化工学报 ›› 2025, Vol. 76 ›› Issue (9): 4369-4382.DOI: 10.11949/0438-1157.20250063

• 专栏:过程模拟与仿真 • 上一篇    下一篇

锂离子电池电化学机理模型参数辨识研究综述

娄岚浩1,2(), 杨立鹏1,2, 杨晓光1,2()   

  1. 1.北京理工大学电动车辆国家工程研究中心,北京 100081
    2.北京理工大学深圳汽车研究院,广东 深圳 518118
  • 收稿日期:2025-01-15 修回日期:2025-02-12 出版日期:2025-09-25 发布日期:2025-10-23
  • 通讯作者: 杨晓光
  • 作者简介:娄岚浩(2000—),男,硕士研究生,3220220311@bit.edu.cn
  • 基金资助:
    国家自然科学基金项目(52277212);深圳市科技计划项目(JCYJ20220530172601003);广东省基础与应用基础研究基金项目(2023A1515012807)

Review of parameter identification for physics-based lithium-ion battery models

Lanhao LOU1,2(), Lipeng YANG1,2, Xiaoguang YANG1,2()   

  1. 1.National Engineering Research Center of Electric Vehicles, Beijing Institute of Technology, Beijing 100081, China
    2.Shenzhen Automotive Research Institute, Beijing Institute of Technology, Shenzhen 518118, Guangdong, China
  • Received:2025-01-15 Revised:2025-02-12 Online:2025-09-25 Published:2025-10-23
  • Contact: Xiaoguang YANG

摘要:

锂离子电池因其高能量密度、低成本与长循环寿命在近年来得到广泛应用,电池模型的研究也迅速发展。与等效电路模型相比,机理模型能够对不同温度、不同工况下电池的性能表现进行高精度预测,然而模型的精度高度依赖参数的精度,传统侵入式测量方法烦琐且精度无法保证,基于电压、电流等数据对电池模型的参数进行辨识成为研究的热门。综述了锂离子电池机理模型参数辨识的关键步骤,包括模型建立、参数敏感性分析以及最终的参数寻优。

关键词: 锂离子电池, 电化学, 机理模型, 参数识别, 敏感性分析, 算法

Abstract:

Lithium-ion batteries have gained widespread application in recent years due to their high energy density, low cost, and long cycle life, spurring rapid advancements in battery modeling. Compared to equivalent circuit models, physics-based models can provide high-precision predictions of battery performance under varying temperatures and operating conditions. However, the accuracy of these models is highly dependent on the precision of their parameters. Traditional invasive measurement methods are cumbersome and often fail to ensure sufficient accuracy. Consequently, parameter identification based on data such as voltage and current has emerged as a prominent research focus. This paper reviews the key steps of parameter identification of lithium-ion battery mechanism models, including model establishment, parameter sensitivity analysis and final parameter optimization.

Key words: lithium-ion battery, electrochemistry, physics-based model, parameter identification, sensitivity analysis, algorithm

中图分类号: