化工学报

• •    

环保型制冷剂HP-1为工质的新型环路热管传热特性研究

崔庆杰1,2(), 沈立1,2, 倪一程1,2, 周尧3, 杨小平1,2(), 张永海1,2, 魏进家1,2   

  1. 1.西安交通大学化学工程与技术学院,陕西 西安 710049
    2.氟氮化工新材料全国重点实验室,陕西 西安 710049
    3.西安交通大学热流科学与工程教育部重点实验室,陕西 西安 710049
  • 收稿日期:2025-04-15 修回日期:2025-05-14 出版日期:2025-06-23
  • 通讯作者: 杨小平
  • 作者简介:崔庆杰(2000—),男,博士研究生,cuiqingjie@stu.xjtu.edu.cn
  • 基金资助:
    国家自然科学基金项目(52476090)

Heat transfer characteristics of a novel loop heat pipe using eco-friendly refrigerant HP-1 as the working fluid

Qingjie CUI1,2(), Li SHEN1,2, Yicheng NI1,2, Yao ZHOU3, Xiaoping YANG1,2(), Yonghai ZHANG1,2, Jinjia WEI1,2   

  1. 1.School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi 'an 710049, Shaanxi, China
    2.State Key Laboratory of Fluorine & Nitrogen Chemicals, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
    3.Key Laboratory of Thermo-Fluid Science and Engineering, Ministry of Education, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
  • Received:2025-04-15 Revised:2025-05-14 Online:2025-06-23
  • Contact: Xiaoping YANG

摘要:

随着5G技术的快速发展,电子器件正朝着高集成化与微型化方向演进,这导致其热通量显著增加。然而,传统的环路热管(LHP)因其漏热问题,面临热通量的瓶颈,难以满足新兴需求。在前期研究中,开发了一种新型的环路热管—LHPI,并已证明其在性能上的可行性,表现出优异的热管理特性。然而,早期实验采用水作为工质,这一选择由于水的低冰点特性,在低温环境中易结冰,从而限制了其广泛应用。因此,本文提出了一种新型低冰点制冷剂HP-1,并系统研究了热负荷(50-300 W)与热沉温度(5-15 ℃)对LHPI性能的影响。实验结果表明,引射器的运行方式对LHPI的传热性能具有显著影响。引射器的运行模式可分为低效模式、正常引射模式、受限膨胀模式和过热模式。在高热沉温度条件下,受限膨胀模式和过热模式的出现时间明显提前。相较水基工质,HP-1使LHPI在85 ℃底板温度下热通量提升至41.7 W/cm²,且低温适应性显著增强,为电子设备高效散热提供了优化方向。

关键词: 环路热管, 引射器, HP-1, 传热

Abstract:

With the rapid advancement of 5G technology, electronic devices are evolving toward higher integration and miniaturization, leading to a significant increase in heat flux. However, traditional loop heat pipes (LHPs) face limitations in heat flux density due to inherent heat leakage issues, failing to meet emerging thermal demands. In previous studies, an innovative injector-integrated loop heat pipe (LHPI) was developed and demonstrated superior thermal management performance. However, early experiments utilized water as the working fluid, which suffers from low freezing points and ice formation in low-temperature environments, restricting its broader application. To address this, this study introduces a novel low-freezing-point refrigerant, HP-1, and systematically investigates the effects of heat loads (50–300 W) and heat sink temperatures (5–15 °C) on LHPI performance. Experimental results reveal that the injector's operational modes—classified as low-efficiency, normal injection, restricted expansion, and superheated modes—significantly influence LHPI's heat transfer characteristics. At elevated heat sink temperatures, the transition to restricted expansion and superheated modes occurs earlier. Compared to water-based systems, HP-1 enables the LHPI to achieve a heat flux of 41.7 W/cm² at a baseplate temperature of 85 °C while exhibiting enhanced low-temperature adaptability, providing an optimized pathway for high-efficiency thermal management in advanced electronic devices.

Key words: loop heat pipe, ejector, HP-1, heat transfer

中图分类号: