2,ZHANG Tao1,2,MAIMAITI Aikebaier3,WANG Xigang4
Received:
2020-02-10
Revised:
2020-09-26
Online:
2020-12-05
Published:
2020-12-05
Contact:
XU Ying
摘要:
考虑旋流衰减的影响,对气液螺旋环状流的压降特性进行研究并推导出了螺旋环状流压降预测模型。定义压降旋-直比系数为气液两相螺旋环状流和气液两相直流的压降之比,以此来表征旋流衰减对压降的影响。基于量纲分析的方法对压降旋-直比系数进行分析,推导出其表达式,压降旋-直比系数依赖于Lockhart-Martinelli 参数和气相Froude数变化。最终,得出了气液两相螺旋环状流的压降预测模型。在50 mm内径的水平管内对螺旋环状流的压降特性进行了实验研究,其中气相表观流速变化范围为10~16 m/s,体积含液率(LVF)变化范围为0.6%~4.8%。通过与实验数据进行对比,压降预测模型的相对误差在±15%以内,为工程应用提供了参考。
中图分类号:
霍小倩,徐英,汪晶晗,张涛,艾克拜尔·麦麦提,王锡钢. 气液螺旋环状流压降特性研究[J]. 化工学报, 2020, 71(12): 5506-5514.
HUO Xiaoqian,XU Ying,WANG Jinghan,ZHANG Tao,MAIMAITI Aikebaier,WANG Xigang. Study on pressure drop characteristics of gas-liquid swirl annular flow[J]. CIESC Journal, 2020, 71(12): 5506-5514.
参数 | 误差/% |
---|---|
压力 | 0.05 |
温度 | 0.10 |
液相流量 | 0.35 |
气相流量 | 0.50 |
压力差 | 0.06 |
表1 测量参数不确定度
Table 1 Uncertainty of measured and calculated parameters
参数 | 误差/% |
---|---|
压力 | 0.05 |
温度 | 0.10 |
液相流量 | 0.35 |
气相流量 | 0.50 |
压力差 | 0.06 |
Usg /(m/s) | Usl /(m/s) | LVF/% |
---|---|---|
10 | 0.2—0.5 | 2.0—4.8 |
11 | 0.1—0.5 | 1.0—4.4 |
12 | 0.1—0.5 | 0.8—4.0 |
13 | 0.2—0.5 | 1.6—3.7 |
14 | 0.1—0.5 | 0.7—3.4 |
15 | 0.2—0.5 | 1.3—3.2 |
16 | 0.1—0.5 | 0.6—3.0 |
表2 实验设计工况点(18℃,101.325 kPa)
Table 2 Scope of swirl flow experiments (18℃,101.325 kPa)
Usg /(m/s) | Usl /(m/s) | LVF/% |
---|---|---|
10 | 0.2—0.5 | 2.0—4.8 |
11 | 0.1—0.5 | 1.0—4.4 |
12 | 0.1—0.5 | 0.8—4.0 |
13 | 0.2—0.5 | 1.6—3.7 |
14 | 0.1—0.5 | 0.7—3.4 |
15 | 0.2—0.5 | 1.3—3.2 |
16 | 0.1—0.5 | 0.6—3.0 |
物理量 | 符号 | 单位 | 量纲 |
---|---|---|---|
气液两相直流压降 | Δptp | Pa | ML-1T-2 |
螺旋环状流压降 | Δptp.s | Pa | ML-1T-2 |
气相质量流量 | mg | kg/s | MT-1 |
液相质量流量 | ml | kg/s | MT-1 |
气相密度 | ρg | kg/m3 | ML-3 |
液相密度 | ρl | kg/m3 | ML-3 |
气相动力黏度 | μg | Pa·s | ML-1T-2 |
液相动力黏度 | μl | Pa·s | ML-1T-2 |
液相表面张力 | σl | N/m | MT-2 |
管道直径 | D | m | L |
起旋器螺距 | G | m | L |
重力加速度 | g | m/s2 | LT-2 |
表3 所涉及的全部物理量以及符号、单位与量纲
Table 3 Parameters and their signs, units and dimensions
物理量 | 符号 | 单位 | 量纲 |
---|---|---|---|
气液两相直流压降 | Δptp | Pa | ML-1T-2 |
螺旋环状流压降 | Δptp.s | Pa | ML-1T-2 |
气相质量流量 | mg | kg/s | MT-1 |
液相质量流量 | ml | kg/s | MT-1 |
气相密度 | ρg | kg/m3 | ML-3 |
液相密度 | ρl | kg/m3 | ML-3 |
气相动力黏度 | μg | Pa·s | ML-1T-2 |
液相动力黏度 | μl | Pa·s | ML-1T-2 |
液相表面张力 | σl | N/m | MT-2 |
管道直径 | D | m | L |
起旋器螺距 | G | m | L |
重力加速度 | g | m/s2 | LT-2 |
流动形态 | C |
---|---|
v-v | 5 |
v-t | 10 |
t-v | 12 |
t-t | 20 |
表5 Chisholm模型中的C参数[26]
Table 5 C value in Chisholm model[26]
流动形态 | C |
---|---|
v-v | 5 |
v-t | 10 |
t-v | 12 |
t-t | 20 |
1 | 孙西欢. 水平轴圆管螺旋流水力特性及固粒悬浮机理试验研究[D]. 西安: 西安理工大学, 2000. |
Sun X H. Experimental research on the hydraulic characteristics and particle suspended mechanics in spiral pipe flow with horizontal axis[D]. Xian: Xian University of Technology, 2000. | |
2 | Boushaki T, Koched A, Mansouri Z, et al. Volumetric velocity measurements (V3V) on turbulent swirling flows[J]. Flow Measurement and Instrumentation, 2017, 54: 46-55. |
3 | Narasimha M, Brennan M, Holtham P N. A review of CFD modelling for performance predictions of hydrocyclone[J]. Engineering Applications of Computational Fluid Mechanics, 2007, 1(2): 109-125. |
4 | Molina R, Wang S, Gomez L E, et al. Wet gas separation in gas-Liquid cylindrical cyclone separator[J]. Journal of Energy Resources Technology, 2008, 130(4): 042701. |
5 | 周闻, 王康松, 鄂承林, 等.多旋臂气液旋流分离器压降特性试验[J]. 化工学报, 2019, 70(7): 2564-2573. |
Zhou W, Wang K S, E C L, et al. Multi-spiral gas-liquid vortex separator pressure drop characteristics test[J]. CIESC Journal, 2019, 70(7): 2564-2573. | |
6 | 高思鸿, 张丹丹, 范怡平, 等.气体干法净化旋流吸附耦合设备压降特性[J]. 化工学报, 2018, 69(5): 1873-1883. |
Gao S H, Zhang D D, Fan Y P, et al. Pressure drop characteristics of dry gas purification process in a coupled apparatus of cyclone and granular bed filter/adsorber[J]. CIESC Journal, 2018, 69(5): 1873-1883. | |
7 | 刘鸿雁, 韩天龙, 王亚, 等.水力旋流器新型出口挡板结构对分离性能的影响[J]. 化工学报, 2018, 69(5): 2081-2088. |
Liu H Y, Han T L, Wang Y, et al. Influence of new outlet configurations with baffle on hydrocycloneon separation performance[J]. CIESC Journal, 2018, 69(5): 2081-2088. | |
8 | 陈建磊, 何利民, 罗小明, 等.柱状旋流分离器零轴速面分布特性模拟分析[J]. 化工学报, 2013, 64(9): 3241-3249. |
Chen J L, He L M, Luo X M, et al. Simulation of zero axial velocity surface distribution in cylindrical cyclone separator, CIESC Journal, 2013, 64(9): 3241-3249. | |
9 | Akhavan-Behabadi M A, Kumar R, Mohammadpour A, et al. Effect of twisted tape insert on heat transfer and pressure drop in horizontal evaporators for the flow of R-134a[J]. International Journal of Refrigeration, 2009, 32(5): 922-930. |
10 | Kanizawa F T, Mogaji T S, Ribatski G. Evaluation of the heat transfer enhancement and pressure drop penalty during flow boiling inside tubes containing twisted tape insert[J]. Applied Thermal Engineering, 2014, 70(1): 328-340. |
11 | Liang F, Fang Z, Chen J, et al. Investigating the liquid film characteristics of gas-liquid swirling flow using ultrasound doppler velocimetry[J]. AIChE Journal, 2017, 63(6): 2348-2357. |
12 | Liang F, Wang D, Chen J, et al. Gas-liquid two-phase flow sampling measurement using a swirl sampler[J]. Flow Measurement and Instrumentation, 2013, 33: 145-152. |
13 | 王晓飞. 管内螺旋流的实验研究与分析[D]. 武汉: 武汉理工大学, 2004. |
Wang X F. Experimental study and analysis of spiral flow in pipes[D]. Wuhan: Wuhan University of Technology, 2004. | |
14 | Gupta A K, Lilley D G, Syred N. Swirl Flows[M]. Kent, England: Abacus Press, 1984. |
15 | Kreith F, Sonju O. The decay of a turbulent swirl in a pipe[J]. Journal of Fluid Mechanics, 1965, 22(2): 257-271. |
16 | Li H, Tomita Y. Characteristics of swirling flow in a circular pipe[J]. ASME J. Fluids Eng., 1994, 116(2): 370-373. |
17 | 李会雄, 周芳德, 陈学俊.管内切向旋流的衰减特性研究[J].西安: 西安交通大学学报, 1995, 29(11): 12-18. |
Li H X, Zhou F D, Chen X J. Study on decay characteristics of tangential swirl in tube[J]. Xian: Journal of Xian Jiaotong University, 1995, 29(11): 12-18. | |
18 | Steenbergen W, Voskamp J. The rate of decay of swirl in turbulent pipe flow[J]. Flow Measurement and Instrumentation, 1998, 9(2): 67-78. |
19 | Najafi A F, Mousavian S M, Amini K. Numerical investigations on swirl intensity decay rate for turbulent swirling flow in a fixed pipe[J]. International Journal of Mechanical Sciences, 2011, 53(10): 801-811. |
20 | Rocha A D, Bannwart A C, Ganzarolli M M, et al. Numerical and experimental study of an axially induced swirling pipe flow[J]. International Journal of Heat and Fluid Flow, 2015, 53: 81-90. |
21 | Lavante E V, Yao J. Numerical investigation of turbulent swirling flows in axisymmetric internal flow configurations[J]. Flow Measurement and Instrumentation, 2012, 25: 63-68. |
22 | Huo X Q, Xu Y, Zhang T, et al. Research on the pressure drop characteristics of spiral flow in horizontal straight pipe[C]// 2019 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). IEEE, 2019. |
23 | Liu W, Bai B. Swirl decay in the gas-liquid two-phase swirling flow inside a circular straight pipe[J]. Experimental Thermal and Fluid Science, 2015, 68: 187-195. |
24 | Rao Y, Sun Y, Wang S. Numerical simulation study on the law of attenuation of hydrate particles in a gas transmission pipeline[J]. Energies, 2017, 12: 1-17. |
25 | Katao H, Shinkai Y, Tomiyama A. Pressure drop in two-phase swirling flow in a steam separator[J]. JPES, 2009, 3(2): 382-392. |
26 | Rao Y C, Liang J, Wang S L, et al. Experimental study on the frictional resistance of gas-liquid two-phase spiral flow generated by vane[J]. Chinese Journal of Hydrodynamics (A), 2017, 32(1): 88-95. |
27 | Chisholm D. Pressure gradients due to friction during the flow of evaporating two-phase mixtures in smooth tubes and channels[J]. International Journal of Heat and Mass Transfer, 1973, 16(2): 347-358. |
28 | Zhao Z, Liao R Q, Liu J. Dynamics and effective distance of gas-liquid two-phase swirling flow induced by vortex tools[J]. Advances in Mechanical Engineering, 2018, 10(9): 1-11. |
29 | Xu Y, Yuan C, Long C, et al. Research the wet gas flow measurement based on dual-throttle device[J]. Flow Meas. Instrum., 2013, 34: 68-75. |
30 | Xu Y, Wei J, Liu G, et al. Pressure drop of the gas-liquid two-phase stratified flow in horizontal pipes: an experimental study [J]. Natural Gas Industry, 2015, 35(2): 92-99. |
[1] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[2] | 高金明, 郭玉娇, 鄂承林, 卢春喜. 一种封闭罩内顺流多旋臂气液分离器的分离特性研究[J]. 化工学报, 2023, 74(7): 2957-2966. |
[3] | 白剑钊, 郭子轩, 王德武, 刘燕, 王若瑾, 唐猛, 张少峰. 摇摆对气液并流模式立体旋流筛板压降的影响研究[J]. 化工学报, 2023, 74(2): 707-720. |
[4] | 禹言芳, 刘桓辰, 孟辉波, 刘励图, 李毓, 吴剑华. Lightnin静态混合器内气泡分散流体动力学特性实验研究[J]. 化工学报, 2022, 73(8): 3565-3575. |
[5] | 周云龙, 刘起超. 起伏振动倾斜上升管气液两相流摩擦阻力分析与计算[J]. 化工学报, 2022, 73(2): 643-652. |
[6] | 薛涵文, 聂峰, 赵延兴, 董学强, 郭浩, 沈俊, 公茂琼. 基于流型的R290水平管内流动沸腾压降实验研究[J]. 化工学报, 2022, 73(11): 4903-4916. |
[7] | 翁俊旗, 刘鑫磊, 余佳豪, 施尧, 叶光华, 屈进, 段学志, 李金兵, 周兴贵. 蜂窝状催化剂中空结构对固定床反应器压降的影响[J]. 化工学报, 2022, 73(1): 266-274. |
[8] | 山訸, 马秋鸣, 潘权稳, 曹伟亮, 王强, 王如竹. 电动汽车电池冷却器冷却液侧传热与流动性能仿真[J]. 化工学报, 2021, 72(S1): 194-202. |
[9] | 毛桃嫣, 邹敏婷, 郑成, 曾昭文, 伍旭贤, 肖润辉, 彭思玉. 微波化学反应的无量纲准数动力学模型研究:以偶氮二异丁脒盐酸盐(AIBA)分解反应为例[J]. 化工学报, 2021, 72(3): 1364-1371. |
[10] | 田朋,王德武,王若瑾,唐猛,郝晓磊,张少峰. 摇摆流化床的气固流动特性[J]. 化工学报, 2021, 72(10): 5102-5113. |
[11] | 赵雅鑫,赖展程,胡海涛. R1234ze(E)在泡沫金属管内的流动沸腾换热和压降特性[J]. 化工学报, 2021, 72(10): 5074-5081. |
[12] | 张井志, 周乃香, 张冠敏, 田茂诚. 微细圆管及扁平管内液-液Taylor流动特性的数值研究[J]. 化工学报, 2020, 71(S2): 70-79. |
[13] | 贺鹏程, 庄莉, 胡亮, 刘刚, 王瑞琪, 包亚强. 板翅式换热器压力特性工程计算方法[J]. 化工学报, 2020, 71(S1): 172-178. |
[14] | 杨宽, 阎昌琪, 曹夏昕. 自然循环窄矩形通道内过冷沸腾两相摩擦阻力特性[J]. 化工学报, 2020, 71(7): 3060-3070. |
[15] | 李爽, 李玉星, 王冬旭, 王权. 上倾管高黏油气两相流型及压降特性[J]. 化工学报, 2020, 71(3): 983-996. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||