化工学报 ›› 2024, Vol. 75 ›› Issue (6): 2091-2108.DOI: 10.11949/0438-1157.20240130
• 综述与专论 • 下一篇
收稿日期:
2024-01-29
修回日期:
2024-03-18
出版日期:
2024-06-25
发布日期:
2024-07-03
通讯作者:
杨天让,刘建国
作者简介:
王天闻(2000—),男,硕士研究生,Tianwenwang2000.outlook.com
基金资助:
Tianwen WANG, Su YAN, Mengyuan ZHAO, Tianrang YANG(), Jianguo LIU(
)
Received:
2024-01-29
Revised:
2024-03-18
Online:
2024-06-25
Published:
2024-07-03
Contact:
Tianrang YANG, Jianguo LIU
摘要:
固体氧化物电池(SOC)具有能源利用率高、污染排放量低、燃料灵活性高等优势,将在未来的能源供应和储存中发挥关键作用。当前,其长期稳定性尚不能满足大规模商业化的需求,电池堆中用于串联电池的金属连接体所导致的空气电极“铬中毒”是电堆性能衰减的重要因素之一。传统空气电极在发电模式(SOFC)下的铬中毒机理已较为明晰。然而,随着电解模式(SOEC)下应用的不断攀升,基于传统电极材料的毒化机理不适用于该运行模式下的电极体系。对典型空气电极材料在SOFC模式和SOEC模式下铬中毒机理进行对比分析,并且对提高SOC空气电极抗铬性能的研究进行总结和展望。
中图分类号:
王天闻, 闫肃, 赵梦园, 杨天让, 刘建国. 固体氧化物电池空气电极铬中毒机理及抗铬性能研究进展[J]. 化工学报, 2024, 75(6): 2091-2108.
Tianwen WANG, Su YAN, Mengyuan ZHAO, Tianrang YANG, Jianguo LIU. Mechanisms of chromium poisoning in solid oxide cell air electrodes and research advances in enhancing chromium-resistivity[J]. CIESC Journal, 2024, 75(6): 2091-2108.
T/℃ | Cathode polarization current density/ (mA/cm2) | Experimental conditions for accelerated chromium poisoning | Change in RΩ/Ω | Change in RP/Ω | Change in η/mV | Change in E/mV | Ref. |
---|---|---|---|---|---|---|---|
750 | 400 | SUS430,20 h | 1.10 | 34.80 | 0.75 | 1.20 | [ |
750 | 200 | SUS430,20 h | 1.12 | 32.25 | 0.22 | 0.30 | [ |
750 | 800 | SUS430,20 h | 2.00 | 33.00 | 0.12 | 1.20 | [ |
800 | 200 | FCM,20 h | 1.80 | 1.02 | 0.40 | 0.97 | [ |
800 | 200 | FCMM,20 h | -0.05 | -1.57 | -0.18 | 0.14 | [ |
900 | 200 | RA446,20 h | 0.21 | 0.79 | 0.12 | 0.73 | [ |
表1 LSM阴极不同条件下加速铬中毒实验后的性能变化
Table 1 Performance changes of LSM cathode after accelerated chromium poisoning test under different conditions
T/℃ | Cathode polarization current density/ (mA/cm2) | Experimental conditions for accelerated chromium poisoning | Change in RΩ/Ω | Change in RP/Ω | Change in η/mV | Change in E/mV | Ref. |
---|---|---|---|---|---|---|---|
750 | 400 | SUS430,20 h | 1.10 | 34.80 | 0.75 | 1.20 | [ |
750 | 200 | SUS430,20 h | 1.12 | 32.25 | 0.22 | 0.30 | [ |
750 | 800 | SUS430,20 h | 2.00 | 33.00 | 0.12 | 1.20 | [ |
800 | 200 | FCM,20 h | 1.80 | 1.02 | 0.40 | 0.97 | [ |
800 | 200 | FCMM,20 h | -0.05 | -1.57 | -0.18 | 0.14 | [ |
900 | 200 | RA446,20 h | 0.21 | 0.79 | 0.12 | 0.73 | [ |
Temperature/℃ | Whether polarization occurs | Materials | Experimental conditions for accelerated chromium poisoning | Change in RΩ/Ω | Change in RP/Ω | Ref. |
---|---|---|---|---|---|---|
700 | OCV | LSCF | SUS430,40 h | — | 0.36 | [ |
700 | OCV | LSCF-Ag | SUS430,40 h | — | 0.02 | [ |
700 | OCV | LSCF | Crofer22H,200 h | 0.60 | 0.48 | [ |
700 | OCV | LSCF-GDC0.24 | Crofer22H,200 h | 0.20 | 0.28 | [ |
700 | OCV | LSCF-GDC0.32 | Crofer22H,200 h | 0.08 | 0.12 | [ |
700 | 100 | LSCF | Crofer22H,200 h | 0.76 | 0.77 | [ |
700 | 100 | LSCF-GDC0.24 | Crofer22H,200 h | 0.24 | 0.34 | [ |
700 | 100 | LSCF-GDC0.32 | Crofer22H,200 h | 0.11 | 0.20 | [ |
800 | OCV | LSCF | RA446,20 h | 0.76 | 1.22 | [ |
800 | 200 | LSCF | RA446,20 h | 0.74 | 1.49 | [ |
900 | OCV | LSCF | RA446,20 h | 0.76 | 0.18 | [ |
900 | 200 | LSCF | RA446,20 h | 0.69 | 0.18 | [ |
表2 LSCF阴极不同条件下加速铬中毒实验后的电阻变化
Table 2 Resistance changes of LSCF cathode after accelerated chromium poisoning test under different conditions
Temperature/℃ | Whether polarization occurs | Materials | Experimental conditions for accelerated chromium poisoning | Change in RΩ/Ω | Change in RP/Ω | Ref. |
---|---|---|---|---|---|---|
700 | OCV | LSCF | SUS430,40 h | — | 0.36 | [ |
700 | OCV | LSCF-Ag | SUS430,40 h | — | 0.02 | [ |
700 | OCV | LSCF | Crofer22H,200 h | 0.60 | 0.48 | [ |
700 | OCV | LSCF-GDC0.24 | Crofer22H,200 h | 0.20 | 0.28 | [ |
700 | OCV | LSCF-GDC0.32 | Crofer22H,200 h | 0.08 | 0.12 | [ |
700 | 100 | LSCF | Crofer22H,200 h | 0.76 | 0.77 | [ |
700 | 100 | LSCF-GDC0.24 | Crofer22H,200 h | 0.24 | 0.34 | [ |
700 | 100 | LSCF-GDC0.32 | Crofer22H,200 h | 0.11 | 0.20 | [ |
800 | OCV | LSCF | RA446,20 h | 0.76 | 1.22 | [ |
800 | 200 | LSCF | RA446,20 h | 0.74 | 1.49 | [ |
900 | OCV | LSCF | RA446,20 h | 0.76 | 0.18 | [ |
900 | 200 | LSCF | RA446,20 h | 0.69 | 0.18 | [ |
1 | 张俊杰, 孙旺, 高啸天, 等. 固体氧化物电解池制氢关键技术及产业化进展[J]. 化工学报, 2023, 74 (12): 4749-4763. |
Zhang J J, Sun W, Gao X T, et al. Key technology and industrialization progress of hydrogen production by solid oxide electrolytic cell[J]. CIESC Journal, 2023, 74 (12): 4749-4763. | |
2 | Zhang Y, Wang B Y, Zhao L X, et al. Research progress on protective coatings of medium and low temperature solid oxide fuel cell alloy connectors[J]. Material Guide, 2014, 28(21): 15-19. |
3 | Golkhatmi S Z, Asghar M I, Lund P D. A review on solid oxide fuel cell durability: latest progress, mechanisms, and study tools[J]. Renewable and Sustainable Energy Reviews, 2022, 161: 112339. |
4 | Jun A, Kim J, Shin J, et al. Achieving high efficiency and eliminating degradation in solid oxide electrochemical cells using high oxygen-capacity perovskite[J]. Angewandte Chemie International Edition, 2016, 55(40): 12512-12515. |
5 | 郭祥, 乔金硕, 王振华, 等. 碳燃料固体氧化物燃料电池结构研究进展[J]. 化工学报, 2023, 74(1): 290-302. |
Guo X, Qiao J S, Wang Z H, et al. Progress of structure for carbon-fueled solid oxide fuel cells[J]. CIESC Journal, 2023, 74(1): 290-302. | |
6 | Mahato N, Banerjee A, Gupta A, et al. Progress in material selection for solid oxide fuel cell technology: a review[J]. Progress in Materials Science, 2015, 72: 141-337. |
7 | Kaur P, Singh K. Review of perovskite-structure related cathode materials for solid oxide fuel cells[J]. Ceramics International, 2020, 46(5): 5521-5535. |
8 | Lin Z, Ma B, Chen Z H, et al. Exploring B-site high-entropy configuration of spinel oxides for improved cathode performance in solid oxide fuel cells[J]. Journal of the European Ceramic Society, 2024, 44(4): 2233-2241. |
9 | Long Q N, Sha R, Wang R H, et al. Research progress of composite cathode materials for solid oxide fuel cells[J]. Progress in Natural Science: Materials International, 2023, 33(3): 267-278. |
10 | Matsuzaki Y, Yasuda I. Dependence of SOFC cathode degradation by chromium-containing alloy on compositions of electrodes and electrolytes[J]. Journal of the Electrochemical Society, 2001, 148(2): A126. |
11 | Mehdi A M, Hussian A, Song R H, et al. Improving the durability of cobaltite cathode of solid oxide fuel cells—a review[J]. RSC Advances, 2023, 13(36): 25029-25053. |
12 | Yatoo M A, Du Z, Zhao H, et al. La2Pr2Ni3O10± δ Ruddlesden-Popper phase as potential intermediate temperature-solid oxide fuel cell cathodes[J]. Solid State Ionics, 2018, 320: 148-151. |
13 | Yuan M K, Gao Y, Liu L M, et al. High entropy double perovskite cathodes with enhanced activity and operational stability for solid oxide fuel cells[J]. Journal of the European Ceramic Society, 2024, 44(5): 3267-3276. |
14 | Hilpert K, Das D, Miller M, et al. Chromium vapor species over solid oxide fuel cell interconnect materials and their potential for degradation processes[J]. Journal of the Electrochemical Society, 1996, 143(11): 3642. |
15 | Gindorf C, Singheiser L, Hilpert K. Vaporisation of chromia in humid air[J]. Journal of Physics and Chemistry of Solids, 2005, 66(2/3/4): 384-387. |
16 | Ebbinghaus B B. Thermodynamics of gas phase chromium species: the chromium oxides, the chromium oxyhydroxides, and volatility calculations in waste incineration processes[J]. Combustion and Flame, 1993, 93(1/2): 119-137. |
17 | Chen X, Zhen Y, Li J. Chromium deposition and poisoning in dry and humidified air at (La0.8Sr0.2)0.9MnO3+ δ cathodes of solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2010, 35(6): 2477-2485. |
18 | Key C, Eziashi J, Froitzheim J, et al. Methods to quantify reactive chromium vaporization from solid oxide fuel cell interconnects[J]. Journal of the Electrochemical Society, 2014, 161(9): C373. |
19 | Tucker M C, Kurokawa H, Jacobson C P, et al. A fundamental study of chromium deposition on solid oxide fuel cell cathode materials[J]. Journal of Power Sources, 2006, 160(1): 130-138. |
20 | Kornely M, Neumann A, Menzler N, et al. Degradation of solid oxide fuel cell performance by Cr-poisoning[J]. ECS Transactions, 2011, 35(1): 2009. |
21 | Gomez-Vidal J, Fernandez A, Tirawat R, et al. Corrosion resistance of alumina-forming alloys against molten chlorides for energy production(Ⅰ): Pre-oxidation treatment and isothermal corrosion tests[J]. Solar Energy Materials and Solar Cells, 2017, 166: 222-233. |
22 | Badwal S, Deller R, Foger K, et al. Interaction between chromia forming alloy interconnects and air electrode of solid oxide fuel cells[J]. Solid State Ionics, 1997, 99(3/4): 297-310. |
23 | Konysheva E, Penkalla H, Wessel E, et al. Chromium poisoning of perovskite cathodes by the ODS alloy Cr5Fe1Y2O3 and the high chromium ferritic steel Crofer22APU[J]. Journal of the Electrochemical Society, 2006, 153(4): A765. |
24 | Zhen Y, Zhang S, Tok A I, et al. An electrochemical method to assess the chromium volatility of chromia-forming metallic interconnect for SOFCs[J]. Journal of the Electrochemical Society, 2006, 153(11): A2120. |
25 | Jiang S P, Zhang S, Zhen Y. Early interaction between Fe-Cr alloy metallic interconnect and Sr-doped LaMnO3 cathodes of solid oxide fuel cells[J]. Journal of Materials Research, 2005, 20(3): 747-758. |
26 | Taniguchi S, Kadowaki M, Kawamura H, et al. Degradation phenomena in the cathode of a solid oxide fuel cell with an alloy separator[J]. Journal of Power Sources, 1995, 55(1): 73-79. |
27 | Krumpelt M, Cruse T A, Ingram B J, et al. The effect of chromium oxyhydroxide on solid oxide fuel cells[J]. Journal of the Electrochemical Society, 2009, 157(2): B228. |
28 | Miyoshi K, Iwai H, Kishimoto M, et al. Chromium poisoning in (La, Sr) MnO3 cathode: three-dimensional simulation of a solid oxide fuel cell[J]. Journal of Power Sources, 2016, 326: 331-340. |
29 | Brady M P, Banta K, Mizia J, et al. Alloy corrosion considerations in low-cost, clean biomass cookstoves for the developing world[J]. Energy for Sustainable Development, 2017, 37: 20-32. |
30 | Jin T, Lu K. Chromium deposition and interfacial interactions of an electrolyte-air electrode-interconnect tri-layer for solid oxide fuel cells[J]. Journal of Power Sources, 2012, 202: 143-148. |
31 | Jiang S, Zhang J, Foger K. Deposition of chromium species at Sr-doped LaMnO3 electrodes in solid oxide fuel cells(Ⅲ): Effect of air flow[J]. Journal of the Electrochemical Society, 2001, 148(7): C447. |
32 | Jiang S, Zhang J, Apateanu L, et al. Deposition of chromium species at Sr-doped LaMnO3 electrodes in solid oxide fuel cells(Ⅰ): Mechanism and kinetics[J]. Journal of the Electrochemical Society, 2000, 147(11): 4013. |
33 | Li J, Yan D, Zhang W, et al. The investigation of Cr deposition and poisoning effect on Sr-doped lanthanum manganite cathode induced by cathodic polarization for intermediate temperature solid oxide fuel cell[J]. Electrochimica Acta, 2017, 255: 31-40. |
34 | Xiong C, Li W, Duan N, et al. The effect of molybdenum on chromium deposition at (La0.8Sr0.2)0.95MnO3- δ cathode of solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2016, 41(22): 9529-9537. |
35 | Chen X, Zhang L, Liu E, et al. A fundamental study of chromium deposition and poisoning at (La0.8Sr0.2)0.95(Mn1- x Co x )O3± δ (0.0≤x≤1.0) cathodes of solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2011, 36(1): 805-821. |
36 | Simner S P, Anderson M D, Xia G G, et al. SOFC performance with Fe-Cr-Mn alloy interconnect[J]. Journal of the Electrochemical Society, 2005, 152(4): A740. |
37 | Horita T. Chromium poisoning for prolonged lifetime of electrodes in solid oxide fuel cells — review[J]. Ceramics International, 2021, 47(6): 7293-7306. |
38 | Xiong C, Qiu P, Zhang W, et al. Influence of practical operating temperature on the Cr poisoning for LSCF-GDC cathode[J]. Ceramics International, 2022, 48(22): 33999-34004. |
39 | Ni N, Wang C C, Skinner S J. Synergistic effects of temperature and polarization on Cr poisoning of La0.6Sr0.4Co0.2Fe0.8O3- σ solid oxide fuel cell cathodes[J]. Journal of Materials Chemistry A, 2019, 7(15): 9253-9262. |
40 | Talic B, Norrman K, Sand T, et al. Correlating oxygen electrode degradation to Cr vaporization from metallic interconnects in solid oxide cell stacks[J]. Journal of the Electrochemical Society, 2023, 170(12): 124517. |
41 | Ni N, Cooper S J, Williams R, et al. Degradation of (La0.6Sr0.4)0.95(Co0.2Fe0.8)O3- σ solid oxide fuel cell cathodes at the nanometer scale and below[J]. ACS Applied Materials & Interfaces, 2016, 8(27): 17360-17370. |
42 | Lee S N, Atkinson A, Kilner J A. Effect of chromium on La0.6Sr0.4Co0. 2Fe0.8O3- δ solid oxide fuel cell cathodes[J]. Journal of the Electrochemical Society, 2013, 160(6): F629. |
43 | Zhen Y. Mechanism of Cr deposition and its application in the development of Cr-tolerant cathodes of solid oxide fuel cells[J]. Solid State Ionics, 2008, 179(27/28/29/30/31/32): 1459-1464. |
44 | Horita T, Xiong Y, Yoshinaga M, et al. Determination of chromium concentration in solid oxide fuel cell cathodes: (La, Sr)MnO3 and (La, Sr)FeO3 [J]. Electrochemical and Solid-State Letters, 2009, 12(10): B146. |
45 | Horita T, Xiong Y, Kishimoto H, et al. Chromium poisoning and degradation at (La, Sr) MnO3 and (La, Sr) FeO3 cathodes for solid oxide fuel cells[J]. Journal of the Electrochemical Society, 2010, 157(5): B614. |
46 | Zhang X, Jin Y, Jiang Y, et al. Enhancing chromium poisoning tolerance of La0. 8Sr0.2Co0.2Fe0.8O3- δ cathode by Ce0.8Gd0.2O1.9- σ coating[J]. Journal of Power Sources, 2022, 547: 231996. |
47 | Wang Z, Zhao S, Guo X, et al. Inhibition of chromium poisoning in La0.6Sr0.4Co0. 2Fe0.8O3- δ cathode via simple electroless silver plating for solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2022, 47(21): 11250-11260. |
48 | Kim Y M, Chen X, Bae J. Chromium deposition and poisoning at Ba0.5Sr0.5Co0.8Fe0.2O3- δ cathode of solid oxide fuel cells[J]. Electrochemical and Solid-State Letters, 2011, 14(4): B41. |
49 | Kim Y M, Chen X, Bae J. Effect of strontium content on chromium deposition and poisoning in Ba1- x Sr x Co0.8Fe0.2O3- σ (0.3≤x≤0.7) cathodes of solid oxide fuel cells[J]. Journal of the Electrochemical Society, 2011, 159(2): B185. |
50 | Yung H, Jian L. Polarization promoted chemical reaction between Ba0.5Sr0.5Co0.8Fe0.2O3- δ cathode and ceria based electrolytes of solid oxide fuel cells[J]. Journal of the Electrochemical Society, 2012, 159(11): F794. |
51 | Chen K, Hyodo J, Dodd A, et al. Chromium deposition and poisoning of La0.8Sr0.2MnO3 oxygen electrodes of solid oxide electrolysis cells[J]. Faraday Discuss, 2015, 182: 457-476. |
52 | Wei B, Chen K, Zhao L, et al. Chromium deposition and poisoning at La0.6Sr0.4Co0.2Fe0.8O3- δ oxygen electrodes of solid oxide electrolysis cells[J]. Phys Chem Chem Phys, 2015, 17(3): 1601-1609. |
53 | Zhang W, Yan D, Yang J, et al. A novel low Cr-containing Fe-Cr-Co alloy for metallic interconnects in planar intermediate temperature solid oxide fuel cells[J]. Journal of Power Sources, 2014, 271: 25-31. |
54 | Xiong C, Li W, Xiao J, et al. Improved chromium-poisoning on lanthanum strontium manganite cathode in presence of a newly developed iron-chromium based interconnect alloy for solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2015, 40(40): 13957-13963. |
55 | Chen X, Hua B, Pu J, et al. Interaction between (La, Sr)MnO3 cathode and Ni-Mo-Cr metallic interconnect with suppressed chromium vaporization for solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2009, 34(14): 5737-5748. |
56 | Zhou L, Finklea H O, Li W, et al. Deconvolution of deterioration of anode-supported cells by chromium poisoning from alumina-forming austenitic stainless steels for balance of plant applications in solid oxide fuel cells[J]. Electrochimica Acta, 2022, 428: 140933. |
57 | Fu Q, Tietz F, Sebold D, et al. Magnetron-sputtered cobalt-based protective coatings on ferritic steels for solid oxide fuel cell interconnect applications[J]. Corrosion Science, 2012, 54: 68-76. |
58 | Wang R, Sun Z, Pal U B, et al. Mitigation of chromium poisoning of cathodes in solid oxide fuel cells employing CuMn1.8O4 spinel coating on metallic interconnect[J]. Journal of Power Sources, 2018, 376: 100-110. |
59 | Sun Z, Wang R, Nikiforov A Y, et al. CuMn1.8O4 protective coatings on metallic interconnects for prevention of Cr-poisoning in solid oxide fuel cells[J]. Journal of Power Sources, 2018, 378: 125-133. |
60 | Wang B, Li K, Liu J, et al. Fabricating a MnCo coating to improve oxidation resistance and electrical conductivity of Crofer22H alloy as SOFC interconnect[J]. International Journal of Hydrogen Energy, 2024, 50: 1503-1514. |
61 | Lee K, Yoon B, Kang J, et al. Evaluation of Ag-doped (Mn,Co)3O4 spinel as a solid oxide fuel cell metallic interconnect coating material[J]. International Journal of Hydrogen Energy, 2017, 42(49): 29511-29517. |
62 | Fujita K, Hashimoto T, Ogasawara K, et al. Relationship between electrochemical properties of SOFC cathode and composition of oxide layer formed on metallic interconnects[J]. Journal of Power Sources, 2004, 131(1/2): 270-277. |
63 | Wang B, Li K, Liu J, et al. Achieving high-temperature corrosion resistance and conductivity of SUS430 by xCr-MnCo dual-structured coating[J]. Corrosion Science, 2023, 220: 111267. |
64 | Gan L, Montreo X, Sheikh S A, et al. Microstructure and area specific resistance of cathodic half cells for solid oxide fuel cells composed of perovskite-type cathodes and Co-alloy-coated ferritic stainless steel interconnects[J]. Surface and Coatings Technology, 2021, 406: 126659. |
65 | Talic B, Molin S, Wiik K, et al. Comparison of iron and copper doped manganese cobalt spinel oxides as protective coatings for solid oxide fuel cell interconnects[J]. Journal of Power Sources, 2017, 372: 145-156. |
66 | Uddin M A, Aphale A, Hu B, et al. Electrochemical validation of in-cell chromium getters to mitigate chromium poisoning in SOFC stack[J]. Journal of the Electrochemical Society, 2017, 164(13): F1342-F1347. |
67 | Liang C, Hu B, Aphale A, et al. Mitigation of chromium assisted degradation of LSM cathode in SOFC[J]. ECS Transactions, 2017, 75(28): 57. |
68 | Chou Y S, ChoiI J P, Stevenson J W, et al. Performance and microstructure of a novel Cr-Getter material with LSCF-based cells in a generic stack test fixture[J]. ECS Transactions, 2017, 78(1): 1047. |
69 | Heo S J, Hong J, Aphale A, et al. Chromium poisoning of La1- x Sr x MnO3± δ cathodes and electrochemical validation of chromium getters in intermediate temperature-solid oxide fuel cells[J]. Journal of the Electrochemical Society, 2019, 166(13): F990. |
70 | Uddin M A, Banas C J, Liang C, et al. Design and optimization of chromium getter for SOFC systems through computational modeling[J]. ECS Transactions, 2017, 78(1): 1063. |
71 | Jiang S P, Zhen Y, Zhang S. Interaction between Fe-Cr metallic interconnect and (La, Sr)MnO3∕YSZ composite cathode of solid oxide fuel cells[J]. Journal of the Electrochemical Society, 2006, 153(8): A1511. |
72 | Konysheva E, Mertens J, Penkalla H, et al. Chromium poisoning of the porous composite cathode: effect of cathode thickness and current density[J]. Journal of the Electrochemical Society, 2007, 154(12): B1252. |
73 | Hessler-Wyser A, Wuillemin Z, Schuler J A, et al. TEM investigation on zirconate formation and chromium poisoning in LSM/YSZ cathode[J]. Journal of Materials Science, 2011, 46: 4532-4539. |
74 | Liu D J, Almer J, Cruse T. Characterization of Cr poisoning in a solid oxide fuel cell cathode using a high energy X-ray microbeam[J]. Journal of the Electrochemical Society, 2010, 157(5): B744. |
75 | Salary H, Zare A, Babaei A, et al. Elucidating the role of La2NiO4± δ (LNO) nanoparticles in modulating chromium poisoning in LSM air electrodes of solid oxide cells: a study on oxygen reduction and evolution reactions[J]. Journal of Power Sources, 2024, 594: 234001. |
76 | Chen Y, Yoo S, Li X, et al. An effective strategy to enhancing tolerance to contaminants poisoning of solid oxide fuel cell cathodes[J]. Nano Energy, 2018, 47: 474-480. |
77 | Song X. Chromium tolerant, highly active and stable electrocatalytic internal surface coating for cathode of commercial SOFCs[R]. West Virginia Univ., Morgantown, WV (United States), 2023. |
78 | Chen X. Highly active and stable (La0.24Sr0.16Ba0.6)(Co0.5Fe0.44Nb0.06)O3- δ (LSBCFN) cathodes for solid oxide fuel cells prepared by a novel mixing synthesis method [J]. Journal of Materials Chemistry A, 2013, 1(15): 4871-4878. |
79 | Yang T, Wen Y, Wu T, et al. A highly active and Cr-resistant infiltrated cathode for practical solid oxide fuel cells[J]. Journal of Materials Chemistry A, 2019, 8: 82-86. |
80 | Komatsu T, Arai H, Chiba R, et al. Cr poisoning suppression in solid oxide fuel cells using LaNi(Fe)O3 electrodes[J]. Electrochemical and Solid-State Letters, 2005, 9(1): A9. |
81 | Lau G Y, Tucker M C, Jacobson C P, et al. Chromium transport by solid state diffusion on solid oxide fuel cell cathode[J]. Journal of Power Sources, 2010, 195(22): 7540-7547. |
82 | Stodolny M, Boukamp B A, Blank D H, et al. La (Ni, Fe)O3 stability in the presence of chromia—a solid-state reactivity study[J]. Journal of the Electrochemical Society, 2010, 158(2): B112. |
83 | Gao Y, Huang X, Yuan M, et al. A medium entropy cathode with enhanced chromium resistance for solid oxide fuel cells[J]. Journal of the European Ceramic Society, 2023, 43(5): 2002-2012. |
84 | Shaur A, Rehman S U, Kim H S, et al. Hybrid electrochemical deposition route for the facile nanofabrication of a Cr-poisoning-tolerant La(Ni, Fe)O3- σ cathode for solid oxide fuel cells[J]. ACS Applied Materials & Interfaces, 2020, 12(5): 5730-5738. |
85 | Yang M, Bucher E, Sitte W. Effects of chromium poisoning on the long-term oxygen exchange kinetics of the solid oxide fuel cell cathode materials La0.6Sr0.4CoO3 and Nd2NiO4 [J]. Journal of Power Sources, 2011, 196(17): 7313-7317. |
[1] | 江洋, 彭长宏, 陈伟, 周豪, 马忠彬, 李洪博, 邱在容, 张国鹏, 周康根. 废旧磷酸铁锂粉料综合回收中试研究[J]. 化工学报, 2024, 75(6): 2353-2361. |
[2] | 赵亭亭, 鄢立祥, 唐福利, 肖敏之, 谭烨, 宋刘斌, 肖忠良, 李灵均. 光辅助锂-二氧化碳电池催化剂的设计策略与反应机理研究进展[J]. 化工学报, 2024, 75(5): 1750-1764. |
[3] | 王金山, 王世学, 朱禹. 冷却表面温差对高温质子交换膜燃料电池性能的影响[J]. 化工学报, 2024, 75(5): 2026-2035. |
[4] | 莫锦洪, 韩雪, 朱毅翔, 李菁, 王旭裕, 纪红兵. Pt-Ga/CeO2-ZrO2-Al2O3脱氢裂解双功能催化剂用于正丁烷催化制烯烃研究[J]. 化工学报, 2024, 75(5): 1855-1869. |
[5] | 丁禹, 杨昌泽, 李军, 孙会东, 商辉. 原子尺度钼系加氢脱硫催化剂的研究进展与展望[J]. 化工学报, 2024, 75(5): 1735-1749. |
[6] | 裴欣哲, 孙朱行, 林钰翔, 张朝阳, 钱勇, 吕兴才. 电催化分解液氨阳极材料的研究[J]. 化工学报, 2024, 75(5): 1843-1854. |
[7] | 程骁恺, 历伟, 王靖岱, 阳永荣. 镍催化可控/活性自由基聚合反应研究进展[J]. 化工学报, 2024, 75(4): 1105-1117. |
[8] | 吴希, 孙博, 刘银东, 齐传磊, 陈凯毅, 王路海, 许崇, 李永峰. 钠离子电池沥青基碳负极材料制备技术研究进展[J]. 化工学报, 2024, 75(4): 1270-1283. |
[9] | 韩宇, 周乐, 张鑫, 罗勇, 孙宝昌, 邹海魁, 陈建峰. 高黏附性Pd/SiO2/NF整体式催化剂的制备及加氢性能研究[J]. 化工学报, 2024, 75(4): 1533-1542. |
[10] | 张劲, 郭志斌, 罗来明, 卢善富, 相艳. 5 kW重整甲醇高温质子交换膜燃料电池系统设计与性能[J]. 化工学报, 2024, 75(4): 1697-1704. |
[11] | 李添翼, 武玉泰, 王永胜, 顾佳锐, 宋沂恒, 杨丰铖, 郝广平. 轻同位素分离纯化与催化标记研究进展[J]. 化工学报, 2024, 75(4): 1284-1301. |
[12] | 孙铭泽, 黄鹤来, 牛志强. 铂基氧还原催化剂:从单晶电极到拓展表面纳米材料[J]. 化工学报, 2024, 75(4): 1256-1269. |
[13] | 李云璇, 刘新悦, 陈熙, 刘文, 周明月, 蓝兴英. 基于固液氧化还原靶向反应的能量存储技术:材料、器件及动力学[J]. 化工学报, 2024, 75(4): 1222-1240. |
[14] | 范以薇, 刘威, 李盈盈, 王培霞, 张吉松. 有机液体储氢中全氢化乙基咔唑催化脱氢研究进展[J]. 化工学报, 2024, 75(4): 1198-1208. |
[15] | 冯彬彬, 卢明佳, 黄志宏, 常译文, 崔志明. 碳载体在质子交换膜燃料电池中的应用及优化[J]. 化工学报, 2024, 75(4): 1469-1484. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 339
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 855
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||