化工学报 ›› 2025, Vol. 76 ›› Issue (11): 5574-5583.DOI: 10.11949/0438-1157.20250452

• 专栏:能源利用过程中的多相流与传热 • 上一篇    下一篇

考虑扩散层表面润湿性的流道内两相流对燃料电池性能影响研究

张晓卿1(), 马骁2(), 帅石金1   

  1. 1.清华大学航空发动机研究院,北京 100084
    2.清华大学车辆与运载学院,北京 100084
  • 收稿日期:2025-04-28 修回日期:2025-05-26 出版日期:2025-11-25 发布日期:2025-12-19
  • 通讯作者: 马骁
  • 作者简介:张晓卿(1996—),男,博士,zhangxq2023@mail.tsinghua.edu.cn
  • 基金资助:
    中国博士后科学基金项目(2023TQ0170);中国博士后科学基金项目(2024M751668)

Study on influence of two-phase flow in channels considering surface wettability of gas diffusion layers on fuel cell performance

Xiaoqing ZHANG1(), Xiao MA2(), Shijin SHUAI1   

  1. 1.Institute for Aero Engine, Tsinghua University, Beijing 100084, China
    2.School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China
  • Received:2025-04-28 Revised:2025-05-26 Online:2025-11-25 Published:2025-12-19
  • Contact: Xiao MA

摘要:

质子交换膜燃料电池流道内的两相流是影响其性能的关键因素,但考虑气液界面演化等详细两相流特性的多物理场耦合研究仍然不足。通过构建耦合流体体积模型的燃料电池模型,定量解析了气体扩散层(gas diffusion layer,GDL)表面润湿性对燃料电池传质及性能的影响。结果表明,忽略流道内详细两相流会高估燃料电池性能及物理量分布均匀性,而随着GDL表面疏水性的增强,GDL表面的液态水覆盖面积下降,在前期有利于增强氧气输运及燃料电池性能,但也会导致排水变慢,在后期导致燃料电池性能恢复较慢。在本研究中,GDL表面接触角为160°时燃料电池性能最佳,而接触角为110°时性能最低。本研究为理解燃料电池流道内两相流影响机制、设计高性能燃料电池提供了理论及模型支撑。

关键词: 燃料电池, 流道, 气液两相流, 性能, 均匀性, 计算流体力学

Abstract:

The two-phase flow within flow channels of proton exchange membrane fuel cells is a critical factor affecting the performance, but the multi-physics coupling research considering detailed two-phase flow characteristics such as the evolution of the gas-liquid interface is still insufficient. By constructing a fuel cell model coupled with the volume of fluid model, this study quantitatively analyzes the impact of the surface wettability of the gas diffusion layer (GDL) on mass transfer and performance in fuel cells. The results show that neglecting the detailed two-phase flow in channels can overestimate both the fuel cell performance and the uniformity of physical quantity distribution. As the hydrophobicity of the GDL surface increases, the coverage area of liquid water on the GDL surface decreases, which initially enhances oxygen transport and fuel cell performance. However, this also leads to slower water drainage, causing slower performance recovery in the later stage. In this study, the fuel cell performance is best when the contact angle of the GDL surface is 160°, while the performance is lowest when the contact angle is 110°. The study provides theoretical and model support for understanding the mechanisms underlying the influence of two-phase flow within flow channels and for the design of high-performance fuel cells.

Key words: fuel cell, flow channel, gas-liquid flow, performance, uniformity, computational fluid dynamics

中图分类号: