| [1] |
Qian C, Gheitaghy A M, Fan J, et al. Thermal management on IGBT power electronic devices and Modules[J]. IEEE Access, 2018, 6: 12868-12884.
|
| [2] |
Huang P C, Yang C, Hwang J J, et al. Enhancement of forced-convection cooling of multiple heated blocks in a channel using porous covers[J]. International Journal of Heat and Mass Transfer, 2005, 48(3/4): 647-664.
|
| [3] |
Gupta N K, Tiwari A K, Ghosh S K. Heat transfer mechanisms in heat pipes using nanofluids—a review[J]. Experimental Thermal and Fluid Science, 2018, 90: 84-100.
|
| [4] |
Ahamed M S, Saito Y, Mashiko K, et al. Characterization of a high performance ultra-thin heat pipe cooling module for mobile hand held electronic devices[J]. Heat and Mass Transfer, 2017, 53(11): 3241-3247.
|
| [5] |
Li J, Lv L C. Experimental studies on a novel thin flat heat pipe heat spreader[J]. Applied Thermal Engineering, 2016, 93: 139-146.
|
| [6] |
Nematollahisarvestani A, Lewis R J, Lee Y C. Design of thermal ground planes for cooling of foldable smartphones[J]. Journal of Electronic Packaging, 2019, 141(2): 021004.
|
| [7] |
Lee D, Byon C. Fabrication and characterization of pure-metal-based submillimeter-thick flexible flat heat pipe with innovative wick structures[J]. International Journal of Heat and Mass Transfer, 2018, 122: 306-314.
|
| [8] |
Zhou W J, Li Y, Chen Z S, et al. Effect of the passage area ratio of liquid to vapor on an ultra-thin flattened heat pipe[J]. Applied Thermal Engineering, 2019, 162: 114215.
|
| [9] |
Gully P, Mo Q, Yan T, et al. Thermal behavior of a cryogenic loop heat pipe for space application[J]. Cryogenics, 2011, 51(8): 420-428.
|
| [10] |
Hong S H, Wang S F, Zhang L Z. Effect of groove configuration on two-phase flow instability for ultra-thin looped heat pipes in thermal management system[J]. International Journal of Thermal Sciences, 2017, 121: 369-380.
|
| [11] |
Okamoto A, Miyakita T, Nagano H. On-orbit experiment plan of loop heat pipe and the test results of ground test[J]. Microgravity Science and Technology, 2019, 31(3): 327-337.
|
| [12] |
Ambirajan A, Adoni A A, Vaidya J S, et al. Loop heat pipes: a review of fundamentals, operation, and design[J]. Heat Transfer Engineering, 2012, 33(4/5): 387-405.
|
| [13] |
Yang X P, Cui Q J, You Z Y, et al. Experimental and theoretical study on performance of bi-porous wick for passive phase-change devices[J]. Physics of Fluids, 2024, 36(12): 123308.
|
| [14] |
Pastukhov V G, Maydanik Y F. Low-noise cooling system for PC on the base of loop heat pipes[J]. Applied Thermal Engineering, 2007, 27(5/6): 894-901.
|
| [15] |
Mo D C, Ding N, Lu S S. Gravity effects on the performance of a flat loop heat pipe[J]. Microgravity Science and Technology, 2009, 21(1): 95-102.
|
| [16] |
Kumar P, Sahu G, Chatterjee D, et al. Copper wick based loop heat pipe for thermal management of a high-power LED module[J]. Applied Thermal Engineering, 2022, 211: 118459.
|
| [17] |
Lu X Y, Hua T C, Liu M J, et al. Thermal analysis of loop heat pipe used for high-power LED[J]. Thermochimica Acta, 2009, 493(1/2): 25-29.
|
| [18] |
Zhao X D, Wang Z Y, Tang Q. Theoretical investigation of the performance of a novel loop heat pipe solar water heating system for use in Beijing, China[J]. Applied Thermal Engineering, 2010, 30(16): 2526-2536.
|
| [19] |
Xu Z, Lu J R, Xing S G. Thermal performance of greenhouse heating with loop heat pipe solar collector and ground source heat pump[J]. Results in Engineering, 2022, 15: 100626.
|
| [20] |
Giarno, Dedy H, Heru K G. B., et al. Heat absorbing capability characterization of loop heat pipe model's with variation of filling ratio[C]//The 4th International Conference on Nuclear Energy Technologies and Sciences (ICoNETS) 2021. AIP Conference Proceedings, 2022, 2501(1): 030014.
|
| [21] |
He S, Zhou P, Liu W, et al. Experimental study on thermal performance of loop heat pipe with a composite-material evaporator for cooling of electronics[J]. Applied Thermal Engineering, 2020, 168: 114897.
|
| [22] |
Zhou W, Ling W S, Duan L, et al. Development and tests of loop heat pipe with multi-layer metal foams as wick structure[J]. Applied Thermal Engineering, 2016, 94: 324-330.
|
| [23] |
Xu J Y, Zhang L, Xu H, et al. Experimental investigation and visual observation of loop heat pipes with two-layer composite wicks[J]. International Journal of Heat and Mass Transfer, 2014, 72: 378-387.
|
| [24] |
王野, 纪献兵, 郑晓欢, 等. 多尺度复合毛细芯环路热管的传热特性[J]. 化工学报, 2015, 66(6): 2055-2061.
|
|
Wang Y, Ji X B, Zheng X H, et al. Heat transfer characteristics of loop heat pipe with modulated composite porous wick[J]. CIESC Journal, 2015, 66(6): 2055-2061.
|
| [25] |
Wu S C, Peng J, Lai S R, et al. Investigation of the effect of heat leak in loop heat pipes with flat evaporator[C]//2009 4th International Microsystems, Packaging, Assembly and Circuits Technology Conference. Taipei, Taiwan, 2009: 348-351.
|
| [26] |
Li X Q, Zhu K, Li H L, et al. Performance comparison regarding loop heat pipes with different evaporator structures[J]. International Journal of Thermal Sciences, 2019, 136: 86-95.
|
| [27] |
Yang X P, Liu J, Wang G X, et al. Experimental study of mechanical-capillary driven phase-change loop for heat dissipation of electronic devices and batteries[J]. Applied Thermal Engineering, 2022, 210: 118350.
|
| [28] |
Jiang C, Liu W, Liu Z C, et al. Startup characteristics of pump-assisted capillary phase change loop[J]. Applied Thermal Engineering, 2017, 126: 1115-1125.
|
| [29] |
Liu L, Yang X P, Yuan B, et al. Experimental study of a novel loop heat pipe with a vapor-driven jet injector[J]. International Journal of Heat and Mass Transfer, 2021, 164: 120518.
|
| [30] |
Liu L, Yang X P, Yuan B, et al. Investigation of temperature oscillations in a novel loop heat pipe with a vapor-driven jet injector[J]. International Journal of Heat and Mass Transfer, 2021, 179: 121672.
|
| [31] |
Zhou Y, Liu J P, Ni Y C, et al. Performance of a novel loop heat pipe coupled with micro vapor-driven jet injector—an experimental and numerical study[J]. International Journal of Heat and Mass Transfer, 2024, 231: 125853.
|
| [32] |
王约翰, 南晓红, 欧阳洪生, 等. 绿色工质HP-1高温热泵系统中膨胀阀开度与流量匹配特性[J]. 上海交通大学学报, 2023, 57(10): 1367-1377.
|
|
Wang Y H, Nan X H, Ouyang H S, et al. Matching characteristics of expansion valve opening and flow rate of high temperature heat pump with green refrigerant HP-1[J]. Journal of Shanghai Jiao Tong University, 2023, 57(10): 1367-1377.
|
| [33] |
Kwidzinski R. Experimental and theoretical investigations of two-phase flow in low pressure steam-water injector[J]. International Journal of Heat and Mass Transfer, 2019, 144: 118618.
|
| [34] |
Moffat R J. Describing the uncertainties in experimental results[J]. Experimental Thermal and Fluid Science, 1988, 1(1): 3-17.
|
| [35] |
Celata G P, Cumo M, Furrer M. Experimental tests of a stainless steel loop heat pipe with flat evaporator[J]. Experimental Thermal and Fluid Science, 2010, 34(7): 866-878.
|
| [36] |
Ling W S, Zhou W, Yu W, et al. Thermal performance of loop heat pipes with smooth and rough porous copper fiber sintered sheets[J]. Energy Conversion and Management, 2017, 153: 323-334.
|
| [37] |
Wu S C, Yen S H, Lo W C, et al. Study of nickel wick structure applied to loop heat pipe with flat evaporator[J]. Key Engineering Materials, 2016, 723: 282-287.
|
| [38] |
Chernysheva M A, Yushakova S I, Maydanik Y F. Effect of external factors on the operating characteristics of a copper-water loop heat pipe[J]. International Journal of Heat and Mass Transfer, 2015, 81: 297-304.
|