化工学报 ›› 2025, Vol. 76 ›› Issue (12): 6410-6422.DOI: 10.11949/0438-1157.20250318
李丹1(
), 于秀恒1, 陈巨辉1, 苏潼1, ZHURAVKOV Michael2,3, LAPATSIN Siarhel2,3, 姜文锐3
收稿日期:2025-03-28
修回日期:2025-09-28
出版日期:2025-12-31
发布日期:2026-01-23
通讯作者:
李丹
作者简介:李丹(1987—),男,博士,副教授,b0222li@126.com
基金资助:
Dan LI1(
), Xiuheng YU1, Juhui CHEN1, Tong SU1, Michael ZHURAVKOV2,3, Siarhel LAPATSIN2,3, Wenrui JIANG3
Received:2025-03-28
Revised:2025-09-28
Online:2025-12-31
Published:2026-01-23
Contact:
Dan LI
摘要:
本文针对煤矸石及低热值煤层气燃烧特性,利用煤矸石和煤层气在循环流化床锅炉中混燃方式,基于化学反应动力学方法,对煤矸石与煤层气在流化床内混燃中的热解反应进行优化模拟,得出化学反应动力学优化燃烧模型,将模拟结果与实验数据进行对比验证了模型的正确性和可靠性。对煤矸石和煤层气在循环流化床锅炉中高效混燃的化学反应速率关键参数进行了分析与讨论;模拟得到了不同化学反应动力学参数对化学反应速率的影响。结果表明,优化模型能降低炉膛燃烧区域的化学反应速率误差,优化模拟对于掌握燃烧/反应状况和排放控制尤为关键;且优化组在主反应区具备显著优势,能够帮助进一步提升燃烧效率、准确预测产物浓度、减少能量浪费和污染物生成。反映了炉膛内部工况对优化模型敏感性更高的事实,证明通过优化可进一步提升模型在全高度范围内的适用性和准确度。
中图分类号:
李丹, 于秀恒, 陈巨辉, 苏潼, ZHURAVKOV Michael, LAPATSIN Siarhel, 姜文锐. 基于化学反应动力学煤矸石燃烧优化模型研究[J]. 化工学报, 2025, 76(12): 6410-6422.
Dan LI, Xiuheng YU, Juhui CHEN, Tong SU, Michael ZHURAVKOV, Siarhel LAPATSIN, Wenrui JIANG. Research on optimization model of gangue combustion based on chemical reaction kinetics[J]. CIESC Journal, 2025, 76(12): 6410-6422.
| 温度/K | 活化能/(kJ/mol) | ||||
|---|---|---|---|---|---|
| PE1 | PE2 | PE3 | PE4 | PE5 | |
| 800 | 70.94 | 71.02 | 71.87 | 72.64 | 73.20 |
| 900 | 78.98 | 79.10 | 79.85 | 80.62 | 81.23 |
| 1000 | 87.52 | 87.63 | 88.20 | 88.90 | 89.30 |
| 1100 | 96.30 | 97.01 | 97.96 | 98.60 | 99.10 |
| 1200 | 107.20 | 107.90 | 108.52 | 109.1 | 109.96 |
| 1300 | 115.52 | 116.10 | 117.22 | 118.13 | 119.20 |
表1 不同温度梯度下煤矸石热解时的活化能
Table 1 Activation energy of coal gangue pyrolysis under different temperature gradients
| 温度/K | 活化能/(kJ/mol) | ||||
|---|---|---|---|---|---|
| PE1 | PE2 | PE3 | PE4 | PE5 | |
| 800 | 70.94 | 71.02 | 71.87 | 72.64 | 73.20 |
| 900 | 78.98 | 79.10 | 79.85 | 80.62 | 81.23 |
| 1000 | 87.52 | 87.63 | 88.20 | 88.90 | 89.30 |
| 1100 | 96.30 | 97.01 | 97.96 | 98.60 | 99.10 |
| 1200 | 107.20 | 107.90 | 108.52 | 109.1 | 109.96 |
| 1300 | 115.52 | 116.10 | 117.22 | 118.13 | 119.20 |
| 温度/K | 频率因子/s-1 | ||||
|---|---|---|---|---|---|
| PA1 | PA2 | PA3 | PA4 | PA5 | |
| 800 | 1.00×107 | 1.00×107 | 7.13×107 | 7.93×107 | 8.30×107 |
| 900 | 1.00×107 | 1.07×107 | 8.01×107 | 8.57×107 | 9.12×108 |
| 1000 | 1.01×107 | 1.11×107 | 2.65×107 | 1.23×108 | 9.85×108 |
| 1100 | 1.15×107 | 3.74×107 | 6.26×107 | 1.96×108 | 7.32×109 |
| 1200 | 2.85×107 | 9.85×107 | 1.63×108 | 7.41×108 | 8.02×109 |
| 1300 | 9.65×107 | 1.45×108 | 7.62×109 | 2.03×1010 | 9.02×1010 |
表2 不同温度梯度下煤矸石热解时的频率因子
Table 2 Frequency factors of coal gangue pyrolysis under different temperature gradients
| 温度/K | 频率因子/s-1 | ||||
|---|---|---|---|---|---|
| PA1 | PA2 | PA3 | PA4 | PA5 | |
| 800 | 1.00×107 | 1.00×107 | 7.13×107 | 7.93×107 | 8.30×107 |
| 900 | 1.00×107 | 1.07×107 | 8.01×107 | 8.57×107 | 9.12×108 |
| 1000 | 1.01×107 | 1.11×107 | 2.65×107 | 1.23×108 | 9.85×108 |
| 1100 | 1.15×107 | 3.74×107 | 6.26×107 | 1.96×108 | 7.32×109 |
| 1200 | 2.85×107 | 9.85×107 | 1.63×108 | 7.41×108 | 8.02×109 |
| 1300 | 9.65×107 | 1.45×108 | 7.62×109 | 2.03×1010 | 9.02×1010 |
| 温度/K | 活化能/(kJ/mol) | ||||
|---|---|---|---|---|---|
| CE1 | CE2 | CE3 | CE4 | CE54 | |
| 800 | 83.83 | 84.62 | 85.20 | 85.91 | 86.62 |
| 900 | 84.41 | 86.32 | 85.67 | 86.25 | 87.83 |
| 1000 | 85.00 | 85.70 | 86.80 | 87.30 | 88.90 |
| 1100 | 85.63 | 86.53 | 87.20 | 88.10 | 89.23 |
| 1200 | 86.52 | 87.63 | 87.21 | 87.95 | 89.65 |
| 1300 | 86.85 | 87.36 | 88.52 | 89.62 | 90.32 |
表3 不同温度梯度下煤矸石焦炭反应时的活化能
Table 3 Activation energy of coal gangue coke reaction under different temperature gradients
| 温度/K | 活化能/(kJ/mol) | ||||
|---|---|---|---|---|---|
| CE1 | CE2 | CE3 | CE4 | CE54 | |
| 800 | 83.83 | 84.62 | 85.20 | 85.91 | 86.62 |
| 900 | 84.41 | 86.32 | 85.67 | 86.25 | 87.83 |
| 1000 | 85.00 | 85.70 | 86.80 | 87.30 | 88.90 |
| 1100 | 85.63 | 86.53 | 87.20 | 88.10 | 89.23 |
| 1200 | 86.52 | 87.63 | 87.21 | 87.95 | 89.65 |
| 1300 | 86.85 | 87.36 | 88.52 | 89.62 | 90.32 |
| 温度/K | 频率因子/s-1 | ||||
|---|---|---|---|---|---|
| CA1 | CA2 | CA3 | CA4 | CA5 | |
| 800 | — | 6.10×106 | 6.52×106 | 6.98×106 | 7.32×107 |
| 900 | 6.19×106 | 6.62×106 | 7.02×107 | 7.42×107 | 7.95×107 |
| 1000 | 6.59×106 | 7.00×107 | 7.53×107 | 8.01×108 | 8.54×108 |
| 1100 | 7.13×107 | 7.62×107 | 8.06×108 | 8.63×108 | 9.12×109 |
| 1200 | 8.00×109 | 8.51×109 | 8.95×109 | 9.42×109 | 9.95×109 |
| 1300 | 8.52×109 | 8.95×109 | 9.51×109 | 6.55×109 | 1.35×1010 |
表4 不同温度下煤矸石焦炭反应时的频率因子
Table 4 Frequency factor during gangue coke reaction at different temperatures
| 温度/K | 频率因子/s-1 | ||||
|---|---|---|---|---|---|
| CA1 | CA2 | CA3 | CA4 | CA5 | |
| 800 | — | 6.10×106 | 6.52×106 | 6.98×106 | 7.32×107 |
| 900 | 6.19×106 | 6.62×106 | 7.02×107 | 7.42×107 | 7.95×107 |
| 1000 | 6.59×106 | 7.00×107 | 7.53×107 | 8.01×108 | 8.54×108 |
| 1100 | 7.13×107 | 7.62×107 | 8.06×108 | 8.63×108 | 9.12×109 |
| 1200 | 8.00×109 | 8.51×109 | 8.95×109 | 9.42×109 | 9.95×109 |
| 1300 | 8.52×109 | 8.95×109 | 9.51×109 | 6.55×109 | 1.35×1010 |
| [1] | 郭彦霞, 张圆圆, 程芳琴. 煤矸石综合利用的产业化及其展望[J]. 化工学报, 2014, 65(7): 2443-2453. |
| Guo Y X, Zhang Y Y, Cheng F Q. Industrial development and prospect about comprehensive utilization of coal gangue[J]. CIESC Journal, 2014, 65(7): 2443-2453. | |
| [2] | Varol M, Symonds R, Anthony E J, et al. Emissions from co-firing lignite and biomass in an oxy-fired CFBC[J]. Fuel Processing Technology, 2018, 173: 126-133. |
| [3] | 廖新杰. 煤泥流化床混烧机理及氮硫污染物排放特性研究[D]. 武汉: 华中科技大学, 2024. |
| Liao X J. Study on the mechanism of coal slurry fluidized bed co firing and the emission characteristics of nitrogen and sulfur pollutants[D]. Wuhan: Huazhong University of Science and Technology, 2024. | |
| [4] | 黄顺进, 张丽, 颜井冲, 等. 高碱煤与煤矸石掺烧SO2和NO减排及结渣抑制研究[J]. 化工学报, 2022, 73(12): 5581-5591. |
| Huang S J, Zhang L, Yan J C, et al. Investigation on cofiring high-alkali coal with coal gangues: SO2, NO reduction and ash slagging inhibition[J]. CIESC Journal, 2022, 73(12): 5581-5591. | |
| [5] | Chen Y R, Li H J, Yang Z Q, et al. Co-utilization of two coal mine residues: non-catalytic co-combustion of coal bed methane and coal gangue in a circulating fluidized bed[J]. Advances in Mechanical Engineering, 2015, 7(9): 1687814015606380. |
| [6] | Wang S J, Lu J D, Li W J, et al. Modeling of pulverized coal combustion in cement rotary kiln[J]. Energy & Fuels, 2006, 20(6): 2350-2356. |
| [7] | 周英贵. 大型电站锅炉SNCR/SCR脱硝工艺试验研究、数值模拟及工程验证[D]. 南京: 东南大学, 2016. |
| Zhou Y G. Hybrid SNCR/SCR denitration technology in large thermal power plant boiler: experimental study, numerical simulation and egneering validation[D]. Nanjing: Southeast University, 2016. | |
| [8] | Zhang J W, Zhang Y, He G, et al. Wind speed effect on infrared-image-based coal and gangue recognition with liquid intervention in LTCC[J]. Journal of Cleaner Production, 2024, 478: 143925. |
| [9] | Wang H P, Jin H Z, Yang Z, et al. CFD modeling of flow, combustion and NO x emission in a wall-fired boiler at different low-load operating conditions[J]. Applied Thermal Engineering, 2024, 236: 121824. |
| [10] | Singh R I, Brink A, Hupa M. CFD modeling to study fluidized bed combustion and gasification[J]. Applied Thermal Engineering, 2013, 52(2): 585-614. |
| [11] | 赵立正. 煤矸混烧超临界CFB锅炉气固流动及污染物生成特性研究[D]. 北京: 华北电力大学, 2020. |
| Zhao L Z. Research on gas-solid flow and pollutants generation characteristics of a coal-gangue-fired supercritical CFB boiler[D]. Beijing: North China Electric Power University, 2020. | |
| [12] | Chejne F, Hernandez J P. Modelling and simulation of coal gasification process in fluidised bed[J]. Fuel, 2002, 81(13): 1687-1702. |
| [13] | 李林, 段伦博, 武万强, 等. 煤颗粒流化床增压富氧燃烧脱挥发分模型[J]. 煤炭学报, 2022, 47(11): 3906-3913. |
| Li L, Duan L B, Wu W Q, et al. Model on devolatilization of coal particle in fluidized bed under pressurized oxy-fuel combustion[J]. Journal of China Coal Society, 2022, 47(11): 3906-3913. | |
| [14] | 马芯蕊. 高密度循环流化床煤气化过程数值模拟[D]. 北京: 华北电力大学, 2023. |
| Ma X R. Numerical simulation of high-density circulating fluidized bed gasification process [D]. Beijing: North China Electric Power University, 2023. | |
| [15] | 景旭亮, 王志青, 张乾, 等. 流化床气化炉半焦细粉的燃烧特性及其动力学研究[J]. 燃料化学学报, 2014, 42(1): 13-19. |
| Jing X L, Wang Z Q, Zhang Q, et al. Combustion property and kinetics of fine chars derived from fluidized bed gasifier[J]. Journal of Fuel Chemistry and Technology, 2014, 42(1): 13-19. | |
| [16] | Matthews L R, Niziolek A M, Onel O, et al. Biomass to liquid transportation fuels via biological and thermochemical conversion: process synthesis and global optimization strategies[J]. Industrial & Engineering Chemistry Research, 2016, 55(12): 3203-3225. |
| [17] | Wen C M, Foster C, van Winden W, et al. Toward net-zero greenhouse gas emission: techno–economic and life cycle analyses of routes for triacetic acid lactone (TAL) bioproduction[J]. ACS Sustainable Chemistry & Engineering, 2024, 12(33): 12430-12445. |
| [18] | 郭啸峰. 基于详细化学反应简化机理的燃烧污染物生成数值模拟与实验验证[D]. 北京. 中国科学院力学研究所, 2014. |
| Guo X F. Numerical simulation of combustion pollutant formation based on reduced mechanism of detailed chemical reactions and experimental validation[D]. Beijing: Institute of Mechanics, Chinese Academy of Sciences, 2014. | |
| [19] | 李振山, 陈登高, 张志, 等. 煤粉燃烧中NO x 的预测: 参数数据库及CFD实践[J]. 煤炭学报, 2016, 41(12): 3142-3150. |
| Li Z S, Chen D G, Zhang Z, et al. Prediction of NO x during pulverized coal combustion: parameter database and CFD application[J]. Journal of China Coal Society, 2016, 41(12): 3142-3150. | |
| [20] | 贺坤, 王刚, 邹忠平, 等. 富氢低碳高炉炉内动力学模型及其应用[C]//第十二届中国金属学会青年学术年会. 赣州, 2024: 111-119. |
| He K, Wang G, Zhou Z P . et al . Dynamic model and application of rich hydrogen low carbon blast furnace [C]// The 12th Youth Academic Conference of the Chinese Society of Metals. Ganzhou, 2024: 111-119 | |
| [21] | 王敬. 乙酸苯酚酯热解的实验与动力学模型研究[D]. 南宁: 广西大学, 2023: 25-54. |
| Wang J. Experimental and kinetic model study on pyrolysis of phenol acetate [D]. Nanning: Guangxi University, 2023: 25-54. | |
| [22] | 周俊杰, 徐国权, 张华俊. FLUENT工程技术与实例分析[M]. 北京: 中国水利水电出版社, 2010. |
| Zhou J J, Xu G Q, Zhang H J. FLUENT Engineering Technology and Case Analysis[M]. Beijing: China Water & Power Press, 2010. | |
| [23] | 李进良, 李承曦, 胡仁喜, 等. 精通FLUENT6.3流场分析[M]. 北京: 化学工业出版社, 2009. |
| Li J L, Li C X, Hu R X. Proficient in FLUENT6.3 Flow Field Analysis[M]. Beijing: Chemical Industry Press, 2009. | |
| [24] | 唐家鹏. ANSYS FLUENT 16.0超级学习手册[M]. 北京: 人民邮电出版社, 2016. |
| Tang J P. ANSYS FLUENT 16.0 Super Learning Manual[M]. Beijing: Posts & Telecom Press, 2016. | |
| [25] | 毛晓飞, 陈念祖. 煤燃烧反应活化能计算方法的研究[J]. 电站系统工程, 2007, 23(3): 15-17. |
| Mao X F, Chen N Z. Improving the Flynn-Wall-Ozawa method in calculating the activation energy in combustion reactions of the coal[J]. Power System Engineering, 2007, 23(3): 15-17. | |
| [26] | 罗勇军, 李建波, 郭子鹏. 基于热重分析的低热值煤/生物质耦合燃烧动力学特性研究[J]. 煤炭技术, 2025, 44(2): 228-233. |
| Luo Y J, Li J B, Guo Z P. Study on kinetic characteristics of low heat value coal and biomass co-combustion based on thermogravimetric analysis[J]. Coal Technology, 2025, 44(2): 228-233. | |
| [27] | Namkung H, Lee Y J, Park J H, et al. Blending effect of sewage sludge and woody biomass into coal on combustion and ash agglomeration behavior[J]. Fuel, 2018, 225: 266-276. |
| [28] | Wang Y L, Jia L, Guo J R, et al. Thermogravimetric analysis of co-combustion between municipal sewage sludge and coal slime: combustion characteristics, interaction and kinetics[J]. Thermochimica Acta, 2021, 706: 179056. |
| [29] | 曹妙妙, 张冬朋, 刘飞. 煤矸石的热重分析: 以淮北某煤矿为例[J]. 科技风, 2024(2): 160-163. |
| Cao M M, Zhang D P, Liu F. Thermogravimetric analysis of coal gangue: taking a coal mine in Huaibei as an example[J]. Technology Wind, 2024(2): 160-163. | |
| [30] | 刘成龙. 含油污泥与煤矸石共热解特性研究与机理分析[D]. 北京: 北京化工大学, 2024. |
| Liu C L. Co-pyrolysis characteristics and mechanism analysis of oily sludge with coal gangue [D]. Beijing: Beijing University of Chemical Technology, 2024. | |
| [31] | Narula S C, Wellington J F. Prediction, linear regression and the minimum sum of relative errors[J]. Technometrics, 1977, 19(2): 185. |
| [32] | Dong Z H, Dong C Q, Zhang J J, et al. Modeling the combustion of coal in a 300MW circulating fluidized bed boiler with aspen plus[C]//2010 Asia-Pacific Power and Energy Engineering Conference. Chengdu: IEEE, 2010: 1-4. |
| [1] | 段浩磊, 陈浩远, 梁坤峰, 王林, 陈彬, 曹勇, 张晨光, 李硕鹏, 朱登宇, 何亚茹, 杨大鹏. 纯电动车热管理系统低GWP工质替代方案性能分析与综合评价[J]. 化工学报, 2025, 76(S1): 54-61. |
| [2] | 王俊鹏, 冯佳琪, 张恩搏, 白博峰. 曲折式与阵列式迷宫阀芯结构内流动与空化特性研究[J]. 化工学报, 2025, 76(S1): 93-105. |
| [3] | 赵子祥, 段钟弟, 孙浩然, 薛鸿祥. 大温差两相流动诱导水锤冲击的数值模型[J]. 化工学报, 2025, 76(S1): 170-180. |
| [4] | 黄灏, 王文, 贺隆坤. LNG船薄膜型液货舱预冷过程模拟与分析[J]. 化工学报, 2025, 76(S1): 187-194. |
| [5] | 汪思远, 刘国强, 熊通, 晏刚. 窗式空调器轴流风机的风速非均匀分布特性及其对冷凝器流路优化设计的影响规律[J]. 化工学报, 2025, 76(S1): 205-216. |
| [6] | 曹庆泰, 郭松源, 李建强, 蒋赞, 汪彬, 耑锐, 吴静怡, 杨光. 负过载下多孔隔板对液氧贮箱蓄液性能的影响研究[J]. 化工学报, 2025, 76(S1): 217-229. |
| [7] | 孙九春, 桑运龙, 王海涛, 贾浩, 朱艳. 泥水盾构仓体内射流对泥浆输送特性影响研究[J]. 化工学报, 2025, 76(S1): 246-257. |
| [8] | 何婷, 黄舒阳, 黄坤, 陈利琼. 基于余热利用的天然气化学吸收脱碳-高温热泵耦合流程研究[J]. 化工学报, 2025, 76(S1): 297-308. |
| [9] | 段炼, 周星睿, 袁文君, 陈飞. 连续相速度脉动对微通道内聚合物液滴生成和形貌的影响规律[J]. 化工学报, 2025, 76(9): 4578-4585. |
| [10] | 刘奕扬, 邢志祥, 刘烨铖, 彭明, 李玉洋, 李云浩, 沈宁舟. 加氢站液氢泄漏扩散特性与安全监测数值模拟研究[J]. 化工学报, 2025, 76(9): 4694-4708. |
| [11] | 黄正宗, 刘科成, 李泽方, 曾平生, 刘永富, 闫红杰, 刘柳. 锌精馏炉砖砌式换热室数值模拟与场协同优化[J]. 化工学报, 2025, 76(9): 4425-4439. |
| [12] | 陈昇, 李子争, 苗超, 白学刚, 李飞, 刘家璇, 李天天, 杨爽, 吕蓉蓉, 王江云. 大尺度密集场景高危氯气非均匀湍流扩散特性三维CFD模拟[J]. 化工学报, 2025, 76(9): 4630-4643. |
| [13] | 王一飞, 李玉星, 欧阳欣, 赵雪峰, 孟岚, 胡其会, 殷布泽, 郭雅琦. 基于裂尖减压特性的CO2管道断裂扩展数值计算[J]. 化工学报, 2025, 76(9): 4683-4693. |
| [14] | 杨开源, 陈锡忠. 颗粒破碎的离散元及有限离散元模拟方法比较[J]. 化工学报, 2025, 76(9): 4398-4411. |
| [15] | 贾志勇, 沈宪琨, 蓝晓程, 王铁峰. 气体密度对高压流态化影响的CFD-DEM模拟[J]. 化工学报, 2025, 76(9): 4383-4397. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号