• •
张延龙(
), 赵秋阳, 李章剑, 陈引, 金辉, 郭烈锦(
)
收稿日期:2025-04-16
修回日期:2025-07-03
出版日期:2025-07-04
通讯作者:
郭烈锦
作者简介:张延龙(1995—),男,博士研究生,long1821@stu.xjtu.edu.cn
基金资助:
Yanlong ZHANG(
), Qiuyang ZHAO, Zhangjian LI, Yin CHEN, Hui JIN, Liejin GUO(
)
Received:2025-04-16
Revised:2025-07-03
Online:2025-07-04
Contact:
Liejin GUO
摘要:
为了研究了超临界水转化页岩的产气动力学机理,在间歇式高温高压反应器内进行了实验,反应温度450-550 °C,反应时间为0-480 min。实验结果表明,中间体产物成分复杂,但以邻苯二甲酸二丁酯和萘的衍生物为主。产生的气体主要是CH4、C2H6、C3H8、H2和CO2。总气体生成量随着温度和反应时间而增加。采用基于Peng-Robinson(PR)方程的简单迭代法计算混合气体的物质的量。基于实验结果与集总参数法,建立了页岩-中间体-气体的反应动力学模型。该模型可以较好地解释超临界水氛围中页岩因化学反应而产生的油气变化,并可以定量描述气体之间的相互转化。该模型的计算值和实验值的决定系数大于0.98,这表明在实验温度范围内,能在可接受的偏差内拟合不同反应时间的气体浓度。这对超临界水转化页岩的产气机理有了更深入的认识。
中图分类号:
张延龙, 赵秋阳, 李章剑, 陈引, 金辉, 郭烈锦. 超临界水转化页岩生烃气反应动力学研究[J]. 化工学报, DOI: 10.11949/0438-1157.20250403.
Yanlong ZHANG, Qiuyang ZHAO, Zhangjian LI, Yin CHEN, Hui JIN, Liejin GUO. Reaction kinetics on supercritical water conversion of shale for hydrocarbon gas production[J]. CIESC Journal, DOI: 10.11949/0438-1157.20250403.
| 元素分析 (wt %) | 工业分析 (wt %) | |||||||
|---|---|---|---|---|---|---|---|---|
| C | H | O | N | S | Ash | Moisture | Volatile | FC |
| 13.56 | 2.26 | 1.01 | 1.53 | 4.75 | 75.21 | 1.68 | 16.62 | 4.34 |
表1 页岩样品的元素分析与工业分析
Table 1 The elemental analysis and proximate analysis of shale sample
| 元素分析 (wt %) | 工业分析 (wt %) | |||||||
|---|---|---|---|---|---|---|---|---|
| C | H | O | N | S | Ash | Moisture | Volatile | FC |
| 13.56 | 2.26 | 1.01 | 1.53 | 4.75 | 75.21 | 1.68 | 16.62 | 4.34 |
| No. | 组分 | 450 °C | 550 °C |
|---|---|---|---|
| 1 | 2,4-二甲基苯乙烯 | 0.79 | - |
| 2 | 萘 | 3.21 | 1.44 |
| 4 | 2-甲基十一烷 | 3.08 | 1.00 |
| 5 | 1H-茚,1-亚乙基 | 2.42 | 4.41 |
| 6 | 萘,1-甲基 | 3.34 | 1.35 |
| 7 | 萘,1,2,3,4-四氢-1,8-二甲基 | 0.55 | 0.49 |
| 8 | 庚烷,2,3-二甲基 | 1.36 | 1.75 |
| 9 | 萘,2,7-二甲基 | 7.41 | 2.43 |
| 10 | 戊-1-炔-3-烯,4-甲基-3-苯基 | 0.45 | 0.32 |
| 11 | 非腺苷 | 3.12 | 3.25 |
| 12 | 1,6,7-三甲基萘 | 7.16 | 2.62 |
| 13 | 2,5-双(1,1-二甲基乙基)苯酚 | 1.28 | 0.64 |
| 14 | 芴 | 0.41 | - |
| 15 | 萘,1-(2-丙烯基) | 1.49 | 1.39 |
| 16 | 1,6-二甲基-3-乙基萘 | 1.77 | - |
| 17 | 2-异丙基-7-甲基萘 | 0.98 | 3.22 |
| 18 | 5,8,11,14-二十碳四烯酸 | 1.79 | 0.54 |
| 19 | 2-[2-苯乙烯基]苯酚 | 0.78 | 0.36 |
| 20 | 十五烷,5-甲基 | 0.77 | 0.29 |
| 21 | 菲 | 5.81 | 3.84 |
| 22 | 乙醇,2-(十八烷氧基) | 0.94 | - |
| 23 | 3,5,3',5'-四甲基联苯 | 2.60 | - |
| 24 | 4-甲基菲 | 1.92 | 3.08 |
| 25 | 庚烷,9-己基 | 3.28 | - |
| 26 | 邻苯二甲酸二丁酯 | 17.39 | 11.82 |
| 27 | 1,2-苯二甲酸 | 4.16 | 3.13 |
| 28 | 蒽,9-乙基-9,10-二氢-10-羟基 | 0.74 | - |
| 29 | 2,7-二甲基菲 | 1.50 | 0.72 |
| 30 | 芘,4,5,9,10-四氢 | 1.11 | - |
| 31 | 芘 | 1.47 | 1.56 |
| 32 | 2,2'-二乙烯基二苯甲酮 | 1.33 | 0.53 |
| 33 | 乙酸,α-(1-萘基)苄酯 | 1.02 | 1.55 |
| 34 | 1,2,3,4-四氢三苯撑 | 1.58 | 2.26 |
| 35 | 8,9-苯并二异丙基[2.2.2.4]癸烷,7-(3-甲氧基-2-氧杂-1-氧代环戊-5-基)-10-苯基 | 1.09 | - |
| 36 | 2,6,10,15-四甲基庚烷 | 2.20 | 1.14 |
| 37 | 苯酚,2,2'-亚甲基双[6-(1,1-二甲基乙基)-4-甲基 | 3.07 | 1.61 |
| 38 | 苯并蒽,6,12-二甲基-1,2,3,4-四氢 | 2.28 | - |
表2 240 min时450 °C和550 °C产油组分
Table 2 Produced oil components at 450 °C and 550 °C at 240 min
| No. | 组分 | 450 °C | 550 °C |
|---|---|---|---|
| 1 | 2,4-二甲基苯乙烯 | 0.79 | - |
| 2 | 萘 | 3.21 | 1.44 |
| 4 | 2-甲基十一烷 | 3.08 | 1.00 |
| 5 | 1H-茚,1-亚乙基 | 2.42 | 4.41 |
| 6 | 萘,1-甲基 | 3.34 | 1.35 |
| 7 | 萘,1,2,3,4-四氢-1,8-二甲基 | 0.55 | 0.49 |
| 8 | 庚烷,2,3-二甲基 | 1.36 | 1.75 |
| 9 | 萘,2,7-二甲基 | 7.41 | 2.43 |
| 10 | 戊-1-炔-3-烯,4-甲基-3-苯基 | 0.45 | 0.32 |
| 11 | 非腺苷 | 3.12 | 3.25 |
| 12 | 1,6,7-三甲基萘 | 7.16 | 2.62 |
| 13 | 2,5-双(1,1-二甲基乙基)苯酚 | 1.28 | 0.64 |
| 14 | 芴 | 0.41 | - |
| 15 | 萘,1-(2-丙烯基) | 1.49 | 1.39 |
| 16 | 1,6-二甲基-3-乙基萘 | 1.77 | - |
| 17 | 2-异丙基-7-甲基萘 | 0.98 | 3.22 |
| 18 | 5,8,11,14-二十碳四烯酸 | 1.79 | 0.54 |
| 19 | 2-[2-苯乙烯基]苯酚 | 0.78 | 0.36 |
| 20 | 十五烷,5-甲基 | 0.77 | 0.29 |
| 21 | 菲 | 5.81 | 3.84 |
| 22 | 乙醇,2-(十八烷氧基) | 0.94 | - |
| 23 | 3,5,3',5'-四甲基联苯 | 2.60 | - |
| 24 | 4-甲基菲 | 1.92 | 3.08 |
| 25 | 庚烷,9-己基 | 3.28 | - |
| 26 | 邻苯二甲酸二丁酯 | 17.39 | 11.82 |
| 27 | 1,2-苯二甲酸 | 4.16 | 3.13 |
| 28 | 蒽,9-乙基-9,10-二氢-10-羟基 | 0.74 | - |
| 29 | 2,7-二甲基菲 | 1.50 | 0.72 |
| 30 | 芘,4,5,9,10-四氢 | 1.11 | - |
| 31 | 芘 | 1.47 | 1.56 |
| 32 | 2,2'-二乙烯基二苯甲酮 | 1.33 | 0.53 |
| 33 | 乙酸,α-(1-萘基)苄酯 | 1.02 | 1.55 |
| 34 | 1,2,3,4-四氢三苯撑 | 1.58 | 2.26 |
| 35 | 8,9-苯并二异丙基[2.2.2.4]癸烷,7-(3-甲氧基-2-氧杂-1-氧代环戊-5-基)-10-苯基 | 1.09 | - |
| 36 | 2,6,10,15-四甲基庚烷 | 2.20 | 1.14 |
| 37 | 苯酚,2,2'-亚甲基双[6-(1,1-二甲基乙基)-4-甲基 | 3.07 | 1.61 |
| 38 | 苯并蒽,6,12-二甲基-1,2,3,4-四氢 | 2.28 | - |
| First column | Second column |
|---|---|
表3 反应路径对应的方程式
Table 3 The equation for the reaction path
| First column | Second column |
|---|---|
| 物质 | xi | 物质 | xi |
|---|---|---|---|
| 页岩(OM) | x1 | H2 | x6 |
| 萘(Med1) | x2 | CO2 | x7 |
| 邻苯二甲酸二丁酯(Med2) | x3 | CH4 | x8 |
| 1,2-苯二甲酸(Med3) | x4 | C2H6 | x9 |
| H2O | x5 | C3H8 | x10 |
Table 4 The sequence number of reactant
| 物质 | xi | 物质 | xi |
|---|---|---|---|
| 页岩(OM) | x1 | H2 | x6 |
| 萘(Med1) | x2 | CO2 | x7 |
| 邻苯二甲酸二丁酯(Med2) | x3 | CH4 | x8 |
| 1,2-苯二甲酸(Med3) | x4 | C2H6 | x9 |
| H2O | x5 | C3H8 | x10 |
| 物质 | 反应速率 | 物质 | 反应速率 |
|---|---|---|---|
| x1 | x6 | ||
| x2 | x7 | ||
| x3 | x8 | ||
| x4 | x9 | ||
| x5 | x10 |
表5 各反应的速率方程
Table 5 Rate equations for each reaction
| 物质 | 反应速率 | 物质 | 反应速率 |
|---|---|---|---|
| x1 | x6 | ||
| x2 | x7 | ||
| x3 | x8 | ||
| x4 | x9 | ||
| x5 | x10 |
| 物质 | 表达式 | 物质 | 表达式 |
|---|---|---|---|
| x1 | x6 | ||
| x2 | x7 | ||
| x3 | x8 | ||
| x4 | x9 | ||
| x5 | x10 |
表6 反应物浓度的一阶微分方程
Table 6 First order differential equation of reactant concentration
| 物质 | 表达式 | 物质 | 表达式 |
|---|---|---|---|
| x1 | x6 | ||
| x2 | x7 | ||
| x3 | x8 | ||
| x4 | x9 | ||
| x5 | x10 |
| ki | 450 °C | 500 °C | 550 °C | E (kJ/mol) | A (min-1) |
|---|---|---|---|---|---|
| k1 | 1.40E+00 | 1.83E+00 | 2.28E+00 | 24.14 | 77.92 |
| k2 | 2.15E+00 | 2.42E+00 | 2.69E+00 | 11.08 | 13.58 |
| k3 | 2.07E-02 | 3.63E-02 | 5.18E-02 | 45.53 | 41.28 |
| k4 | 1.49E+00 | 1.79E+00 | 1.95E+00 | 13.39 | 14.01 |
| k5 | 5.23E-01 | 6.65E-01 | 7.77E-01 | 19.65 | 13.87 |
| k6 | 1.56E+00 | 1.93E+00 | 2.15E+00 | 15.96 | 22.48 |
| k7 | 3.67E+00 | 4.34E+00 | 4.77E+00 | 13.03 | 32.34 |
| k8 | 2.43E-03 | 3.96E-03 | 7.53E-03 | 55.71 | 24.84 |
| k9 | 1.53E-01 | 1.94E-01 | 3.22E-01 | 36.47 | 62.87 |
| k10 | 9.67E-03 | 1.22E-02 | 1.45E-02 | 47.02 | 15.37 |
表7 反应速率常数随温度变化及对应的活化能与指前因子
Table 7 The reaction rate constants change with temperature and the corresponding activation energy and pre-exponential factor
| ki | 450 °C | 500 °C | 550 °C | E (kJ/mol) | A (min-1) |
|---|---|---|---|---|---|
| k1 | 1.40E+00 | 1.83E+00 | 2.28E+00 | 24.14 | 77.92 |
| k2 | 2.15E+00 | 2.42E+00 | 2.69E+00 | 11.08 | 13.58 |
| k3 | 2.07E-02 | 3.63E-02 | 5.18E-02 | 45.53 | 41.28 |
| k4 | 1.49E+00 | 1.79E+00 | 1.95E+00 | 13.39 | 14.01 |
| k5 | 5.23E-01 | 6.65E-01 | 7.77E-01 | 19.65 | 13.87 |
| k6 | 1.56E+00 | 1.93E+00 | 2.15E+00 | 15.96 | 22.48 |
| k7 | 3.67E+00 | 4.34E+00 | 4.77E+00 | 13.03 | 32.34 |
| k8 | 2.43E-03 | 3.96E-03 | 7.53E-03 | 55.71 | 24.84 |
| k9 | 1.53E-01 | 1.94E-01 | 3.22E-01 | 36.47 | 62.87 |
| k10 | 9.67E-03 | 1.22E-02 | 1.45E-02 | 47.02 | 15.37 |
| [1] | 昝灵, 骆卫峰, 印燕铃, 等. 苏北盆地溱潼凹陷古近系阜宁组二段页岩油形成条件及有利区评价[J]. 石油实验地质, 2021, 43(2): 233-241. |
| Zan L, Luo W F, Yin Y L, et al. Formation conditions of shale oil and favorable targets in the second member of Paleogene Funing Formation in Qintong Sag,Subei Basin[J]. Petroleum Geology & Experiment, 2021, 43(2): 233-241. | |
| [2] | 袁伟, 柳广弟, 袁红旗. 鄂尔多斯盆地上三叠统延长组长7段富有机质页岩中藻类化石的发现及地质意义[J]. 地质论评, 2023, 69(1):365-374. |
| Yuan W, Liu G D, Yuan H Q. Discovery of algal fossils in the Chang-7 organic-rich shale of Upper Triassic Yanchang Formation in Ordos Basin and its geological significance[J]. Geological Review, 2023, 69(1): 365-374. | |
| [3] | 邹佳婕, 代朝猛, 韩跃鸣, 等. 页岩油气开采对地下水污染研究现状与动向[J]. 同济大学学报(自然科学版), 2024, 52(5): 796-804. |
| Zou J J, Dai C M, Han Y M,, et al. A review on current situation of groundwater pollution from shale oil and gas extraction[J]. Journal of Tongji University (Natural Science), 2024, 52(5): 796-804. | |
| [4] | 唐巨鹏, 余泓浩. 油页岩原位开采物理模拟试验研究现状及展望[J]. 辽宁工程技术大学学报(自然科学版), 2024, 43(5): 565-580. |
| Tang J P, Yu H H. Research status and prospect on physical simulation test of oil shale in-situ mining[J]. Journal of Liaoning technical university (Natural Science), 2024, 43(5): 565-580. | |
| [5] | 王梦奇, 李震, 冯爱欣, 等. 有机废水的超临界水氧化处理研究进展[J]. 广州化工, 2021, 49(23): 1-4, 14. |
| Wang M Q, Li Z, Feng A X, et al. Research progress on treatment of organic wastewater by supercritical water oxidation [J]. Guangzhou Chemical Industry, 2021, 49(23): 1-4, 14. | |
| [6] | Huang X, Qin J X, Hou Z H, et al. Heat transfer characteristics of supercritical water in a horizontal tube considering local temperature fields: An experimental study[J]. International Journal of Heat and Mass Transfer, 2022, 198: 123404. |
| [7] | Meng F Y, Yao C J, Du X G, et al. Experimental investigation on composition and pore structure evolution of organic-rich shale via supercritical water [J]. Energy & Fuels, 2023, 37(20): 15671-15686. |
| [8] | Li S J, Guo X W, Zheng L J, et al. Semi-closed hydrous pyrolysis of type I source rock using formation water: Implications for biomarker behaviour under supercritical conditions[J]. Marine and Petroleum Geology, 2023, 158: 106510. |
| [9] | Zhao Q Y, Bawaa B, Xie T, et al. Experimental study on hydrocarbon generation characteristics of type II kerogen from low-maturity shale in supercritical water [J]. Industrial & Engineering Chemistry Research, 2023, 62(42): 17343–17353. |
| [10] | Zhao Q Y, Dong Y, Zheng L C, et al. Sub- and supercritical water conversion of organic-rich shale with low-maturity for oil and gas generation: using Chang 7 shale as an example[J]. Sustainable Energy & Fuels, 2023, 7(1): 155-163. |
| [11] | Xie T, Zhao Q Y, Dong Y, et al. Experimental investigation on hydrocarbon generation of organic-rich shale with low maturity in sub- and supercritical water[J]. Geoenergy Science and Engineering, 2023, 223: 211553. |
| [12] | Yao C J, Meng F Y, Zhang H X, et al. Experimental investigation on the pyrolysis and conversion characteristics of organic-rich shale by supercritical water[J]. ACS Omega, 2023, 8(51): 49046-49056. |
| [13] | Djimasbe R, Varfolomeev M A, Khasanova N M, et al. Use of deuterated water to prove its role as hydrogen donor during the hydrothermal upgrading of oil shale at supercritical conditions[J]. The Journal of Supercritical Fluids, 2024, 204: 106092. |
| [14] | 谢天, 赵秋阳, 董宇, 等. 超临界水转化低成熟富有机质页岩生烃特性实验研究[J]. 工程热物理学报, 2022, 43(10): 2675-2680. |
| Xie T, Zhao Q Y, Dong Y, et al. Experimental investigation on hydrocarbon generation characteristics of low maturity organic-rich shale converted by supercritical water[J]. Journal of Engineering Thermophysics, 2022, 43(10): 2675-2680. | |
| [15] | Xie T, Zhao Q Y, Dong Y, et al. Experimental investigation on the hydrocarbon generation of low maturity organic-rich shale in supercritical water[J]. Oil Shale, 2022, 39(3): 169-188. |
| [16] | Xie T, Zhao Q Y, Jin H, et al. Experimental investigation on the organic carbon migration path and pore evolution during co-thermal hydrocarbon generation of low maturity organic-rich shale and supercritical water [J]. Energy & Fuels, 2022, 36(24): 15047-15054. |
| [17] | 巴尔成·巴瓦阿, 赵秋阳, 谢天, 等. 页岩干酪根提取及超临界水转化特性研究[J]. 工程热物理学报, 2023, 44(09): 2452-2457. |
| Bawaa B, Zhao Q Y, Xie T, et al. Extraction and supercritical water conversion characteristics of kerogen[J]. Journal of Engineering Thermophysics, 2023, 44(09): 2452-2457. | |
| [18] | Liang X P, Zhao Q Y, Dong Y, et al. Experimental investigation on supercritical water gasification of organic-rich shale with low maturity for syngas production[J]. Energy & Fuels, 2021, 35(9): 7657-7665. |
| [19] | Xie T, Zhao Q Y, Jin H, et al. Reaction kinetics study on hydrocarbon generation of medium- and low-maturity organic-rich shale in supercritical water [J]. Energy & Fuels, 2023, 37(18): 14192-14201. |
| [20] | Zhao S, Pu W F, Yuan C D, et al. SARA-based kinetics model for simulating heat release during crude oil combustion[J]. Journal of Thermal Analysis and Calorimetry, 2024, 149(8): 3197-3204. |
| [21] | Pope C, Ismail N B, Hascakir B. The role of reservoir fluids and reservoir rock mineralogy on in-situ combustion kinetics[J]. Geoenergy Science and Engineering, 2023, 224: 211516. |
| [22] | Félix G, Djimasbe R, Varfolomeev M A, et al. 4-lump kinetic model for non-catalytic oil shale upgrading at sub- and supercritical water conditions[J]. Fuel, 2024, 357: 129987. |
| [23] | Huang S, Cao M, Huang Q, et al. Study on reaction equations of heavy oil aquathermolysis with superheated steam[J]. International Journal of Environmental Science and Technology, 2019, 16(9): 5023-5032. |
| [24] | Dong Y, Zhao Q Y, Zhou Y T, et al. Kinetic study of asphaltenes phase separation in supercritical water upgrading of heavy oil[J]. Fuel Processing Technology, 2023, 241: 107588. |
| [25] | Wood D A. Thermal maturity and burial history modelling of shale is enhanced by use of Arrhenius time-temperature index and memetic optimizer[J]. Petroleum, 2018, 4(1): 25-42. |
| [26] | Hoyos B. Generalized liquid volume shifts for the Peng-Robinson equation of state for C1 to C8 hydrocarbons[J]. Latin American Applied Research, 2004, 34(2): 83-89. |
| [27] | Shanshool J, Hashim E T, Ali Hassaballah A. Prediction of liquefied natural gas density using Peng-Robinson equation of state[J]. Petroleum Science and Technology, 2004, 22(3-4): 415-422. |
| [28] | Trawiński P. Development and implementation of mathematical models of working mediums for gas part of combined cycle gas turbine system in Python programming environment[J]. E3S Web of Conferences, 2019, 137: 01047 (01046 pp.). |
| [29] | Bell I H, Welliquet J, Mondejar M E, et al. Application of the group contribution volume translated Peng-Robinson equation of state to new commercial refrigerant mixtures[J]. International Journal of Refrigeration, 2019, 103: 316-328. |
| [30] | Gao G H, Daridon J L, Saint-Guirons H, et al. A simple correlation to evaluate binary interaction parameters of the Peng-Robinson equation of state: binary light hydrocarbon systems[J]. Fluid Phase Equilibria, 1992, 74: 85-93. |
| [31] | Bühler W, Dinjus E, Ederer H J, et al. Ionic reactions and pyrolysis of glycerol as competing reaction pathways in near- and supercritical water[J]. The Journal of Supercritical Fluids, 2002, 22(1): 37-53. |
| [32] | Susanti R F, Veriansyah B, Kim J D, et al. Continuous supercritical water gasification of isooctane: a promising reactor design[J]. International Journal of Hydrogen Energy, 2010, 35(5): 1957-1970. |
| [33] | Jiang S H, Sun Y H, Zhang G B, et al. Dynamics and mechanisms of methane hydrate reformation near wellbores: Investigating heat and mass transfer processes[J]. International Journal of Heat and Mass Transfer, 2024, 231: 125826. |
| [34] | Ploeger J M, Bielenberg P A, Dinaro-Blanchard J L, et al. Modeling oxidation and hydrolysis reactions in supercritical water: free radical elementary reaction networks and their applications[J]. Combustion Science and Technology - COMBUST SCI TECHNOL, 2006, 178(1/2/3): 363-398. |
| [35] | Li H Y, Hu Y L, Wang H Y, et al. Supercritical water gasification of lignocellulosic biomass: Development of a general kinetic model for prediction of gas yield[J]. Chemical Engineering Journal, 2022, 433: 133618. |
| [36] | Han W X, Luo X, Tao S Z, et al. Activation energy and organic matter structure characteristics of shale kerogen and their significance for the in-situ conversion process of shale oil[J]. Fuel, 2024, 370: 131823. |
| [37] | Wang Z J, Deng S H, Gu Q, et al. Pyrolysis kinetic study of Huadian oil shale, spent oil shale and their mixtures by thermogravimetric analysis[J]. Fuel Processing Technology, 2013, 110: 103-108. |
| [38] | Al-Harahsheh M, Al-Ayed O, Robinson J, et al. Effect of demineralization and heating rate on the pyrolysis kinetics of Jordanian oil shales[J]. Fuel Processing Technology, 2011, 92(9): 1805-1811. |
| [39] | Xu S K, Butler I, Gökalp I, et al. Evolution of naphthalene and its intermediates during oxidation in subcritical/supercritical water[J]. Proceedings of the Combustion Institute, 2011, 33(2): 3185-3194. |
| [40] | Félix G, Djimasbe R, Varfolomeev M A, et al. Kinetic modeling of oil shale upgrading at sub- and supercritical water conditions using Ni- and Fe-based oil-soluble catalysts[J]. The Journal of Supercritical Fluids, 2024, 207: 106193. |
| [41] | Zheng L C, Zhao Q Y, Dong Y, et al. Molecular dynamics simulation of sub- and supercritical water extraction shale oil in slit nanopores[J]. The Journal of Supercritical Fluids, 2023, 195: 105862. |
| [42] | Wijenayake A G B S P, Hassan M, Komiyama M. Supercritical water gasification of microalga Nannochloropsis over supported Ni and Ru catalysts[C]//4th International Conference on Fundamental and Applied Sciences (Icfas2016), Kuala Lumpur, Malaysia. Author(s), 2016, 1787(1): 030013. |
| [43] | Ozerskii A V, Zimin Y S, Timofeev K A, et al. Oxidative cracking of propane in the presence of hydrogen [J]. Russian Journal of Applied Chemistry, 2021, 94(6): 787-792. |
| [1] | 孔繁臣, 张硕, 唐明生, 邹慧明, 胡舟航, 田长青. 二氧化碳直线压缩机气体轴承模拟[J]. 化工学报, 2025, 76(S1): 281-288. |
| [2] | 丁昊, 王林, 刘豪. R290/R245fa汽液相平衡混合规则对比研究[J]. 化工学报, 2025, 76(S1): 9-16. |
| [3] | 曹庆泰, 郭松源, 李建强, 蒋赞, 汪彬, 耑锐, 吴静怡, 杨光. 负过载下多孔隔板对液氧贮箱蓄液性能的影响研究[J]. 化工学报, 2025, 76(S1): 217-229. |
| [4] | 顾栋, 皮行健, 张叠, 张瑛. 不同粒径CAU-1/PI混合基质膜的构建与H2/CO2分离性能研究[J]. 化工学报, 2025, 76(5): 2410-2418. |
| [5] | 陶春珲, 李印辉, 傅钰, 段然, 赵泽一, 唐羽丰, 张罡, 马和平. 不同吸附剂对低浓度Kr气的选择性吸附与纯化[J]. 化工学报, 2025, 76(5): 2358-2366. |
| [6] | 赵浩帆, 任豪杰, 刘宗凯, 董冠英, 张亚涛. MOFs玻璃膜在气体分离领域的研究进展[J]. 化工学报, 2025, 76(5): 2042-2054. |
| [7] | 茅雨洁, 路晓飞, 锁显, 杨立峰, 崔希利, 邢华斌. 工业气体中微量氧深度脱除催化剂研究进展[J]. 化工学报, 2025, 76(5): 1997-2010. |
| [8] | 朱峰, 赵跃, 马凤翔, 刘伟. 改性UIO-66对SF6/N2混合气体及其分解产物的吸附特性[J]. 化工学报, 2025, 76(4): 1604-1616. |
| [9] | 徐东菱, 马跃, 龚露, 马桂丽, 王金可, 郭丰志, 王浩伦, 李思佳, 李术元, 岳长涛. 油页岩与烟煤混合流化热解实验研究[J]. 化工学报, 2025, 76(4): 1742-1753. |
| [10] | 赵鹏飞, 戚若玫, 郭新锋, 方虎, 徐庐飞, 李潇, 林今. 千标方级碱性水电解制氢系统氧中氢杂质分析[J]. 化工学报, 2025, 76(4): 1765-1778. |
| [11] | 何正磊, 胡丁丁. 基于多智能体强化学习的造纸污水多目标优化[J]. 化工学报, 2025, 76(4): 1617-1634. |
| [12] | 赵俊德, 周爱国, 陈彦霖, 郑家乐, 葛天舒. 吸附法CO2直接空气捕集技术能耗现状[J]. 化工学报, 2025, 76(4): 1375-1390. |
| [13] | 杨猛, 丁晓倩, 余涛, 刘畅, 汤成龙, 黄佐华. 甲烷/氧化亚氮绿色推进剂自着火特性实验及动力学[J]. 化工学报, 2025, 76(3): 1221-1229. |
| [14] | 李中青, 王志远, 栾小建, 梁四凯, 王凯. 电沉积-低氧分压法制备MnO涂层及其抑制石脑油热裂解结焦性能研究[J]. 化工学报, 2025, 76(3): 1050-1063. |
| [15] | 张恒, 魁殿禄, 常虹, 詹志刚. 机械应力对气体扩散层界面传输特性影响[J]. 化工学报, 2025, 76(2): 637-644. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号