• •
收稿日期:2025-04-20
修回日期:2025-05-24
出版日期:2025-06-09
通讯作者:
徐彦芹
作者简介:蔡文静(2001-),女,硕士研究生,384246686@qq.comReceived:2025-04-20
Revised:2025-05-24
Online:2025-06-09
Contact:
Wenjing CAI
摘要:
全固态锂电作为下一代高能量密度、高安全性能储能器件,其核心固态电解质的研究备受关注。硫化物固态电解质凭借超高的离子电导率、优异的机械性能以及较好的界面兼容性,展现出显著的产业化潜力。然而,硫化物电解质仍面临空气稳定性差、界面副反应及锂枝晶生长等挑战。系统综述了硫化物基固态电解质的分类及其结构特性,深入分析了空气稳定性和电化学稳定性失效机制并总结优化策略。最后,针对规模化制备、界面优化及薄层电解质开发等关键问题,提出了未来研究方向,为硫化物电解质的实用化提供理论参考。
中图分类号:
徐彦芹, 蔡文静. 硫化物电解质的界面调控及研究进展[J]. 化工学报, DOI: 10.11949/0438-1157.20250416.
Wenjing CAI, Yanqin XU. Interface Regulation and Research Progress of Sulfide Electrolytes[J]. CIESC Journal, DOI: 10.11949/0438-1157.20250416.
| 体系类别 | 电解质 | 离子电导率/(S·cm-1) | 出处 |
|---|---|---|---|
| Li-P-S | Li7P3S11 | 3.2×10-3 | [ |
| Li7P3S11 | 1.7×10-2 | [ | |
| β-Li3PS4 | 1.6×10–4 | [ | |
| Thio-LISICON | Li4SnS4 | 7.0×10-5 | [ |
| Li3.25Ge0.25P0.75S3.25 | 2.2×10-3 | [ | |
| LGPS | Li10SiP2S12 | 2.3×10-3 | [ |
| Li10SnP2S12 | 4×10-3 | [ | |
| Li10GeP2S12 | 1.2×10-2 | [ | |
| Li9.54Si1.74P1.44S11.7Cl0.3 | 2.5×10-2 | [ | |
| Li9.54(Si0.6Ge0.4)1.74P1.44S11.1Br0.3O0.6 | 3.2×10-2 | [ | |
| 硫银锗矿型 | Li6PS5Cl | 4.9×10-3 | [ |
| Li6PS5Br | 2.6×10-3 | [ | |
| Li6PS5I | 10-7 | [ | |
| Li5.5PS4.5Cl1.5 | 9.4×10-3 | [ | |
| Li6.6Sb0.4Si0.6S5I | 1.48×10-2 | [ |
表1 常见硫化物电解质及其离子电导率
Table 1 Common sulfide electrolytes and their ionic conductivity
| 体系类别 | 电解质 | 离子电导率/(S·cm-1) | 出处 |
|---|---|---|---|
| Li-P-S | Li7P3S11 | 3.2×10-3 | [ |
| Li7P3S11 | 1.7×10-2 | [ | |
| β-Li3PS4 | 1.6×10–4 | [ | |
| Thio-LISICON | Li4SnS4 | 7.0×10-5 | [ |
| Li3.25Ge0.25P0.75S3.25 | 2.2×10-3 | [ | |
| LGPS | Li10SiP2S12 | 2.3×10-3 | [ |
| Li10SnP2S12 | 4×10-3 | [ | |
| Li10GeP2S12 | 1.2×10-2 | [ | |
| Li9.54Si1.74P1.44S11.7Cl0.3 | 2.5×10-2 | [ | |
| Li9.54(Si0.6Ge0.4)1.74P1.44S11.1Br0.3O0.6 | 3.2×10-2 | [ | |
| 硫银锗矿型 | Li6PS5Cl | 4.9×10-3 | [ |
| Li6PS5Br | 2.6×10-3 | [ | |
| Li6PS5I | 10-7 | [ | |
| Li5.5PS4.5Cl1.5 | 9.4×10-3 | [ | |
| Li6.6Sb0.4Si0.6S5I | 1.48×10-2 | [ |
图1 (a) Li10GeP2S12结构及传导途径;(b) Li9.54Si1.74P1.44S11.7Cl0.3结构;注:(c) Li9.54(Si0.6Ge0.4)1.74P1.44S11.1Br0.3O0.6 structure[5, 26, 29](c) Li9.54(Si0.6Ge0.4)1.74P1.44S11.1Br0.3O0.6结构[5, 26, 29]
Fig.1 (a) The structure and conduction pathway of Li10GeP2S12; (b) Li9.54Si1.74P1.44S11.7Cl0.3 structure;
| 1 | Yan C, Xu R, Xiao Y, et al. Toward critical electrode/electrolyte interfaces in rechargeable batteries[J]. Advanced Functional Materials, 2020, 30(23): 1909887.[LinkOut] |
| 2 | Lee S, Kim Y, Park C, et al. Interplay of athode–halide solid electrolyte in enhancing thermal stability of charged cathode material in all-solid-state batteries [J]. ACS Energy Letters, 2024, 9(4): 1369-1380.[LinkOut] |
| 3 | Manthiram A, Yu X W, Wang S F. Lithium battery chemistries enabled by solid-state electrolytes[J]. Nature Reviews Materials, 2017, 2(4): 16103.[LinkOut] |
| 4 | Wang Z Y, Xia J L, Ji X, et al. Lithium anode interlayer design for all-solid-state lithium-metal batteries[J]. Nature Energy, 2024, 9: 251-262.[LinkOut] |
| 5 | Li Y X, Song S B, Kim H, et al. A lithium superionic conductor for millimeter-thick battery electrode[J]. Science, 2023, 381(6653): 50-53.[PubMed] |
| 6 | Bates A M, Preger Y, Torres-Castro L, et al. Are solid-state batteries safer than lithium-ion batteries?[J]. Joule, 2022, 6(4): 742-755.[LinkOut] |
| 7 | Ma Y, Zhang R Z, Ma Y J, et al. Interface and electrode microstructure engineering for optimizing performance of the LiNiO2 cathode in all-solid-state batteries [J]. Chemistry of Materials, 2024, 36(5): 2588-2598.[LinkOut] |
| 8 | Zhang X Y, Yang J F, Deng E L, et al. Argyrodite based all-solid-state-batteries: recent advances and perspective[J]. Energy Storage Materials, 2025, 79: 104339. [LinkOut] |
| 9 | Famprikis T, Canepa P, Dawson J A, et al. Fundamentals of inorganic solid-state electrolytes for batteries[J]. Nature Materials, 2019, 18: 1278-1291.[LinkOut] |
| 10 | Shah N J, Fang C, Osti N C, et al. Nanosecond solvation dynamics in a polymer electrolyte for lithium batteries[J]. Nature Materials, 2024, 23(5): 664-669.[PubMed] |
| 11 | Zhou S J, Liu K X, Wang Z Y, et al. An ultra-thin asymmetric solid polymer electrolyte for in situ integrated lithium-metal battery[J]. Chemical Engineering Journal, 2025, 504: 158548.[LinkOut] |
| 12 | Kim K J, Balaish M, Wadaguchi M, et al. Solid-state Li–metal batteries: challenges and horizons of oxide and sulfide solid electrolytes and their interfaces[J]. Advanced Energy Materials, 2021, 11(1): 2002689.[LinkOut] |
| 13 | Li J W, Li Y Y, Wang Y X, et al. Preparation, design and interfacial modification of sulfide solid electrolytes for all-solid-state lithium metal batteries[J]. Energy Storage Materials, 2025, 74: 103962.[LinkOut] |
| 14 | Yao M X, Shi J T, Luo A H, et al. Advances in sulfide solid–state electrolytes for lithium batteries[J]. Energy Storage Materials, 2025, 75: 104018.[LinkOut] |
| 15 | Zhang Y J, Sun J C, Li L S, et al. Advancements in the emerging rare-earth halide solid electrolytes for next-generation all-solid-state lithium batteries[J]. Coordination Chemistry Reviews, 2025, 528: 216432.[LinkOut] |
| 16 | Chen S J, Xie D J, Liu G Z, et al. Sulfide solid electrolytes for all-solid-state lithium batteries: Structure, conductivity, stability and application[J]. Energy Storage Materials, 2018, 14: 58-74.[LinkOut] |
| 17 | Wu J H, Shen L, Zhang Z H, et al. All-solid-state lithium batteries with sulfide electrolytes and oxide cathodes[J]. Electrochemical Energy Reviews, 2021, 4(1): 101-135.[LinkOut] |
| 18 | Wang C H, Adair K, Sun X L. All-solid-state lithium metal batteries with sulfide electrolytes: understanding interfacial ion and electron transport[J]. Accounts of Materials Research, 2022, 3(1): 21-32.[LinkOut] |
| 19 | Yu T, Liu Y K, Li H Y, et al. Ductile inorganic solid electrolytes for all-solid-state lithium batteries[J]. Chemical Reviews, 2025, 125(6): 3595-3662.[PubMed] |
| 20 | Zhang Q, Cao D X, Ma Y, et al. Sulfide-based solid-state electrolytes: synthesis, stability, and potential for all-solid-state batteries[J]. Advanced Materials, 2019, 31(44): 1901131.[LinkOut] |
| 21 | Ribes M, Barrau B, Souquet J L. Sulfide glasses: Glass forming region, structure and ionic conduction of glasses in Na2S–XS2 (X–Si; Ge), Na2S–P2S5 and Li2S–GeS2 systems[J]. Journal of Non-Crystalline Solids, 1980, 38: 271-276.[LinkOut] |
| 22 | Yamane H, Shibata M, Shimane Y, et al. Crystal structure of a superionic conductor, Li7P3S11 [J]. Solid State Ionics, 2007, 178(15/16/17/18): 1163-1167.[LinkOut] |
| 23 | Seino Y, Ota T, Takada K, et al. A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries[J]. Energy & Environmental Science, 2014, 7(2): 627-631.[LinkOut] |
| 24 | Liu Z C, Fu W J, Andrew Payzant E, et al. Anomalous high ionic conductivity of nanoporous β-Li3PS4 [J]. Journal of the American Chemical Society, 2013, 135(3): 975-978.[PubMed] |
| 25 | Kaib T, Haddadpour S, Kapitein M, et al. New lithium chalcogenidotetrelates, LiChT: synthesis and characterization of the Li+-conducting tetralithium ortho-Sulfidostannate Li4SnS4 [J]. Chemistry of Materials, 2012, 24(11): 2211-2219.[LinkOut] |
| 26 | Kamaya N, Homma K, Yamakawa Y, et al. A lithium superionic conductor[J]. Nature Materials, 2011, 10: 682-686.[LinkOut] |
| 27 | Whiteley J M, Woo J H, Hu E Y, et al. Empowering the lithium metal battery through a silicon-based superionic conductor[J]. Journal of the Electrochemical Society, 2014, 161(12): A1812-A1817.[LinkOut] |
| 28 | Bron P, Johansson S, Zick K, et al. Li10SnP2S12: an affordable lithium superionic conductor[J]. Journal of the American Chemical Society, 2013, 135(42): 15694-15697.[PubMed] |
| 29 | Kato Y, Hori S, Saito T, et al. High-power all-solid-state batteries using sulfide superionic conductors[J]. Nature Energy, 2016, 1(4): 16030.[LinkOut] |
| 30 | Yu C, Ganapathy S, Hageman J, et al. Facile synthesis toward the optimal structure-conductivity characteristics of the argyrodite Li6PS5Cl solid-state electrolyte[J]. ACS Applied Materials & Interfaces, 2018, 10(39): 33296-33306.[PubMed] |
| 31 | Yu C, Hageman J, Ganapathy S, et al. Tailoring Li6PS5Br ionic conductivity and understanding of its role in cathode mixtures for high performance all-solid-state Li–S batteries[J]. Journal of Materials Chemistry A, 2019, 7(17): 10412-10421.[LinkOut] |
| 32 | Zhang J, Li L J, Zheng C, et al. Silicon-doped argyrodite solid electrolyte Li6PS5I with improved ionic conductivity and interfacial compatibility for high-performance all-solid-state lithium batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(37): 41538-41545.[PubMed] |
| 33 | Adeli P, Bazak J D, Park K H, et al. Boosting solid-state diffusivity and conductivity in lithium superionic argyrodites by halide substitution[J]. Angewandte Chemie International Edition, 2019, 58(26): 8681-8686.[LinkOut] |
| 34 | Zhou L D, Assoud A, Zhang Q, et al. New family of argyrodite thioantimonate lithium superionic conductors[J]. Journal of the American Chemical Society, 2019, 141(48): 19002-19013.[PubMed] |
| 35 | Dietrich C, Weber D A, Culver S, et al. Synthesis, structural characterization, and lithium ion conductivity of the lithium thiophosphate Li2P2S6 [J]. Inorganic Chemistry, 2017, 56(11): 6681-6687.[PubMed] |
| 36 | Hayashi A, Hama S, Mizuno F, et al. Characterization of Li2S–P2S5 glass-ceramics as a solid electrolyte for lithium secondary batteries[J]. Solid State Ionics, 2004, 175(1/2/3/4): 683-686.[LinkOut] |
| 37 | Murayama M, Kanno R, Kawamoto Y, et al. Structure of the thio-LISICON, Li4GeS4 [J]. Solid State Ionics, 2002, 154: 789-794.[LinkOut] |
| 38 | Zhou P F, Wang J B, Cheng F Y, et al. A solid lithium superionic conductor Li11AlP2S12 with a thio-LISICON analogous structure[J]. Chemical Communications, 2016, 52(36): 6091-6094.[PubMed] |
| 39 | Sahu G, Lin Z, Li J C, et al. Air-stable, high-conduction solid electrolytes of arsenic-substituted Li4SnS4 [J]. Energy & Environmental Science, 2014, 7(3): 1053-1058.[LinkOut] |
| 40 | Zhang P, Li L, Du P, et al. Li8.2SiP1.4S9.6: A novel sulfide solid electrolyte for lithium-ion battery[J]. Journal of Energy Storage, 2025, 123: 116789.[LinkOut] |
| 41 | Dr H D P, Sc S K M, Dr H E P, et al. Li6PS5X: a class of crystalline Li-rich solids with an unusually high Li+ mobility[J]. Angewandte Chemie International Edition, 2008, 47(4): 755-758.[LinkOut] |
| 42 | Kong S, Gün Ö, Koch B, et al. Structural characterisation of the Li argyrodites Li7PS6 and Li7PSe6 and their solid solutions: quantification of site preferences by MAS-NMR spectroscopy[J]. Chemistry – A European Journal, 2010, 16(17): 5138-5147.[LinkOut] |
| 43 | Hanghofer I, Brinek M, Eisbacher S L, et al. Substitutional disorder: structure and ion dynamics of the argyrodites Li6PS5Cl, Li6PS5Br and Li6PS5I[J]. Physical Chemistry Chemical Physics, 2019, 21(16): 8489-8507.[PubMed] |
| 44 | Adeli P, Bazak J D, Huq A, et al. Influence of aliovalent cation substitution and mechanical compression on Li-ion conductivity and diffusivity in argyrodite solid electrolytes[J]. Chemistry of Materials, 2021, 33(1): 146-157.[LinkOut] |
| 45 | Zhang Z R, Zhang J X, Jia H H, et al. Enhancing ionic conductivity of solid electrolyte by lithium substitution in halogenated Li-Argyrodite[J]. Journal of Power Sources, 2020, 450: 227601.[LinkOut] |
| 46 | Bai X T, Duan Y, Zhuang W D, et al. Research progress in Li-argyrodite-based solid-state electrolytes[J]. Journal of Materials Chemistry A, 2020, 8(48): 25663-25686.[LinkOut] |
| 47 | Pearson R G. Hard and soft acids and bases[J]. Journal of the American Chemical Society, 1963, 85(22): 3533-3539.[LinkOut] |
| 48 | Lu P S, Wu D X, Chen L Q, et al. Air stability of solid-state sulfide batteries and electrolytes[J]. Electrochemical Energy Reviews, 2022, 5(3): 3.[LinkOut] |
| 49 | Xu H J, Cao G Q, Shen Y L, et al. Enabling argyrodite sulfides as superb solid-state electrolyte with remarkable interfacial stability against electrodes[J]. Energy & Environmental Materials, 2022, 5(3): 852-864.[LinkOut] |
| 50 | Liu H, Zhu Q S, Liang Y H, et al. Versatility of Sb-doping enabling argyrodite electrolyte with superior moisture stability and Li metal compatibility towards practical all-solid-state Li metal batteries[J]. Chemical Engineering Journal, 2023, 462: 142183.[LinkOut] |
| 51 | Li G Y, Wu S P, Zheng H P, et al. Sn-O dual-substituted chlorine-rich argyrodite electrolyte with enhanced moisture and electrochemical stability[J]. Advanced Functional Materials, 2023, 33(11): 2211805.[LinkOut] |
| 52 | Zhang C J. Tuning the composition[J]. Nature Energy, 2023, 8(8): 772.[LinkOut] |
| 53 | Tan D H S, Banerjee A, Chen Z, et al. Author Correction: From nanoscale interface characterization to sustainable energy storage using all-solid-state batteries[J]. Nature Nanotechnology, 2021, 16: 479.[LinkOut] |
| 54 | Liang Y H, Liu H, Wang G X, et al. Challenges, interface engineering, and processing strategies toward practical sulfide-based all-solid-state lithium batteries[J]. InfoMat, 2022, 4(5): e12292.[LinkOut] |
| 55 | Wagner C. The electrical conductivity of semi-conductors involving inclusions of another phase[J]. Journal of Physics and Chemistry of Solids, 1972, 33(5): 1051-1059.[LinkOut] |
| 56 | Maier J. Ionic conduction in space charge regions[J]. Progress in Solid State Chemistry, 1995, 23(3): 171-263.[LinkOut] |
| 57 | Liang C C. Conduction characteristics of the lithium iodide-aluminum oxide solid electrolytes[J]. Journal of the Electrochemical Society, 1973, 120(10): 1289.[LinkOut] |
| 58 | Haruyama J, Sodeyama K, Han L Y, et al. Space–charge layer effect at interface between oxide cathode and sulfide electrolyte in all-solid-state lithium-ion battery[J]. Chemistry of Materials, 2014, 26(14): 4248-4255.[LinkOut] |
| 59 | Xiao Y H, Miara L J, Wang Y, et al. Computational screening of cathode coatings for solid-state batteries[J]. Joule, 2019, 3(5): 1252-1275.[LinkOut] |
| 60 | Strauss F, Teo J H, Maibach J, et al. Li2ZrO3-coated NCM622 for application in inorganic solid-state batteries: role of surface carbonates in the cycling performance[J]. ACS Applied Materials & Interfaces, 2020, 12(51): 57146-57154.[PubMed] |
| 61 | Luo Q Y, Yu C, Wei C C, et al. Enabling superior electrochemical performances of Li10SnP2S12-based all-solid-state batteries using lithium halide electrolytes[J]. Ceramics International, 2023, 49(7): 11485-11493.[LinkOut] |
| 62 | Sakuda A, Hayashi A, Tatsumisago M. Interfacial observation between LiCoO2 electrode and Li2S–P2S5 solid electrolytes of all-solid-state lithium secondary batteries using transmission electron microscopy[J]. Chemistry of Materials, 2010, 22(3): 949-956.[LinkOut] |
| 63 | Kim K H, Iriyama Y, Yamamoto K, et al. Characterization of the interface between LiCoO2 and Li7La3Zr2O12 in an all-solid-state rechargeable lithium battery[J]. Journal of Power Sources, 2011, 196(2): 764-767.[LinkOut] |
| 64 | Zhu Y Z, He X F, Mo Y F. Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations[J]. ACS Applied Materials & Interfaces, 2015, 7(42): 23685-23693.[PubMed] |
| 65 | Han F D, Zhu Y Z, He X F, et al. Electrochemical stability of Li10GeP2S12 and Li7La3Zr2O12 solid electrolytes[J]. Advanced Energy Materials, 2016, 6(8): 1501590.[LinkOut] |
| 66 | Dong Z L, Gan Y, Martins V, et al. Novel sulfide-chloride solid-state electrolytes with tunable anion ratio for highly stable solid-state sodium-ion batteries[J]. Advanced Materials, 2025, n/a(n/a): 2503107.[PubMed] |
| 67 | Auvergniot J, Cassel A, Ledeuil J B, et al. Interface stability of argyrodite Li6PS5Cl toward LiCoO2, LiNi1/3Co1/3Mn1/3O2, and LiMn2O4 in bulk all-solid-state batteries[J]. Chemistry of Materials, 2017, 29(9): 3883-3890.[LinkOut] |
| 68 | Li Y X, Daikuhara S, Hori S, et al. Oxygen substitution for Li–Si–P–S–Cl solid electrolytes toward purified Li10GeP2S12-type phase with enhanced electrochemical stabilities for all-solid-state batteries[J]. Chemistry of Materials, 2020, 32(20): 8860-8867.[LinkOut] |
| 69 | Oh P P, Yun D J, Choi D J H, et al. Development of high-energy anodes for all-solid-state lithium batteries based on sulfide electrolytes[J]. Angewandte Chemie International Edition, 2022, 61(25): e202201249.[LinkOut] |
| 70 | Jing S H, Wang K, Li S J, et al. An all-in-one approach for sulfide solid electrolyte with bidirectional stabilization shells enabling 4.6 V all-solid-state lithium batteries[J]. Energy Storage Materials, 2025, 76: 104131.[LinkOut] |
| 71 | Hu X, Zhang Z J, Zhang X, et al. External-pressure–electrochemistry coupling in solid-state lithium metal batteries[J]. Nature Reviews Materials, 2024, 9(5): 305-320.[LinkOut] |
| 72 | Lu Y, Zhao C Z, Yuan H, et al. Critical current density in solid-state lithium metal batteries: mechanism, influences, and strategies[J]. Advanced Functional Materials, 2021, 31(18): 2009925.[LinkOut] |
| 73 | Liu J, Yuan H, Liu H, et al. Unlocking the failure mechanism of solid state lithium metal batteries[J]. Advanced Energy Materials, 2022, 12(4): 2100748.[LinkOut] |
| 74 | Porz L, Swamy T, Sheldon B W, et al. Mechanism of lithium metal penetration through inorganic solid electrolytes[J]. Advanced Energy Materials, 2017, 7(20): 1701003.[LinkOut] |
| 75 | Kasemchainan J, Zekoll S, Spencer Jolly D, et al. Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells[J]. Nature Materials, 2019, 18(10): 1105-1111.[PubMed] |
| 76 | Yang D X, Gao D X, Jiang D M, et al. Grain boundary electronic insulation for high-performance all-solid-state lithium batteries[J]. Angewandte Chemie International Edition, 2023, 62(5): e202215680.[LinkOut] |
| 77 | Pang M C, Yang K, Brugge R, et al. Interactions are important: Linking multi-physics mechanisms to the performance and degradation of solid-state batteries[J]. Materials Today, 2021, 49: 145-183.[LinkOut] |
| 78 | Mangani L R, Villevieille C. Mechanical vs. chemical stability of sulphide-based solid-state batteries. Which one is the biggest challenge to tackle? Overview of solid-state batteries and hybrid solid state batteries[J]. Journal of Materials Chemistry A, 2020, 8(20): 10150-10167.[LinkOut] |
| 79 | Kato A, Yamamoto M, Sakuda A, et al. Mechanical properties of Li2S–P2S5 glasses with lithium halides and application in all-solid-state batteries[J]. ACS Applied Energy Materials, 2018, 1(3): 1002-1007.[LinkOut] |
| 80 | Masias A, Felten N, Garcia-Mendez R, et al. Elastic, plastic, and creep mechanical properties of lithium metal[J]. Journal of Materials Science, 2019, 54(3): 2585-2600.[LinkOut] |
| 81 | Yu S, Siegel D J. Grain boundary softening: a potential mechanism for lithium metal penetration through stiff solid electrolytes[J]. ACS Applied Materials & Interfaces, 2018, 10(44): 38151-38158.[PubMed] |
| 82 | Doux J M, Nguyen H, Tan D H S, et al. Stack pressure considerations for room-temperature all-solid-state lithium metal batteries[J]. Advanced Energy Materials, 2020, 10(1): 1903253.[LinkOut] |
| 83 | Wenzel S, Randau S, Leichtweiß T, et al. Direct observation of the interfacial instability of the fast ionic conductor Li10GeP2S12 at the lithium metal anode[J]. Chemistry of Materials, 2016, 28(7): 2400-2407.[LinkOut] |
| 84 | Krauskopf T, Richter F H, Zeier W G, et al. Physicochemical concepts of the lithium metal anode in solid-state batteries[J]. Chemical Reviews, 2020, 120(15): 7745-7794.[PubMed] |
| 85 | Fan X L, Ji X, Han F D, et al. Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery[J]. Science Advances, 2018, 4(12): eaau9245.[PubMed] |
| [1] | 盛全康, 陈奥, 陈龙, 张禹, 陈韶云, 胡成龙. 铅笔芯上原位生长有序聚苯胺阵列及其电化学储能[J]. 化工学报, 2025, 76(4): 1875-1884. |
| [2] | 徐桂培, 孙倩, 赖洁文, 卢毅锋, 邸会芳, 黄辉, 王振兵. 电化学双电层电容器失效机理的研究进展[J]. 化工学报, 2025, 76(3): 951-962. |
| [3] | 钟晓航, 许卫, 张文, 许莉, 王宇新. 碱性水电解制氢中铁杂质的影响研究进展[J]. 化工学报, 2025, 76(2): 519-531. |
| [4] | 王天闻, 闫肃, 赵梦园, 杨天让, 刘建国. 固体氧化物电池空气电极铬中毒机理及抗铬性能研究进展[J]. 化工学报, 2024, 75(6): 2091-2108. |
| [5] | 孙铭泽, 黄鹤来, 牛志强. 铂基氧还原催化剂:从单晶电极到拓展表面纳米材料[J]. 化工学报, 2024, 75(4): 1256-1269. |
| [6] | 谭耀文, 姜攀星, 杜青, 余婉秋, 温小飞, 詹志刚. 工作电压对PEMFC膜电极衰退影响模拟研究[J]. 化工学报, 2024, 75(3): 974-986. |
| [7] | 郭邦军, 贾理男, 张希. 全固态硫化物锂电池中NCM正极及其界面研究[J]. 化工学报, 2024, 75(3): 743-759. |
| [8] | 闻文, 王慧艳, 周静红, 曹约强, 周兴贵. 石墨负极颗粒对锂离子电池容量衰减及SEI膜生长影响的模拟研究[J]. 化工学报, 2024, 75(1): 366-376. |
| [9] | 何汉兵, 刘真, 陈勇, 王小锋, 曾婧. 直写成型电极锰氧化物粉末的合成与浆料调控[J]. 化工学报, 2023, 74(5): 2239-2247. |
| [10] | 徐东, 田杜, 陈龙, 张禹, 尤庆亮, 胡成龙, 陈韶云, 陈建. 聚苯胺/二氧化锰/聚吡咯复合纳米球的制备及其电化学储能性[J]. 化工学报, 2023, 74(3): 1379-1389. |
| [11] | 张俊杰, 孙旺, 高啸天, 乔金硕, 王振华, 孙克宁. 固体氧化物电解池制氢关键技术及产业化进展[J]. 化工学报, 2023, 74(12): 4749-4763. |
| [12] | 李文涛, 林慧娟, 钟海. 原位构建富氟SEI的凝胶电解质用于金属锂二次电池[J]. 化工学报, 2022, 73(7): 3240-3250. |
| [13] | 苏晨昱, 杨颖, 宋兴福. 岩盐矿提钾老卤中溴离子选择性电氧化过程研究[J]. 化工学报, 2022, 73(7): 3007-3017. |
| [14] | 张文静, 李静, 魏子栋. 介尺度视角下的电催化:从界面、隔膜到多孔电极[J]. 化工学报, 2022, 73(6): 2289-2305. |
| [15] | 黄盼, 练成, 刘洪来. 基于模拟退火算法的真实多孔电极中热-质传递的研究[J]. 化工学报, 2022, 73(6): 2529-2542. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号
